EcologicalEngineering94(2016)574–582ContentslistsavailableatScienceDirectEcologicalEngineeringjournalhomepage:www.
elsevier.
com/locate/ecolengEffectofrockfragmentscontentonwaterconsumption,biomassandwater-useefciencyofplantsunderdifferentwaterconditionsMeixiaMia,Ming'anShaoa,b,,BingxiaLiucaKeyLaboratoryofEcosystemNetworkObservationandModeling,InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,ChinabStateKeyLaboratoryofSoilErosionandDrylandFarmingontheLoessPlateau,InstituteofSoilandWaterConservation,ChineseAcademyofSciences&MinistryofWaterResources,Yangling712100,ChinacKeyLaboratoryofAgriculturalWaterResources,CenterforAgriculturalResourcesResearch,InstituteofGeneticsandDevelopmentalBiology,ChineseAcademyofSciences,286HuaizhongRoad,Shijiazhuang050021,ChinaarticleinfoArticlehistory:Received22December2015Receivedinrevisedform18May2016Accepted16June2016Availableonline15July2016Keywords:RockfragmentPlantWaterconsumptionBiomassWater-useefciencyabstractTheproportionofrockfragmentsinsoilaffectswateravailabilityandthereforethecharacteristicsofplants.
Theobjectiveofthisstudywastoevaluatetheeffectofrock-fragmentcontentonplantwaterconsumption,biomass,growthandwater-useefciency(WUE)underdifferentwaterconditions.
Fourgravimetrictreatmentsofrock-fragmentcontents(0,10,30and50%)andfourtreatmentsofwatercon-tentweretestedinsandyloamysoils.
Thewatercontentsoftherock-freesoilwere15–19%(80–100%ofeldcapacity),11–15%(60–80%ofeldcapacity),9–11%(47–60%ofeldcapacity)and6–9%(32–47%ofeldcapacity).
Transpiration,plantheight,basalstemdiameterandbiomassofkorshinskpeashrubsinthetreatmentsweremeasuredandcompared.
Plantsgrowninthesoilwithrockfragmentstranspiredless,especiallyunderwell-wateredconditions.
Themeandailytranspirationofplantsinthesoilswith30and50%rock-fragmentcontentswas18%(P=0.
021)and34%(P=0.
001)lower,respectively,in2014,and25%(P=0.
008)and31%(P=0.
002)lower,respectively,in2015relativetothesoilwithoutrockfragmentsandwasnotlowerinthesoilwith10%rockfragments.
Plantheight,basalstemdiameterandbiomassdidnotdiffersignicantlybetweenrock-fragmentcontentsof0and30%butwerelowerat50%.
WUE,theratiobetweentotaltranspirationandbiomass,washighestat30%andthendecreasedat50%.
IncreasingplantwaterstresscouldthusimproveWUE.
Therockfragmentsinthesoilhadsignicanteffectsonplantwaterconsumption,biomass,growthandWUE.
Optimizingtherock-fragmentcontentisnecessarywhentherelationshipsbetweenplantsandwaterinstonyecosystemsareevaluated.
2016ElsevierB.
V.
Allrightsreserved.
1.
IntroductionAsoilrockfragmentisdenedasaparticlewithadiameter>2mm.
Fragmentsformingasaresultofprocessesofsoilgenesisandhumanactivityexistatthesoilsurfaceandwithinthesoil.
Stonysoilsarewidespreadandcanreachland-coverratiosupto60%intheMediterraneanregionofWesternEurope(PoesenandLavee,1994).
Theproportionofstonysoilis>30%ontheLoessPlateauofChina(Hou,1993).
Thepresenceofrockfragmentssignicantlyaffectshydrologi-calfunctioningsuchaswaterstorage,inltrationandevaporationandsoilhydraulicpropertiessuchashydraulicconductivityandwaterretention(VanWesemaeletal.
,1996;MaandShao,2008;Correspondenceto:11#,DaTunRoad,ChaoYangDistrict,Beijing,China.
E-mailaddress:shaoma@igsnrr.
ac.
cn(M.
Shao).
Lietal.
,2008;Zhouetal.
,2009;Baetensetal.
,2009;Maetal.
,2010;Nováketal.
,2011;Teteganetal.
,2011).
Watermovementin,andthehydraulicpropertiesof,soilsarestronglydependentontheavailabilityofwaterforplants.
