配置软件虚拟化

软件虚拟化  时间:2021-03-27  阅读:()
H3CS5130S-SI[LI]&S5120V2-SI[LI]&S5110V2-SI&S5000V3-EI&S5000E-X&S3100V3-SI系列以太网交换机虚拟化技术配置指导新华三技术有限公司http://www.
h3c.
com资料版本:6W103-20190822产品版本:Release612x系列Copyright2019新华三技术有限公司及其许可者版权所有,保留一切权利.
未经本公司书面许可,任何单位和个人不得擅自摘抄、复制本书内容的部分或全部,并不得以任何形式传播.
除新华三技术有限公司的商标外,本手册中出现的其它公司的商标、产品标识及商品名称,由各自权利人拥有.
前言本配置指导主要介绍如何使用多台交换机组建基于IRF技术的虚拟化设备,包括规划IRF中设备的角色、IRF链路连接、以及IRF形成后的检测和维护等内容.
前言部分包含如下内容:读者对象本书约定资料意见反馈读者对象本手册主要适用于如下工程师:网络规划人员现场技术支持与维护人员负责网络配置和维护的网络管理员本书约定1.
命令行格式约定格式意义粗体命令行关键字(命令中保持不变、必须照输的部分)采用加粗字体表示.
斜体命令行参数(命令中必须由实际值进行替代的部分)采用斜体表示.
[]表示用"[]"括起来的部分在命令配置时是可选的.
{x|y|.
.
.
}表示从多个选项中仅选取一个.
[x|y|.
.
.
]表示从多个选项中选取一个或者不选.
{x|y表示从多个选项中至少选取一个.
[x|y表示从多个选项中选取一个、多个或者不选.
&表示符号&前面的参数可以重复输入1~n次.
#由"#"号开始的行表示为注释行.
2.
图形界面格式约定格式意义带尖括号""表示按钮名,如"单击按钮".
[]带方括号"[]"表示窗口名、菜单名和数据表,如"弹出[新建用户]窗口".
/多级菜单用"/"隔开.
如[文件/新建/文件夹]多级菜单表示[文件]菜单下的[新建]子菜单下的[文件夹]菜单项.
3.
各类标志本书还采用各种醒目标志来表示在操作过程中应该特别注意的地方,这些标志的意义如下:该标志后的注释需给予格外关注,不当的操作可能会对人身造成伤害.
提醒操作中应注意的事项,不当的操作可能会导致数据丢失或者设备损坏.
为确保设备配置成功或者正常工作而需要特别关注的操作或信息.
对操作内容的描述进行必要的补充和说明.
配置、操作、或使用设备的技巧、小窍门.
4.
图标约定本书使用的图标及其含义如下:该图标及其相关描述文字代表一般网络设备,如路由器、交换机、防火墙等.
该图标及其相关描述文字代表一般意义下的路由器,以及其他运行了路由协议的设备.
该图标及其相关描述文字代表二、三层以太网交换机,以及运行了二层协议的设备.
该图标及其相关描述文字代表无线控制器、无线控制器业务板和有线无线一体化交换机的无线控制引擎设备.
该图标及其相关描述文字代表无线接入点设备.
该图标及其相关描述文字代表无线终结单元.
该图标及其相关描述文字代表无线终结者.
该图标及其相关描述文字代表无线Mesh设备.
该图标代表发散的无线射频信号.
该图标代表点到点的无线射频信号.
该图标及其相关描述文字代表防火墙、UTM、多业务安全网关、负载均衡等安全设备.
该图标及其相关描述文字代表防火墙插卡、负载均衡插卡、NetStream插卡、SSLVPN插卡、IPS插卡、ACG插卡等安全插卡.
TTTT5.
示例约定由于设备型号不同、配置不同、版本升级等原因,可能造成本手册中的内容与用户使用的设备显示信息不一致.
实际使用中请以设备显示的内容为准.
本手册中出现的端口编号仅作示例,并不代表设备上实际具有此编号的端口,实际使用中请以设备上存在的端口编号为准.
资料意见反馈如果您在使用过程中发现产品资料的任何问题,可以通过以下方式反馈:E-mail:info@h3c.
com感谢您的反馈,让我们做得更好!
i目录1IRF1-11.
1IRF简介·1-11.
1.
1IRF组网示意图1-11.
1.
2IRF的优点1-11.
1.
3IRF基本概念1-21.
1.
4IRF的连接拓扑1-41.
1.
5角色选举·1-51.
1.
6IRF中的接口命名规则1-51.
1.
7IRF中的文件系统命名规则1-61.
1.
8IRF中的配置文件同步1-61.
1.
9MAD功能1-71.
1.
10MAD检测机制·1-91.
2IRF配置限制和指导·1-131.
2.
1硬件兼容性相关配置限制和指导1-131.
2.
2软件版本要求·1-131.
2.
3确定IRF物理端口1-141.
2.
4IRF物理端口连接要求1-141.
2.
5IRF物理端口配置限制和指导1-141.
2.
6配置回滚限制·1-151.
3IRF配置任务简介·1-151.
4配置准备·1-161.
5搭建IRF·1-161.
5.
1配置任务简介·1-161.
5.
2配置成员编号·1-161.
5.
3配置成员优先级·1-171.
5.
4配置IRF端口1-171.
5.
5快速配置IRF基本参数1-191.
5.
6连接IRF物理接口1-191.
