ontologiesoscommerce
oscommerce 时间:2021-04-12 阅读:(
)
QALM:aBenchmarkforQuestionAnsweringoverLinkedMerchantWebsitesDataAmineHallili1,ElenaCabrio2,3,andCatherineFaronZucker11Univ.
NiceSophiaAntipolis,CNRS,I3S,UMR7271,SophiaAntipolis,Franceamine.
hallili@inria.
fr;faron@unice.
fr2INRIASophiaAntipolisMediterranee,SophiaAntipolis,Franceelena.
cabrio@inria.
fr3EURECOM,SophiaAntipolis,FranceAbstract.
Thispaperpresentsabenchmarkfortrainingandevaluat-ingQuestionAnsweringSystemsaimingatmediatingbetweenauser,expressinghisorherinformationneedsinnaturallanguage,andseman-ticdatainthecommercialdomainofthemobilephonesindustry.
WerstdescribetheRDFdatasetweextractedthroughtheAPIsofmer-chantwebsites,andtheschemasonwhichitrelies.
Wethenpresentthemethodologyweappliedtocreateasetofnaturallanguagequestionsexpressingpossibleuserneedsintheabovementioneddomain.
Suchquestionsethasthenbeenfurtherannotatedbothwiththecorrespond-ingSPARQLqueries,andwiththecorrectanswersretrievedfromthedataset.
1IntroductionTheevolutionofthee-commercedomain,especiallytheBusinessToClient(B2C),hasencouragedtheimplementationandtheuseofdedicatedapplica-tions(e.
g.
QuestionAnsweringSystems)tryingtoprovideend-userswithabet-terexperience.
Atthesametime,theuser'sneedsaregettingmoreandmorecomplexandspecic,especiallywhenitcomestocommercialproductswhosequestionsconcernmoreoftentheirtechnicalaspects(e.
g.
price,color,seller,etc.
).
Severalsystemsareproposingsolutionstoanswertotheseneeds,butmanychal-lengeshavenotbeenovercomeyet,leavingroomforimprovement.
Forinstance,federatingseveralcommercialknowledgebasesinoneknowledgebasehasnotbeenaccomplishedyet.
Also,understandingandinterpretingcomplexnaturallanguagequestionsalsoknownasn-relationquestionsseemstobeoneoftheambitioustopicsthatsystemsarecurrentlytryingtogureout.
InthispaperwepresentabenchmarkfortrainingandevaluatingQuestionAnswering(QA)Systemsaimingatmediatingbetweenauser,expressinghisorherinformationneedinnaturallanguage,andsemanticdatainthecommercialdomainofthemobilephoneindustry.
WerstdescribetheRDFdatasetthatwehaveextractedthroughtheAPIsofmerchantsites,andtheschemasonwhichitrelies.
Wethenpresentthemethodologyweappliedtocreateasetofnaturallan-guagequestionsexpressingpossibleuserneedsintheabovementioneddomain.
SuchquestionsethasthenbefurtherannotatedbothwiththecorrespondingSPARQLqueries,andwiththecorrectanswersretrievedfromthedataset.
2AMerchantSitesDatasetfortheMobilePhonesIndustryThissectiondescribestheQALM(QuestionAnsweringoverLinkedMerchantwebsites)ontology(Section2.
1),andtheRDFdataset(Section2.
2)webuiltbyextractingasampleofdatafromasetofcommercialwebsites.
2.
1QALMOntologyTheQALMRDFdatasetreliesontwoontologies:theMerchantSiteOntology(MSO)andthePhoneOntology(PO).
TogethertheybuilduptheQALMOn-tology.
4MSOmodelsgeneralconceptsofmerchantwebsites,anditisalignedtothecommercialpartoftheSchema.
orgontology.
MSOiscomposedof5classes:mso:Product,mso:Seller,mso:Organization,mso:Store,mso:ParcelDelive-ry,andof29properties(e.
g.
mso:price,mso:url,mso:location,mso:seller)declaredassubclassesandsubpropertiesofSchema.
orgclassesandproperties.
Weaddedtothemmultilinguallabels(bothinEnglishandinFrench),thatcanbeexploitedbyQAsystemsinparticularforpropertyidenticationinthequestioninterpretationstep.
WereliedonWordNetsynonyms[2]toextractasmuchlabelsaspossible.
Forexample,thepropertymso:pricehasthefollowingEnglishlabels:"price","cost","value","tari","amount",andthefollowingFrenchlabels:"prix","cout","couter","valoir","tarif","s'elever".
POisadomainontologymodelingconceptsspecictothephoneindus-try.