Rockfragmentsinstonyareasshouldthereforebeconsideredinstudiesofwateravailabilityforplantsandofwaterexchangeamongplants,rockfragmentsandsoils.
Teteganetal.
(2011)proposedpedotransferfunctionsbasedonthelinearrelationshipbetweentheavailablewatercontent(AWC)ofrockfragmentsandtheNapierianlogarithmofbulkden-sityandtherelationshipbetweenwatercontentat100and15840hPa.
Thesimulationshowedthatexcluding30%ofthepebblesinastonyhorizonunderestimatedthesoilavailablewatercontent(SAWC)by5%forchertpebblesandby33%forchalkpebbles.
NovákandKˇnava(2012)demonstratedthatthepresenceofstonescandecreasesoilwater-holdingcapacityandhydraulicconductivity,whichcandecreasetheavailabilityofsoilwaterfortrees.
Teteganhttp://dx.
doi.
org/10.
1016/j.
ecoleng.
2016.
06.
0440925-8574/2016ElsevierB.
V.
Allrightsreserved.
M.
Mietal.
/EcologicalEngineering94(2016)574–582575Table1Mainphysicalpropertiesofthenesoil.
Sand>0.
02mm(%)Silt0.
02–0.
002mm(%)Clay40mm(%)2.
156.
6952.
9211.
3826.
86contentofcalciumcarbonate(ZhuandShao,2008).
Theconcretionshaveformedbythesyntheticactionofpedogenesis,soilerosion,andhumanactivityandarerandomlydistributedinandonthesurfaceofthesoil.
Theserockfragmentshavethecapacitytoabsorbwater.
Thesoilandrockfragmentsforthisstudywerecollectedfromthecatchment.
Thesoilusedinthisstudywassandyloam,classiedaccordingtotheISSS(InternationalSocietyofSoilScience)system.
ThemainphysicalpropertiesofthesoilarepresentedinTable1.
FieldcapacitywasdeterminedbythemodiedWilcoxmethod(Hanksetal.
,1954).
ThesizedistributionoftherockfragmentsispresentedinTable2.
Fragmentsizesof20–30mmrepresentedthelargestproportion(>50%),followedbyfragments>40mm.
2.
2.
ExperimentaldesignandtreatmentsTheexperimentwasconductedbeneathamobileplasticrainshelterfromMaytoOctober2014and2015usingPVCcolumns1mhighand20cmindiameter.
Thene(BW1andBW2inthetreatmentswith10%rock-fragmentcontentin2015andbetweenDW1andDW2inthetreatmentswith50%rock-fragmentcontent.
Maintainingsimilardailytranspirationisreasonableunderhighwatercondi-tions,eventhoughthewatercontentsdifferedsignicantly.
Variousplantsphysiologicalindices(suchastranspirationrate,photosyn-theticrate,andplantheight)begantodecreasewhenwatercontentM.
Mietal.
/EcologicalEngineering94(2016)574–582577Table3Changesofwatercontentduringtheexperiment.
Rock-fragmentcontent(%)Treatment20142015Rangeofwatercontent(gg1)Averagewatercontent(gg1)Rangeofwatercontent(gg1)Averagewatercontent(gg1)0AW10.
121–0.
1380.
1300.
097–0.
1360.
119AW20.
099–0.
1100.
105*0.
080–0.
1070.
093*AW30.
071–0.
0800.
0770.
062–0.
0800.
070AW40.
050–0.
0640.
0600.
055–0.
0650.
061§10BW10.
117–0.
1310.
1270.
095–0.
1310.
113BW20.
092–0.
1040.
100*0.
070–0.
1050.
090*BW30.
069–0.
0780.
0750.
060–0.
0770.
069BW40.
057–0.
0640.
0610.
052–0.
0630.
058#30CW10.
112–0.
1190.
1150.
090–0.
1160.
105CW20.
081–0.
0960.
0890.
072–0.
0950.
085CW30.
061–0.
0730.
0680.
063–0.
0720.
068CW40.
048–0.
0600.
0560.
056–0.
0610.
05950DW10.
092–0.
1030.
0980.
076–0.
1030.
091*DW20.
080–0.
0870.
0840.
063–0.
0880.
076DW30.
060–0.
0680.
0660.
057–0.
0680.
064§DW40.
049–0.
0570.
0550.
051–0.
0590.
055#Note:Thesamesymbolsafterthenumbersinthesamecolumnindicatethatthedifferenceofwatercontentamongthetreatmentswasnotsignicant.