5.
7访问IRF·1-191.
6配置MAD·1-201.
6.
1配置限制和指导·1-201.
6.
2配置LACPMAD检测·1-201.
6.
3配置BFDMAD检测1-21ii1.
6.
4配置ARPMAD检测1-221.
6.
5配置NDMAD检测1-241.
6.
6配置保留接口·1-251.
6.
7MAD故障恢复1-261.
7调整和优化IRF·1-261.
7.
1配置成员设备的描述信息·1-261.
7.
2配置IRF的桥MAC地址1-271.
7.
3开启启动文件的自动加载功能1-281.
7.
4配置IRF链路状态变化延迟上报功能1-281.
8IRF显示和维护·1-291.
9IRF典型配置举例·1-291.
9.
1IRF典型配置举例(LACPMAD检测方式)1-291.
9.
2IRF典型配置举例(BFDMAD检测方式)1-341.
9.
3IRF典型配置举例(ARPMAD检测方式)1-391.
9.
4IRF典型配置举例(NDMAD检测方式)1-431-11IRF1.
1IRF简介IRF(IntelligentResilientFramework,智能弹性架构)是H3C自主研发的软件虚拟化技术.
它的核心思想是将多台设备连接在一起,进行必要的配置后,虚拟化成一台设备.
使用这种虚拟化技术可以集合多台设备的硬件资源和软件处理能力,实现多台设备的协同工作、统一管理和不间断维护.
为了便于描述,这个"虚拟设备"也称为IRF.
所以,本文中的IRF有两层意思,一个是指IRF技术,一个是指IRF设备.
1.
1.
1IRF组网示意图如图1-1所示,两台设备组成IRF,对上、下层设备来说,它们就是一台设备——IRF.
所有成员设备上的资源归该虚拟设备IRF拥有并由主设备统一管理.
图1-1IRF组网应用示意图1.
1.
2IRF的优点IRF主要具有以下优点:简化管理:IRF形成之后,用户通过任意成员设备的任意端口都可以登录IRF系统,对IRF内所有成员设备进行统一管理.
1:N备份:IRF由多台成员设备组成,其中,主设备负责IRF的运行、管理和维护,从设备在作为备份的同时也可以处理业务.
一旦主设备故障,系统会迅速自动选举新的主设备,以保证业务不中断,从而实现了设备的1:N备份.
跨成员设备的链路聚合:IRF和上、下层设备之间的物理链路支持聚合功能,并且不同成员设备上的物理链路可以聚合成一个逻辑链路,多条物理链路之间可以互为备份也可以进行负载1-2分担,当某个成员设备离开IRF,其它成员设备上的链路仍能收发报文,从而提高了聚合链路的可靠性.
强大的网络扩展能力:通过增加成员设备,可以轻松自如地扩展IRF的端口数、带宽.
因为各成员设备都有CPU,能够独立处理协议报文、进行报文转发,所以IRF还能轻松自如的扩展处理能力.
1.
1.
3IRF基本概念1.
成员设备的角色IRF中每台设备都称为成员设备.
成员设备按照功能不同,分为两种角色:主用设备(简称为主设备):负责管理和控制整个IRF.
从属设备(简称为从设备):处理业务、转发报文的同时作为主设备的备份设备运行.
当主设备故障时,系统会自动从从设备中选举一个新的主设备接替原主设备工作.
主设备和从设备均由角色选举产生.
一个IRF中同时只能存在一台主设备,其它成员设备都是从设备.
关于设备角色选举过程的详细介绍请参见"1.
1.
5角色选举".
2.
成员设备编号IRF使用成员设备编号用来标识和管理成员设备.
接口名称和文件系统路径中均包含成员设备编号,以此来唯一标识IRF设备上的接口和文件.
每台成员设备必须具有唯一的编号.
如果两台设备的成员编号相同,则不能组成IRF.
如果新设备加入IRF,但是该设备的成员编号与已有成员设备的编号冲突,则该设备不能加入IRF.
3.
成员优先级成员优先级是成员设备的一个属性,主要用于角色选举过程中确定成员设备的角色.
优先级越高当选为主设备的可能性越大.
设备的缺省优先级均为1,如果想让某台设备当选为主设备,则在组建IRF前,可以通过命令行手工提高该设备的成员优先级.
4.
IRF端口一种专用于IRF成员设备之间进行连接的逻辑接口,每台成员设备上可以配置两个IRF端口,分别为IRF-Port1和IRF-Port2.
它需要和物理端口绑定之后才能生效.
IRF端口采用二维编号,编号为IRF-Portn/1和IRF-Portn/2,其中n为设备的成员编号.
为简洁起见,本文描述时统一使用IRF-Port1和IRF-Port2.
IRF端口的状态由与它绑定的IRF物理端口的状态决定.
与IRF端口绑定的所有IRF物理端口状态均为down时,IRF端口的状态才会变成down.
5.
IRF物理端口与IRF端口绑定,用于IRF成员设备之间进行连接的物理接口.
IRF物理端口负责在成员设备之间转发IRF协议报文以及需要跨成员设备转发的业务报文.
6.
IRF合并如图1-2所示,两个(或多个)IRF各自已经稳定运行,通过物理连接和必要的配置,形成一个IRF,这个过程称为IRF合并.
1-3图1-2IRF合并示意图7.