Itiscomposedof7classes(e.
g.
po:Phone,po:Accessory)whicharede-claredassubclassesofmso:Product,andof35properties(e.
g.
po:handsetType,po:operatingSystem,po:phoneStyle).
2.
2QALMRDFDatasetOurnalgoalistobuildauniedRDFdatasetintegratingcommercialproductdescriptionsfromvariouse-commercewebsites.
Inordertoachievethisgoal,weanalyzethewebservicesofthee-commercewebsitesregardlessoftheirtype(eitherSOAPorREST).
Tofeedourdataset,wecreateamappingbetweentheremotecallstothewebservicesandtheontologyproperties,thatwestoreinaseparateleforreuse.
Inparticular,webuilttheQALMRDFdatasetbyextractingdatafromeBay5andBestBuy6commercialwebsitesthroughBestBuyWebserviceandeBayAPI.
TheextractedrawdataistransformedintoRDFtriplesbyapplyingtheabovedescribedmappingbetweentheQALMontology4Availableatwww.
i3s.
unice.
fr/qalm/ontology5http://www.
ebay.
com/6http://www.
bestbuy.
com/andtheAPI/webservice.
Forinstance,themethodgetPrice()intheeBayAPIismappedtothepropertymso:priceintheQALMontology.
Currently,theQALMdatasetcomprises500000productdescriptionsandupto15millionstriplesextractedfromeBayandBestBuy.
73QALMQuestionSetInordertotrainandtoevaluateaQAsystemmediatingbetweenauserandsemanticdataintheQALMdataset,asetofquestionsrepresentingusersre-questsinthephoneindustrydomainisrequired.
Uptoourknowledge,theonlyavailablestandardsetsofquestionstoevaluateQAsystemsoverlinkeddataaretheonesreleasedbytheorganizersoftheQALD(QuestionAnsweringoverLinkedData)challenges.
8HoweversuchquestionsareovertheEnglishDBpediadataset9,andthereforecoverseveraltopics.
Forthisreason,wecreatedasetofnaturallanguagequestionsforthespeciccommercialdomainofthephoneindustry,followingtheguidelinesdescribedbytheQALDorganizersforthecreationoftheirquestionsets[1].
Morespecically,thesequestionswerecre-atedby12externalpeople(studentsandresearchersinothergroups)withnobackgroundinquestionanswering,inordertoavoidabiastowardsaparticularapproach.
Toaccomplishthetaskofquestioncreation,eachpersonwasgiveni)thelistoftheproducttypespresentintheQALMdataset(mainlycomposedofITproductsasphonesandaccessories);ii)thelistofthepropertiesoftheQALMontologypresentedasproductfeaturesinwhichtheycouldbeinterestedin;andtheywereaskedtoproducei)both1-relationand2-relationquestions,andii)atleast5questionseach.
Thequestionsweredesignedtopresentpotentialuserquestionsandtoincludeawiderangeofchallengessuchaslexicalambiguitiesandcomplexsyntacticalstructures.
SuchquestionswerethenannotatedwiththecorrespondingSPARQLqueries,andthecorrectanswersretrievedfromthedataset,inordertoconsiderthemasareliablegoldstandardforourbenchmark.
Thenalquestionsetcomprises70questions;itisdividedintoatrainingset10andatestsetofrespectively40and30questions.
AnnotationsareprovidedinXMLformat,andaccordingtoQALDguidelines,thefollowingattributesarespeciedforeachquestionalongwithitsID:aggregation(indicateswhetheranyoperationbeyondtriplepatternmatchingisrequiredtoanswerthequestion,e.
g.
,counting,ltering,ordering),answertype(givestheanswertype:resource,string,boolean,double,date).
Wealsoaddedtheattributerelations,toindicatewhetherthequestionisconnectedtoitsanswerthroughoneormorepropertiesoftheontology(values:1,n).
Finally,foreachquestionthecorrespondingSPARQLqueryisprovided,aswellastheanswersthisqueryreturns.
Examples1and2showsomequestionsfromthecollectedquestionset,connectedtotheiranswersthrough1propertyormorethan1propertyoftheontology,respectively.
In7Availableatwww.
i3s.
unice.
fr/QALM/qalm.
rdf8http://greententacle.
techfak.
uni-bielefeld.
de/~cunger/qald/9http://dbpedia.
org10Availableatwww.
i3s.
unice.
fr/QALM/training_questions.
xmlparticular,questions14and50fromExample2requirealsotocarryoutsomereasoningontheresults,inordertorankthemandtoproducethecorrectanswer.
Example1.
1-relationquestions.
id=36.
Givemethemanufacturerswhosupplyon-earheadphones.
id=52.
WhatcolorsareavailablefortheSamsungGalaxy5id=61.
WhichproductsofAlcatelareavailableonlineExample2.
n-relationsquestions.
id=14.