Fig.
1.
Thedynamicchangeofmeandailytranspiration(±SE)in2014and2015.
A,B,C,andDrepresentrock-fragmentcontentsof0,10,30,and50%,respectively.
W1,W2,W3,andW4representthefourwatertreatmentsforthenesoilof15–19,11–15,9–11,and6–9%,respectively.
AW,BW,CW,andDWrepresentmeandailytranspirationofthefourwatertreatmentsforrock-fragmentcontentsof0,10,30,and50%,respectively.
578M.
Mietal.
/EcologicalEngineering94(2016)574–582Fig.
2.
Mean(±SE)stemheightanddiameterfromMay2014toSeptember2015.
A,B,C,andDrepresentrock-fragmentcontentsof0,10,30,and50%,respectively.
W1,W2,W3,andW4representthefourwatertreatmentsforthenesoilof15–19,11–15,9–11,and6–9%,respectively.
Table4Comparisonoftranspirationforthedifferentrock-fragmentcontentsinthewater-contenttreatments.
Signicantdifferences(PBW10.
179ab24.
867ab0.
376a41.
584abBW20.
174ab23.
981abc0.
302bc33.
633cdBW30.
092f12.
106efg0.
186ef20.
686fgBW40.
069gh9.
063g0.
129g14.
169gh30CW10.
163bc22.
498abc0.
318bc35.
182bcdCW20.
148cd19.
766bcd0.
262cd29.
097deCW30.
123e11.
431fg0.
136fg15.
081fghCW40.
082fg10.
015fg0.
065h7.
200ij50DW10.
143cd19.
543cd0.
314bc35.
024cdDW20.
123e15.
147def0.
239de26.
692efDW30.
081fg8.
717g0.
112gh11.
297hjiDW40.
050h9.
237g0.
065h7.
177jisbelowacriticalvalue(Bielorai,1973;Sinclairetal.
,1998;Wuetal.
,2011b,c).
Dailytranspirationtendedtodecreaseastheproportionofrockfragmentsinthesoilincreased.
Theresultsofcomparisonsofmeandailytranspirationforeachrock-fragmentcontentshowedthatthedailytranspirationforplantsgrownwithoutrockfragments(0%)washigherthanforplantsgrownwithrock-fragmentcontentsof30and50%(Table5):18and34%higher,respectively,in2014andM.
Mietal.
/EcologicalEngineering94(2016)574–582579Table5Comparisonofmeantranspirationforthefourrock-fragmentcontents.
Signicantdifferences(PBW1>CW1>DW1(Fig.
1andTable4).
DailytranspirationwashigherforAW1thanforCW1andDW1.
Dailytranspirationin2014forwater-contenttreatmentW1with50%rockfrag-mentswas39%lowerthanwithoutrockfragments.
Thedescendingorderofdailytranspirationforwater-contenttreatmentW2was:AW2>BW2>CW2>DW2.
ThedifferencesofdailytranspirationbetweenBW2andCW2andbetweenCW2andDW2in2014weresignicant.
Dailytranspirationforwater-contenttreatmentW3wassimilartothatfortreatmentW2.
Dailytranspirationforwater-contenttreatmentW4,didnotdiffersignicantlyamongAW4,BW4andCW4in2014andamongAW4,CW4andDW4in2015.
Changesinplanttranspirationmaydependontheratioofwatercontentbetweenthenesoilandrockfragments.
Thesaturatedwatercontentoftherockfragmentsinthisstudywas0.
08gg1,whichwaslowerthantheeldcapacityofthenesoil(0.
14gg1).
Theratiowashigherinthetreatmentswithhighwatercontentsthaninthetreatmentswithlowwatercontents.
Thepresenceoftherockfragmentsdecreasedthewatercontentofthestonysoilrel-ativetotherock-freesoilunderwell-wateredconditions(Teteganetal.
,2015b).
Theratioofwatercontentbetweenthenesoilandtherockfragmentsdecreasedgraduallyto1or60%ofeldcapacity).
2.
Plantsgrowninsoilwith50%rockfragmentswereshorter,hadsmallerbasalstemdiametersandhadlowerbiomassesandcom-ponentbiomasses(stems,leaves,androots)thanplantsgrowninrock-freesoil.
Theseparametersdidnotdiffersignicantlybetweentheplantsgrownwith10and30%rockfragments,buttendedtoincreasewhentherock-fragmentcontentincreasedfrom0to30%.