IRF分裂如图1-3所示,一个IRF形成后,由于IRF链路故障,导致IRF中两相邻成员设备不连通,一个IRF分裂成两个IRF,这个过程称为IRF分裂.
图1-3IRF分裂示意图8.
MADIRF链路故障会导致一个IRF分裂成多个新的IRF.
这些IRF拥有相同的IP地址等三层配置,会引起地址冲突,导致故障在网络中扩大.
MAD(Multi-ActiveDetection,多Active检测)机制用来进行IRF分裂检测、冲突处理和故障恢复,从而提高系统的可用性.
9.
IRF域域是一个逻辑概念,一个IRF对应一个IRF域.
为了适应各种组网应用,同一个网络里可以部署多个IRF,IRF之间使用域编号(DomainID)来区别.
如图1-4所示,DeviceA和DeviceB组成IRF1,DeviceC和DeviceD组成IRF2.
如果IRF1和IRF2之间有MAD检测链路,则两个IRF各自的成员设备间发送的MAD检测报文会被另外的IRF接收到,从而对两个IRF的MAD检测造成影响.
这种情况下,需要给两个IRF配置不同的域编号,以保证两个IRF互不干扰.
1-4图1-4多IRF域示意图1.
1.
4IRF的连接拓扑IRF的连接拓扑有两种:链形连接和环形连接,如图1-5所示.
链形连接对成员设备的物理位置要求比环形连接低,主要用于成员设备物理位置分散的组网.
环形连接比链形连接更可靠.
因为当链形连接中出现链路故障时,会引起IRF分裂;而环形连接中某条链路故障时,会形成链形连接,IRF的业务不会受到影响.
DeviceADeviceBIRF1(domain10)IRF链路CorenetworkIRF2(domain20)IRF链路DeviceCDeviceDAccessnetwork1-5图1-5IRF连接拓扑示意图1.
1.
5角色选举角色选举会在以下情况下进行:IRF建立.
主设备离开或者故障.
IRF分裂.
独立运行的两个(或多个)IRF合并为一个IRF.
IRF分裂后重新合并时不进行角色选举,此时主设备的确定方式请参见1.
1.
93.
MAD故障恢复.
角色选举中按照如下优先级顺序选择主设备:(1)当前的主设备优先,即IRF不会因为有新的成员设备加入而重新选举主设备即使新的成员设备有更高优先级.
该规则不适用于IRF形成时,此时所有加入的设备都认为自己是主设备.
(2)成员优先级大的设备.
(3)系统运行时间长的设备.
在IRF中,运行时间的度量精度为10分钟,即如果设备的启动时间间隔小于等于10分钟,则认为它们运行时间相等.
(4)CPUMAC地址小的设备.
通过以上规则选出的最优成员设备即为主设备,其它成员设备均为从设备.
IRF建立时,所有从设备必须重启加入IRF.
独立运行的IRF合并时,竞选失败方的所有成员设备必须重启加入获胜方.
1.
1.
6IRF中的接口命名规则接口编号采用成员设备编号/槽位编号/接口序号的格式,其中:1-6成员设备编号:用来标志不同成员设备上的接口.
槽位编号:接口所在槽位的编号.
对于本系列交换机,前面板固定端口的槽位编号为0.
接口序号:与设备支持的接口数量相关,请查看设备前面板上的丝印.
例如,将成员编号为3的从设备上第一个固定端口的链路类型设置为Trunk,可参照以下步骤:system-view[Sysname]interfacegigabitethernet3/0/1[Sysname-GigabitEthernet3/0/1]portlink-typetrunk1.
1.
7IRF中的文件系统命名规则使用存储介质的名称可以访问主设备的文件系统,使用"slotMember-ID#存储介质的名称"可以访问从设备的文件系统.
例如:创建并显示IRF中主设备存储介质Flash根目录下的test文件夹:mkdirtestCreatingdirectoryflash:/test.
.
.
Done.
cdtestdirDirectoryofflash:/testThedirectoryisempty.
251904KBtotal(70964KBfree)创建并显示IRF中从设备(成员编号为3)存储介质Flash根目录下的test文件夹:mkdirslot3#flash:/testCreatingdirectoryslot3#flash:/test.
.
.
Done.
cdslot3#flash:/testdirDirectoryofslot3#flash:/testThedirectoryisempty.
251904KBtotal(70964KBfree)1.
1.
8IRF中的配置文件同步IRF技术使用了严格的配置文件同步机制,来保证IRF中的多台设备能够像一台设备一样在网络中工作,并且在主设备出现故障之后,其余设备仍能够正常执行各项功能.
IRF中的从设备在启动时,会自动寻找主设备,并将主设备的当前配置文件同步到本地并执行;如果IRF中的所有设备同时启动,则从设备会将主设备的起始配置文件同步至本地并执行.
IRF从设备上的原配置文件还在,但不再生效,除非设备恢复为独立运行的设备.
在IRF正常工作后,用户所进行的任何配置,都会记录到主设备的当前配置文件中,并同步到IRF中的各个设备执行.
通过即时的同步,IRF中所有设备均保存相同的配置文件,即使主设备出现故障,其它设备仍能够按照相同的配置文件执行各项功能.
1-71.
1.
9MAD功能IRF链路故障会导致一个IRF变成多个新的IRF.
这些IRF拥有相同的IP地址等三层配置,会引起地址冲突,导致故障在网络中扩大.