Whichcellphonecase(anymanufacturer)hasthemostratingsid=50.
WhatisthehighestcameraresolutionofphonesmanufacturedbyMotorolaid=58.
IwouldliketoknowinwhichstoresIcanbuyApplephones.
4ConclusionsandOngoingWorkThispaperpresentedabenchmarktotrainandtestQAsystems,composedofi)theQALMontologies;ii)theQALMRDFdatasetofproductdescriptionsex-tractedfromeBayandBestBuy;andiii)theQALMQuestionSet,containing70naturallanguagequestionsinthecommercialdomainofphonesandaccessories.
Asforfuturework,wewillconsideraligningtheQALMontologytotheGoodRelationsontologytofullycoverthecommercialdomain,andtobenetfromthesemanticscapturedinthisontology.
WealsoconsiderimprovingtheQALMRDFdatasetbyi)extractingRDFdatafromadditionalcommercialwebsitesthatprovidewebservicesorAPIs;andii)directlyextractingRDFdataintheSchema.
orgontologyfromcommercialwebsiteswhosepagesareautomaticallygeneratedwithSchema.
orgmarkup(e.
g.
Magento,OSCommerce,Genesis2.
0,Prestashop),toextendthenumberofaddressedcommercialwebsites.
Inparallel,wearecurrentlydevelopingtheSynchroBotQAsystem[3],anontology-basedchatbotforthee-commercedomain.
WewillevaluateitbyusingtheproposedQALMbenchmark.
AcknowledgementsWethankAmazon,eBayandBestBuyforcontributingtothisworkbysharingwithuspublicdataabouttheircommercialproducts.
TheworkofE.
CabriowasfundedbytheFrenchGovernmentthroughtheANR-11-LABX-0031-01program.
References1.
Cimiano,P.
,Lopez,V.
,Unger,C.
,Cabrio,E.
,Ngomo,A.
C.
N.
,Walter,S.
:Multi-lingualquestionansweringoverlinkeddata(qald-3):Laboverview.
In:CLEF.
pp.
321–332(2013)2.
Fellbaum,C.
:WordNet:AnElectronicLexicalDatabase.
BradfordBooks(1998)3.
Hallili,A.
:Towardanontology-basedchatbotendowedwithnaturallanguagepro-cessingandgeneration.
In:Proc.
ofESSLLI2014-StudentSession,Posterpaper(2014)
菠萝云国人商家,今天分享一下菠萝云的广州移动机房的套餐,广州移动机房分为NAT套餐和VDS套餐,NAT就是只给端口,共享IP,VDS有自己的独立IP,可做站,商家给的带宽起步为200M,最高给到800M,目前有一个8折的优惠,另外VDS有一个下单立减100元的活动,有需要的朋友可以看看。菠萝云优惠套餐:广州移动NAT套餐,开放100个TCP+UDP固定端口,共享IP,8折优惠码:gzydnat-8...
3C云互联怎么样?3C云互联专注免备案香港美国日本韩国台湾云主机vps服务器,美国高防CN2GIA,香港CN2GIA,顶级线路优化,高端品质售后无忧!致力于对互联网云计算科技深入研发与运营的极客共同搭建而成,将云计算与网络核心技术转化为最稳定,安全,高速以及极具性价比的云服务器等产品提供给用户!专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端服务部署,促使用户云端部署化简为零,轻松...
介绍:819云怎么样?819云创办于2019,由一家从2017年开始从业的idc行业商家创办,主要从事云服务器,和物理机器819云—-带来了9月最新的秋季便宜vps促销活动,一共4款便宜vps,从2~32G内存,支持Windows系统,…高速建站的美国vps位于洛杉矶cera机房,服务器接入1Gbps带宽,采用魔方管理系统,适合新手玩耍!官方网站:https://www.8...
oscommerce为你推荐
操作http亿元支付宝小企业如何做品牌小公司的品牌建设怎么样才能做好支付宝账户是什么好评返现 要支付宝帐号 支付宝帐号是什么啊计算机cuteftp课程cuteftp银花珠树晓来看谜语白色花无人栽一夜北风遍地开。旡根无叶又无枝不知是谁送花来。谜底是什么温州都市报招聘劳务市场找工作可靠吗discuz伪静态求虚拟主机Discuz 伪静态设置方法如何发帖子怎么发帖子啊?
域名是什么 免费域名注册 国内vps 免费cn域名 132邮箱 新加坡主机 inmotionhosting 精品网 韩国电信 密码泄露 青果网 12306抢票助手 一点优惠网 国外免费空间 ftp教程 流量计费 umax120 酷番云 厦门电信 重庆电信服务器托管 更多