3.
WUErstincreasedandthendecreasedwithincreasinggravi-metricrockfragment.
WUEwaslowestfortheplantsgrowinginthesoilwith50%rockfragments,butwaterstresscouldincreaseWUE.
TherockfragmentcontenttothemaximumWUEwasintherangefrom10%to50%.
Wethereforerecommendmatch-ingrock-fragmentcontentwithmaximumWUEwhendesigningstrategiesofwaterconservationforstonysoils,especiallyinaridandsemiaridareas.
AcknowledgementsThisstudywassupportedbytheNationalNaturalScienceFoun-dationofChina(41530854and41571130081).
Wethanktheeditorandreviewersfortheircommentsandsuggestionsthatimprovedthequalityofthispaper.
ReferencesArshad,M.
A.
,Lowery,B.
,Grossman,B.
,1996.
Physicaltestsformonitoringsoilquality.
In:Doran,J.
W.
,Jones,A.
J.
(Eds.
),MethodsforAssessingSoilQuality.
SSSASpecialPub.
49SoilSci.
Soc.
Am.
,Madison,WI,pp.
123–141.
Baetens,J.
M.
,Verbist,K.
,Cornelis,W.
M.
,Gabrils,D.
,Soto,G.
,2009.
Ontheinuenceofcoarsefragmentsonsoilwaterretention.
WaterResour.
Res.
45,W07408,http://dx.
doi.
org/10.
1029/2008WR007402.
Bielorai,H.
,1973.
PredictionofIrrigationNeeds.
SpringerBerlin.
Blum,A.
,2009.
Effectiveuseofwater(EUW)andnotwater-useefciency(WUE)isthetargetofcropyieldimprovementunderdroughtstress.
FieldCropsRes.
112,119–123.
Bornyasz,M.
A.
,Graham,R.
C.
,Allen,M.
F.
,2005.
Ectomycorrhizaeinasoil-weatheredgraniticbedrockregolith:linkingmatrixresourcestoplants.
Geoderma126,141–160.
Carrick,S.
,Palmer,D.
,Webb,T.
,Scott,J.
,Lilburne,L.
,2013.
Stonysoilsareamajorchallengefornutrientmanagementunderirrigationdevelopment.
In:Currie,L.
D.
,Christensen,C.
L.
(Eds.
),AccurateandEfcientUseofNutrientsonFarms.
OccasionalRep.
26.
FertilizerandLimeResearchCentre,MasseyUniv.
,PalmerstonNorth,NewZealand.
Cheng,J.
,Wang,J.
B.
,Cheng,J.
M.
,Luo,Z.
K.
,2013.
Spatial-temporalvariabilityofCaraganakorshinskiivegetationgrowthintheLoessPlateau.
Sci.
Sil.
Sin.
49,14–20.
Danalatos,N.
G.
,Kosmas,C.
S.
,Moustakas,N.
C.
,Yassouglou,N.
,1995.
RockfragmentsIITheirimpactonsoilphysicalpropertiesandbiomassproductionunderMediterraneanconditions.
SoilUseManage.
11,121–126.
Ercoli,L.
,Masoni,A.
,Mariotti,M.
,Arduini,I.
,2006.
Drymatteraccumulationandremobilizationofdurumwheatasaffectedbysoilgravelcontent.
CerealRes.
Commun.
34,1299–1306.
Estrada-Medina,H.
,Graham,R.
C.
,Allen,M.
F.
,Jiménez-Osornio,J.
J.
,Robles-Casolco,S.
,2013.
TheimportanceoflimestonebedrockanddissolutionkarstfeaturesontreerootdistributioninnorthernYucatán,México.
PlantSoil362(1–2),37–50.
Feng,Z.
W.
,Wang,X.
K.
,Wu,G.
,1999.
TheBiomassandProductivityoftheForestryEcosysteminChinaBeijing.
ScienticPublishing,pp.
18–39.
Fu,X.
,Shao,M.
,Wei,X.
,Wang,H.
,Zeng,C.
,2012.
EffectsofmonovegetationrestorationtypesonsoilwaterdistributionandbalanceonahillslopeinnorthernLoessPlateauofChina.
J.
Hydrol.
Eng.
18(4),413–421.
Hanks,R.
J.
,Holmes,W.
E.
,Tanner,C.
B.
,1954.
Fieldcapacityapproximationbasedonthemoisture-transmittingpropertiesofthesoil.