为了提高系统的可用性,当IRF分裂时我们就需要一种机制,能够检测出网络中同时存在多个IRF,并进行相应的处理,尽量降低IRF分裂对业务的影响.
MAD(Multi-ActiveDetection,多Active检测)就是这样一种检测和处理机制.
MAD主要提供分裂检测、冲突处理和故障恢复功能.
1.
分裂检测通过LACP(LinkAggregationControlProtocol,链路聚合控制协议)、BFD(BidirectionalForwardingDetection,双向转发检测)、ARP(AddressResolutionProtocol,地址解析协议)或者ND(NeighborDiscovery,邻居发现)来检测网络中是否存在多个IRF.
同一IRF中可以配置一个或多个检测机制,详细信息,请参考"1.
1.
10MAD检测机制".
关于LACP的详细介绍请参见"二层技术-以太网交换配置指导"中的"以太网链路聚合";关于BFD的详细介绍请参见"可靠性配置指导"中的"BFD";关于ARP的详细介绍请参见"三层技术-IP业务配置指导"中的"ARP";关于ND的详细介绍请参见"三层技术-IP业务配置指导"中的"IPv6基础".
2.
冲突处理IRF分裂后,通过分裂检测机制IRF会检测到网络中存在其它处于正常工作状态的IRF.
对于LACPMAD和BFDMAD检测,冲突处理会先比较两个IRF中成员设备的数量,数量多的IRF继续工作,数量少的迁移到Recovery状态(即禁用状态).
如果成员数量相等,则主设备成员编号小的IRF继续工作,其它IRF迁移到Recovery状态.
对于ARPMAD和NDMAD检测,冲突处理会直接让主设备成员编号小的IRF继续工作;其它IRF迁移到Recovery状态.
IRF迁移到Recovery状态后会关闭该IRF中所有成员设备上除保留端口以外的其它所有业务端口,以保证该IRF不能再转发业务报文.
保留端口可通过madexcludeinterface命令配置.
3.
MAD故障恢复IRF链路故障导致IRF分裂,从而引起多Active冲突.
因此修复故障的IRF链路,让冲突的IRF重新合并为一个IRF,就能恢复MAD故障.
IRF链路修复后,系统会自动重启处于Recovery状态的IRF.
重启后,原Recovery状态IRF中所有成员设备以从设备身份加入原正常工作状态的IRF,原Recovery状态IRF中被强制关闭的业务接口会自动恢复到真实的物理状态,整个IRF系统恢复,如图1-6所示.
1-8图1-6MAD故障恢复(IRF链路故障)如果MAD故障还没来得及恢复而处于正常工作状态的IRF也故障了(原因可能是设备故障或者上下行线路故障),如图1-7所示.
此时可以在Recovery状态的IRF上执行madrestore命令,让Recovery状态的IRF恢复到正常状态,先接替原正常工作状态的IRF工作.
然后再修复故障的IRF和链路.
图1-7MAD故障恢复(IRF链路故障修复前,正常工作状态的IRF故障)IRFIPnetworkIPnetworkIRF1(Active)IRF2(Recovery)IPnetworkIPnetworkIRF1(Active)IRF2(Recovery)IPnetworkIPnetwork修复IRF链路IRF合并IRF1(Active)IRF2(Recovery)IPnetworkIPnetworkIRF2(Recovery)IPnetworkIPnetwork在修复IRF链路过程中IRF1故障IRF1IRF2(Active)IPnetworkIPnetworkIRF1IRFIPnetworkIPnetwork修复IRF1和IRF链路,IRF合并在IRF2上执行madrestore命令1-91.
1.
10MAD检测机制设备支持的MAD检测方式有:LACPMAD检测、BFDMAD检测、ARPMAD检测和NDMAD检测.
四种MAD检测机制各有特点,用户可以根据现有组网情况进行选择.
表1-1MAD检测机制的比较MAD检测方式优势限制适用组网LACPMAD检测速度快利用现有聚合组网即可实现,无需占用额外接口需要使用H3C设备(支持扩展LACP协议报文)作为中间设备IRF使用聚合链路和上行设备或下行设备连接BFDMAD检测速度较快使用中间设备时,不要求中间设备必须为H3C设备需要专用的物理链路和三层接口,这些接口不能再传输普通业务流量对组网没有特殊要求如果不使用中间设备,则仅适用于成员设备少(建议仅2台成员设备时使用),并且物理距离比较近的组网环境ARPMAD可以不使用中间设备使用中间设备时,不要求中间设备必须为H3C设备无需占用额外接口检测速度慢于LACPMAD和BFDMAD使用以太网端口实现ARPMAD时,必须和生成树协议配合使用使用以太网端口实现ARPMAD时,适用于使用生成树,没有使用链路聚合的IPv4组网环境NDMAD可以不使用中间设备使用中间设备时,不要求中间设备必须为H3C设备无需占用额外接口检测速度慢于LACPMAD和BFDMAD必须和生成树协议配合使用适用于使用生成树,没有使用链路聚合的IPv6组网环境2.
LACPMAD检测LACPMAD检测通过扩展LACP协议报文实现,通常采用如图1-8所示的组网:每个成员设备都需要连接到中间设备.
成员设备连接中间设备的链路加入动态聚合组.
中间设备需要支持扩展LACP报文.