SoilSci.
Soc.
Am.
J.
18,252–254.
Hou,Q.
C.
,1993.
Comprehensiveanalysisonnaturalconditionsandenvironmentalharnessingintheexperimentalarea.
Memoirofthenorthwesterninstituteofsoilandwaterconservation.
Acad.
Sin.
Minist.
WaterRes.
02,136–144.
Jia,X.
X.
,Shao,M.
A.
,Wei,X.
R.
,2011.
Estimatingtotalnetprimaryproductivityofmanagedgrasslandsbyastate-spacemodelingapproachinasmallcatchmentontheLoessPlateau,China.
Geoderma160,281–291.
Li,X.
Y.
,Contreras,S.
,Solé-Benet,A.
,2008.
Unsaturatedhydraulicconductivityinlimestonedolines:inuenceofvegetationandrockfragments.
Geoderma145(3),288–294.
Ma,D.
H.
,Shao,M.
A.
,2008.
Simulatinginltrationintostonysoilswithadual-porositymodel.
Eur.
J.
SoilSci.
59(5),950–959.
Ma,D.
,Shao,M.
,Zhang,J.
,Wang,Q.
,2010.
Validationofananalyticalmethodfordeterminingsoilhydraulicpropertiesofstonysoilsusingexperimentaldata.
Geoderma159(3),262–269.
Meyers,R.
J.
K.
,Foale,M.
A.
,Done,A.
A.
,1984.
ResponseofgrainsorghumtovaryingirrigationfrequencyintheOrdirrigationarea.
II.
Evapotranspirationwater-useefciency.
Aust.
J.
Agric.
Res.
35,31–42.
Novák,V.
,Kˇnava,K.
,2012.
Theinuenceofstoninessandcanopypropertiesonsoilwatercontentdistribution:simulationofwatermovementinforeststonysoil.
Eur.
J.
For.
Res.
131(6),1727–1735.
Novák,V.
,Kˇnava,K.
,ˇSimunek,J.
,2011.
Determiningtheinuenceofstonesonhydraulicconductivityofsaturatedsoilsusingnumericalmethod.
Geoderma161(3),177–181.
Poesen,J.
,Lavee,H.
,1994.
Rockfragmentsintopsoils:signicanceandprocesses.
Catena23(1),1–28.
Qin,Y.
,Yi,S.
,Chen,J.
,Ren,S.
,Ding,Y.
,2015.
EffectsofgravelonsoilandvegetationpropertiesofalpinegrasslandontheQinghai-Tibetanplateau.
Ecol.
Eng.
74,351–355.
Schwinning,S.
,2013.
Doweneednewrhizospheremodelsforrock-dominatedlandscapesPlantSoil362(1–2),25–31.
Shao,M.
A.
,Ma,D.
H.
,Zhu,Y.
Y.
,2009.
StudyonSoilWaterinStonySoilontheLoessPlateau.
ScienticPublishing,Beijing.
Sinclair,T.
R.
,Hammond,L.
C.
,Harrison,J.
,1998.
Extractablesoilwaterandtranspirationrateofsoybeanonsandysoils.
Agron.
J.
90(3),363–368.
Smaill,S.
J.
,Clinton,P.
W.
,Allen,R.
B.
,Davis,M.
R.
,2014.
Newevidenceindicatesthecoarsesoilfractionisofgreaterrelevancetoplantnutritionthanpreviouslysuggested.
PlantSoil374(1–2),371–379.
Tetegan,M.
,Nicoullaud,B.
,Baize,D.
,Bouthier,A.
,Cousin,I.
,2011.
Thecontributionofrockfragmentstotheavailablewatercontentofstonysoils:propositionofnewpedotransferfunctions.
Geoderma165,40–49.
Tetegan,M.
,deForges,A.
R.
,Verbeque,B.
,Nicoullaud,B.
,Desbourdes,C.
,Bouthier,A.
,Cousin,I.
,2015a.
Theeffectofsoilstoninessontheestimationofwaterretentionpropertiesofsoils:acasestudyfromcentralFrance.
Catena129,95–102.
Tetegan,M.
,Korboulewsky,N.
,Bouthier,A.
,Samoulian,A.
,Cousin,I.
,2015b.
Theroleofpebblesinthewaterdynamicsofastonysoilcultivatedwithyoungpoplars.
PlantSoil391(1–2),307–320.
VanWesemael,B.
,Poesen,J.