1-10图1-8LACPMAD检测组网示意图扩展LACP协议报文定义了一个新的TLV(Type/Length/Value,类型/长度/值)数据域——用于交互IRF的DomainID(域编号)和ActiveID(主设备的成员编号).
开启LACPMAD检测后,成员设备通过LACP协议报文和其它成员设备交互DomainID和ActiveID信息.
如果DomainID不同,表示报文来自不同IRF,不需要进行MAD处理.
如果DomainID相同,ActiveID也相同,表示没有发生多Active冲突.
如果DomainID相同,ActiveID不同,表示IRF分裂,检测到多Active冲突.
3.
BFDMAD检测BFDMAD检测通过BFD协议实现.
配置BFDMAD时,请注意如下组网要求:不使用中间设备时,每台成员设备必须和其它所有成员设备之间建立BFDMAD检测链路(如图1-10所示).
使用中间设备时(如图1-9所示),每台成员设备都需要和中间设备建立BFDMAD检测链路.
用于BFDMAD检测的以太网端口加入同一VLAN,在该VLAN接口视图下为每台成员设备配置MADIP地址.
需要注意的是:BFDMAD检测链路和BFDMAD检测VLAN必须是专用的,不允许配置任何其它特性.
MADIP地址应该为同一网段内的不同IP地址.
两台以上设备组成IRF时,请优先采用中间设备组网方式,避免特殊情况下全连接组网中可能出现的广播环路问题.
1-11图1-9使用中间设备实现BFDMAD检测组网示意图图1-10不使用中间设备实现BFDMAD检测组网示意图BFDMAD实现原理如下:当IRF正常运行时,只有主设备上配置的MADIP地址生效,从设备上配置的MADIP地址不生效,BFD会话处于down状态;(使用displaybfdsession命令查看BFD会话的状态.
如果SessionState显示为Up,则表示激活状态;如果显示为Down,则表示处于down状态).
当IRF分裂形成多个IRF时,不同IRF中主设备上配置的MADIP地址均会生效,BFD会话被激活,此时会检测到多Active冲突.
4.
ARPMAD检测ARPMAD检测是通过使用扩展ARP协议报文交互IRF的DomainID和ActiveID实现的.
配置ARPMAD时,可以使用中间设备,也可以不使用中间设备.
使用中间设备时,每台成员设备都需要和中间设备建立连接,如图1-11所示.
IRF和中间设备之间需要运行生成树协议.
可以使用数据链路作为ARPMAD检测链路.
不使用中间设备时,每台成员设备必须和其它所有成员设备之间建立ARPMAD检测链路.
1-12图1-11ARPMAD检测组网示意图开启ARPMAD检测后,成员设备通过ARP协议报文和其它成员设备交互DomainID和ActiveID信息.
如果DomainID不同,表示报文来自不同IRF,不需要进行MAD处理.
如果DomainID相同,ActiveID也相同,表示没有发生多Active冲突.
如果DomainID相同,ActiveID不同,表示IRF分裂,检测到多Active冲突.
5.
NDMAD检测NDMAD检测是通过扩展ND协议报文内容实现的,即使用ND的NS协议报文携带扩展选项数据来交互IRF的DomainID和ActiveID.
配置NDMAD时,可以使用中间设备,也可以不使用中间设备.
使用中间设备时,每台成员设备都需要和中间设备建立连接,如图1-12所示.
IRF和中间设备之间需要运行生成树协议.
不使用中间设备时,每台成员设备必须和其它所有成员设备之间建立NDMAD检测链路.
1-13图1-12NDMAD检测组网示意图开启NDMAD检测后,成员设备通过ND协议报文和其它成员设备交互DomainID和ActiveID信息.
如果DomainID不同,表示报文来自不同IRF,不需要进行MAD处理.
如果DomainID相同,ActiveID也相同,表示没有发生多Active冲突.
如果DomainID相同,ActiveID不同,表示IRF分裂,检测到多Active冲突.
1.
2IRF配置限制和指导1.
2.
1硬件兼容性相关配置限制和指导S5130S-SI、S5130S-LI、S5120V2-SI、S5120V2-LI、S5110V2-SI、S5000V3-EI、S3100V3-SI、S5000E-X系列交换机分别支持与同系列的机型组成IRF,不同系列的机型之间不支持组成IRF.
1.
2.
2软件版本要求IRF中所有成员设备的软件版本必须相同,如果有软件版本不同的设备要加入IRF,请确保IRF的启动文件同步加载功能处于开启状态.
1-141.
2.
3确定IRF物理端口不同机型支持绑定IRF端口的物理端口有所不同,配置前请按照如下原则确认:设备有10GE接口时,仅10GE接口支持做IRF物理端口,且端口必须工作在10G速率下;没有10GE接口时,1GE接口支持做IRF物理端口,且端口必须工作在1G速率下.
对于S5000E-X系列交换机,10GE、1GE接口均支持做IRF物理端口,且10GE接口必须工作在10G速率下,1GE接口必须工作在1G速率下.
各成员设备选用的IRF物理端口必须为相同类型的端口.
同一IRF端口绑定的多个物理端口必须属于同一组.
同一组中的物理端口可以绑定到不同的IRF端口.
在Probe视图下执行debugportmapping命令,如果端口的Unit值相同,则表示端口属于同一组.
关于各机型具体支持的IRF物理端口及其分组限制、IRF物理端口支持的光模块/线缆,请参考安装手册.
1.
2.
4IRF物理端口连接要求本设备上与IRF-Port1口绑定的IRF物理端口只能和邻居成员设备IRF-Port2口上绑定的IRF物理端口相连,本设备上与IRF-Port2口绑定的IRF物理端口只能和邻居成员设备IRF-Port1口上绑定的IRF物理端口相连,如图1-13所示.
否则,不能形成IRF.
一个IRF端口可以与一个或多个IRF物理端口绑定,以提高IRF链路的带宽以及可靠性.
在本系列交换机上,一个IRF端口最多可以与8个物理端口绑定,但由于硬件限制,某些设备上同一IRF端口可以绑定的物理端口数量可能达不到最大值.
图1-13IRF物理连接示意图1.
2.
5IRF物理端口配置限制和指导1.
IRF物理端口配置限制以太网接口作为IRF物理端口与IRF端口绑定后,只支持配置以下命令:接口基本配置命令,包括shutdown、description命令.
有关这些命令的详细介绍,请参见"二层技术-以太网交换命令参考"中的"以太网接口".
配置接口统计信息的时间间隔命令,flow-interval命令.
有关该命令的详细介绍,请参见"二层技术-以太网交换命令参考"中的"以太网接口".
链路震荡保护功能命令,portlink-flapprotectenable命令.
为了避免IRF物理链路震荡影响IRF系统稳定性,IRF物理端口缺省开启本功能(本功能在IRF物理端口的开启状态不受全局链路震荡保护功能开启状态影响).
当IRF物理链路在检查时间间隔内震荡次1-15数超过阈值,设备将打印提示信息,但不会关闭IRF物理端口.
有关该命令的更多介绍,请参见"二层技术-以太网交换命令参考"中的"以太网接口".
仅R6127及以上版本支持本功能.
将端口配置为远程源镜像反射端口,mirroring-groupreflector-port命令,但配置后端口与IRF端口绑定的配置将被清除.
当IRF端口只绑定了一个物理端口时请勿进行此配置,以免IRF分裂.
有关该命令的详细介绍,请参见"网络管理和监控命令参考"中的"镜像".
2.
IRF物理端口的环路避免与SNMP监测IRF成员设备根据接收和发送报文的端口以及IRF的当前拓扑,来判断报文发送后是否会产生环路.
如果判断结果为会产生环路,设备将在环路路径的发送端口处将报文丢弃.
该方式会造成大量广播报文在IRF物理端口上被丢弃,此为正常现象.
在使用SNMP工具监测设备端口的收发报文记录时,取消对IRF物理端口的监测,可以避免收到大量丢弃报文的告警信息.
1.
2.
6配置回滚限制以下IRF相关配置不支持配置回滚:配置成员设备的描述信息(irfmemberdescription)配置IRF中成员设备的优先级(irfmemberpriority)配置IRF端口与IRF物理端口的绑定关系(portgroupinterface)有关配置回滚的详细介绍,请参见"基础配置指导"中的"配置文件".
1.
3IRF配置任务简介IRF配置任务如下:(1)搭建IRF(2)配置MAD请至少选择其中一项MAD检测方案进行配置.
选择时请注意"1.
6.
1不同MAD检测方式兼容性限制".
{配置LACPMAD检测{配置BFDMAD检测{配置ARPMAD检测{配置NDMAD检测{配置保留接口IRF迁移到Recovery状态后会关闭该IRF中除保留接口以外的所有业务接口.
如果接口有特殊用途需要保持up状态(比如Telnet登录接口),可以将这些接口配置为保留接口.
{MAD故障恢复(3)(可选)调整和优化IRF{配置成员设备的描述信息{配置IRF的桥MAC地址{开启启动文件的自动加载功能1-16新设备加入IRF,且新设备的软件版本和主设备的软件版本不一致时,新设备自动从主设备下载启动文件,然后使用新的系统启动文件重启,重新加入IRF.
配置IRF链路状态变化延迟上报功能1.
4配置准备进行网络规划,确定以下项目:硬件兼容性和限制(选择哪些型号的设备,是否要求同型号)IRF规模(包含几台成员设备)使用哪台设备作为主设备各成员设备编号和优先级分配方案.
IRF形成后,尽量不要修改成员编号.
IRF拓扑和物理连接方案确定IRF物理端口1.
5搭建IRF1.
5.
1配置任务简介搭建IRF配置任务如下:(1)分别配置成员编号、成员优先级、IRF端口.
用户可忽略本步骤,采用快速配置IRF基本参数的方式.
a.
配置成员编号b.
(可选)配置成员优先级c.
配置IRF端口(2)快速配置IRF基本参数用户可忽略本步骤,采用分别配置成员编号、成员优先级、IRF端口的方式.
(3)连接IRF物理接口(4)访问IRF1.
5.
2配置成员编号1.
配置限制和指导配置成员编号时,请确保该编号在IRF中唯一.
如果存在相同的成员编号,则不能建立IRF.
如果新设备加入IRF,但是该设备与已有成员设备的编号冲突,则该设备不能加入IRF.
修改成员编号后,但是没有重启本设备,则原编号继续生效,各物理资源仍然使用原编号来标识.
修改成员编号后,如果保存当前配置,重启本设备,则新的成员编号生效,需要用新编号来标识物理资源;配置文件中,只有IRF端口的编号以及IRF端口下的配置、成员优先级会继续生效,其它与成员编号相关的配置(比如普通物理接口的配置等)不再生效,需要重新配置.