,Kosmas,C.
S.
,Danalatos,N.
G.
,Nachtergaele,J.
,1996.
Evaporationfromcultivatedsoilscontainingrockfragments.
J.
Hydrol.
182(1),65–82.
Wang,Y.
,Shao,M.
,Shao,H.
,2010.
ApreliminaryinvestigationofthedynamiccharacteristicofdriedsoillayersontheLoessPlateauofChina.
J.
Hydrol.
(Amsterdam)381(1–2),9–17.
Wu,Y.
,Huang,M.
,Warrington,D.
N.
,2011a.
Growthandtranspirationofmaizeandwinterwheatinresponsetowaterdecitsinpotsandplots.
Environ.
Exp.
Bot.
71(1),65–71.
Wu,Y.
,Huang,M.
,Gallichand,J.
,2011b.
Transpirationalresponsetowateravailabilityforwinterwheatasaffectedbysoiltextures.
Agric.
WaterManage.
98(4),569–576.
Wu,X.
,Zhao,L.
,Fang,H.
,Chen,J.
,Pang,Q.
,Wang,Z.
,Chen,M.
,Ding,Y.
,2011c.
SoilenzymeactivitiesinpermafrostregionsofthewesternQinghai-Tibetanplateau.
SoilSci.
Soc.
Am.
J.
76,1280–1289.
Zhou,B.
B.
,Shao,M.
A.
,Shao,H.
B.
,2009.
EffectsofrockfragmentsonwatermovementandsolutetransportinaLoessPlateausoil.
C.
R.
Geosci.
341(6),462–472.
Zhu,Y.
,Shao,M.
,2008.
Spatialdistributionofsurfacerockfragmentonhill-slopesinasmallcatchmentinwind-watererosioncrisscrossregionoftheLoessPlateau.
Sci.
ChinaSeriesD:EarthSci.
51(6),862–870.
tmhhost放出了2021年的端午佳节+618年中大促的优惠活动:日本软银、洛杉矶200G高防cn2 gia、洛杉矶三网cn2 gia、香港200M直连BGP、韩国cn2,全都是高端优化线路,所有这些VPS直接8折,部分已经做了季付8折然后再在此基础上继续8折(也就是6.4折)。 官方网站:https://www.tmhhost.com 香港BGP线路VPS ,200M带宽 200M带...
ReadyDedis是一家2018年成立的国外VPS商家,由印度人开设,主要提供VPS和独立服务器租用等,可选数据中心包括美国洛杉矶、西雅图、亚特兰大、纽约、拉斯维加斯、杰克逊维尔、印度和德国等。目前,商家针对全部VPS主机提供新年5折优惠码,优惠后最低套餐1GB内存每月仅需2美元起,所有VPS均为1Gbps端口不限流量方式。下面列出几款主机配置信息。CPU:1core内存:1GB硬盘:25GB ...
gigsgigsCloud日本东京软银VPS的大带宽配置有100Mbps、150Mbps和200Mbps三种,三网都走软银直连,售价最低9.8美元/月、年付98美元。gigsgigscloud带宽较大延迟低,联通用户的好选择!Gigsgigscloud 日本软银(BBTEC, SoftBank)线路,在速度/延迟/价格方面,是目前联通用户海外VPS的最佳选择,与美国VPS想比,日本软银VPS延迟更...
bw1为你推荐
软银亏损65亿美元马云仅仅持有阿里8.9%的股份,就有270多亿美元,孙正义的软银占有那么多股份,怎么还不是亚洲首富桌面背景图片淡雅电脑自带的桌面背景图片原来合适现在不合适了怎么办p图软件哪个好用美图P图软件哪个好,你们用哪个视频剪辑软件哪个好常见好用的视频剪辑软件都有哪些?苹果x和xr哪个好iphone X和iphone XR哪个比较好?买哪个合适?迈腾和帕萨特哪个好新帕萨特怎么样 迈腾和帕萨特哪个好尼康和佳能单反哪个好尼康和佳能哪个好红茶和绿茶哪个好红茶和绿茶哪个更好?51空间登录51空间怎么进yy空间登录怎样进入YY主播的空间
长沙域名注册 播放vps上的视频 com域名抢注 enom linode 抢票工具 网站保姆 国外免费空间 免费smtp服务器 个人域名 双线主机 169邮箱 1美金 四核服务器 www789 镇江高防服务器 九零网络 .htaccess 删除域名 留言板 更多