1-17IRF形成后,也可以通过本配置修改成员编号.
但是,为了避免配置丢失,形成IRF后,尽量不要修改成员编号.
2.
配置步骤(1)进入系统视图.
system-view(2)配置成员编号.
irfmembermember-idrenumbernew-member-id缺省情况下,设备的成员编号为1.
1.
5.
3配置成员优先级1.
功能简介在主设备选举过程中,优先级数值大的成员设备将优先被选举成为主设备.
IRF形成后,也可以通过本配置修改成员优先级,但修改不会触发选举,修改的优先级在下一次选举时生效.
2.
配置步骤(1)进入系统视图.
system-view(2)配置IRF中指定成员设备的优先级.
irfmembermember-idprioritypriority缺省情况下,设备的成员优先级为1.
1.
5.
4配置IRF端口1.
配置限制和指导请先确认哪些接口可以作为IRF物理端口,请参见"1.
2.
3确定IRF物理端口".
将IRF物理端口绑定到IRF端口后,必须通过irf-port-configurationactive命令手工激活IRF端口的配置才能形成IRF.
系统启动时,通过配置文件将IRF物理端口加入IRF端口,或者IRF形成后再加入新的IRF物理端口时,IRF端口下的配置会自动激活,不需要使用irf-port-configurationactive命令来激活.
2.
配置步骤(1)进入系统视图.
system-view(2)进入IRF物理端口视图.
{进入二层以太网接口视图.
interfaceinterface-typeinterface-number{进入一组接口的批量配置视图.
interfacerange{interface-typeinterface-number[tointerface-typeinterface-number]}&1-18在将一个IRF端口与多个物理端口进行绑定时,通过接口批量配置视图可以更快速的完成关闭和开启多个端口的操作.
(3)关闭接口.
shutdown缺省情况下,接口处于开启状态.
(4)退回系统视图.
quit(5)进入IRF端口视图.
irf-portmember-id/irf-port-number(6)将IRF端口和IRF物理端口绑定.
portgroupinterfaceinterface-typeinterface-number缺省情况下,IRF端口没有和任何IRF物理端口绑定.
多次执行该命令,可以将IRF端口与多个IRF物理端口绑定,以实现IRF链路的备份或负载分担.
(7)退回系统视图.
quit(8)进入IRF物理端口视图.
{进入二层以太网接口视图.
interfaceinterface-typeinterface-number{进入一组接口的批量配置视图.
interfacerange{interface-typeinterface-number[tointerface-typeinterface-number]}&在将一个IRF端口与多个物理端口进行绑定时,通过接口批量配置视图可以更快速的完成关闭和开启多个端口的操作.
(9)打开接口.
undoshutdown(10)退回系统视图.
quit(11)保存当前配置.
save激活IRF端口会引起IRF合并,被选为从设备的成员设备重启.
为了避免重启后配置丢失,请在激活IRF端口前先将当前配置保存到下次启动配置文件.
(12)激活IRF端口下的配置.
irf-port-configurationactive1-191.
5.
5快速配置IRF基本参数1.
功能简介使用本功能,用户可以通过一条命令配置IRF的基本参数,包括成员编号、域编号、成员优先级、绑定物理端口,简化了配置步骤,达到快速配置IRF的效果.
在配置该功能时,有两种方式:交互模式:用户输入easy-irf,回车,在交互过程中输入具体参数的值.
非交互模式,在输入命令行时直接指定所需参数的值.
两种方式的配置效果相同,如果用户对本功能不熟悉,建议使用交互模式.
2.
配置限制和指导如果给成员设备指定新的成员编号,该成员设备会立即自动重启,以使新的成员编号生效.
多次使用该功能,修改域编号/优先级/IRF物理端口时,域编号和优先级的新配置覆盖旧配置,IRF物理端口的配置会新旧进行叠加.
如需删除旧的IRF物理端口配置,需要在IRF端口视图下,执行undoportgroupinterface命令.
在交互模式下,为IRF端口指定物理端口时,请注意:接口类型和接口编号间不能有空格.
不同物理接口之间用英文逗号分隔,逗号前后不能有空格.
3.
配置步骤(1)进入系统视图.
system-view(2)快速配置IRF.
easy-irf[membermember-id[renumbernew-member-id]domaindomain-id[prioritypriority][irf-port1interface-list1][irf-port2interface-list2]]若在多成员设备的IRF环境中使用该命令,请确保配置的新成员编号与当前IRF中的成员编号不冲突.
1.
5.
6连接IRF物理接口请按照拓扑规划和"1.
2.
4IRF物理端口连接要求"完成IRF物理端口连接.
设备间将会进行主设备选举,选举失败的一方自动重启.
重启完成后,IRF形成.
1.
5.
7访问IRFIRF的访问方式如下:本地登录:通过任意成员设备的Console口登录.
远程登录:给任意成员设备的任意三层接口配置IP地址,并且路由可达,就可以通过Telnet、SNMP等方式进行远程登录.
不管使用哪种方式登录IRF,实际上登录的都是主设备.
主设备是IRF系统的配置和控制中心,在主设备上配置后,主设备会将相关配置同步给从设备,以便保证主设备和从设备配置的一致性.
1-201.
6配置MAD1.
6.
1配置限制和指导1.
不同MAD检测方式兼容性限制冲突处理原则不同的检测方式请不要同时配置:LACPMAD和ARPMAD、NDMAD不要同时配置.
BFDMAD和ARPMAD、NDMAD不要同时配置.
在LACPMAD、ARPMAD和NDMAD检测组网中,如果中间设备本身也是一个IRF系统,则必须通过配置确保其IRF域编号与被检测的IRF系统不同,否则可能造成检测异常,甚至导致业务中断.
在BFDMAD检测组网中,IRF域编号为可选配置.
2.
IRF域编号配置指导IRF域编号是一个全局变量,IRF中的所有成员设备都共用这个IRF域编号.
在IRF设备上使用irfdomain、madenable、madarpenable、madndenable命令均可修改全局IRF域编号,最新的配置生效.
请按照网络规划来修改IRF域编号,不要随意修改.
3.
被MAD关闭的接口恢复指导如果接口因为多Active冲突被关闭,则只能等IRF恢复到正常工作状态后,接口才能自动被激活,不能通过undoshutdown命令来激活.
1.
6.
2配置LACPMAD检测(1)进入系统视图.
system-view(2)配置IRF域编号.
irfdomaindomain-id缺省情况下,IRF的域编号为0.
(3)创建并进入二层聚合接口视图.
interfacebridge-aggregationinterface-number中间设备上也需要进行此项配置.
(4)配置聚合组工作在动态聚合模式下.
link-aggregationmodedynamic缺省情况下,聚合组工作在静态聚合模式下.
中间设备上也需要进行此项配置.
(5)开启LACPMAD检测功能.
madenable缺省情况下,LACPMAD检测功能处于关闭状态.
(6)退回系统视图.
quit(7)进入以太网接口视图.
interfaceinterface-typeinterface-number1-21(8)将以太网接口加入聚合组.
portlink-aggregationgroupgroup-id中间设备上也需要进行此项配置.
1.
6.
3配置BFDMAD检测1.
配置限制和指导使用VLAN接口进行BFDMAD检测时,请注意表1-2所列配置注意事项.
表1-2使用VLAN接口进行BFDMAD检测注意事项类别使用限制和注意事项BFDMAD检测VLAN不允许在Vlan-interface1接口上开启BFDMAD检测功能如果使用中间设备,需要进行如下配置:{在IRF设备和中间设备上,创建专用于BFDMAD检测的VLAN{在IRF设备和中间设备上,将用于BFDMAD检测的物理接口添加到BFDMAD检测专用VLAN中{在IRF设备上,创建BFDMAD检测的VLAN的VLAN接口如果网络中存在多个IRF,在配置BFDMAD时,各IRF必须使用不同的VLAN作为BFDMAD检测专用VLAN用于BFDMAD检测的VLAN接口对应的VLAN中只能包含BFDMAD检测链路上的端口,请不要将其它端口加入该VLAN.
当某个业务端口需要使用porttrunkpermitvlanall命令允许所有VLAN通过时,请使用undoporttrunkpermit命令将用于BFDMAD的VLAN排除BFDMAD检测VLAN的特性限制开启BFDMAD检测功能的VLAN接口及VLAN内的物理端口只能专用于BFDMAD检测,不允许运行其它业务开启BFDMAD检测功能的VLAN接口只能配置madbfdenable和madipaddress命令.
如果用户配置了其它业务,可能会影响该业务以及BFDMAD检测功能的运行BFDMAD检测功能与生成树功能互斥,在开启了BFDMAD检测功能的VLAN接口对应VLAN内的端口上,请不要开启生成树协议BFDMADIP地址在用于BFDMAD检测的接口下必须使用madipaddress命令配置MADIP地址,而不要配置其它IP地址(包括使用ipaddress命令配置的普通IP地址、VRRP虚拟IP地址等),以免影响MAD检测功能为不同成员设备配置同一网段内的不同MADIP地址2.
使用VLAN接口进行BFDMAD检测配置步骤(1)进入系统视图.
system-view(2)(可选)配置IRF域编号.
irfdomaindomain-id缺省情况下,IRF的域编号为0.
(3)创建一个新VLAN专用于BFDMAD检测.
vlanvlan-id1-22缺省情况下,设备上只存在VLAN1.
VLAN1不能用于BFDMAD检测.
如果使用中间设备,中间设备上也需要进行此项配置.
(4)退回系统视图.
quit(5)进入以太网接口视图.
interfaceinterface-typeinterface-number(6)将端口加入BFDMAD检测专用VLAN.
{将Access端口加入BFDMAD检测专用VLAN.
portaccessvlanvlan-id{将Trunk端口加入BFDMAD检测专用VLAN.
porttrunkpermitvlanvlan-id{将Hybrid端口加入BFDMAD检测专用VLAN.
porthybridvlanvlan-id{tagged|untagged}BFDMAD检测对检测端口的链路类型没有要求,不需要刻意修改端口的当前链路类型.
缺省情况下,端口的链路类型为Access.
如果使用中间设备,中间设备上也需要进行此项配置.
(7)退回系统视图.
quit(8)进入VLAN接口视图.
interfacevlan-interfaceinterface-number(9)开启BFDMAD检测功能.
madbfdenable缺省情况下,BFDMAD检测功能处于关闭状态.
(10)为指定成员设备配置MADIP地址.
madipaddressip-address{mask|mask-length}membermember-id缺省情况下,未配置成员设备的MADIP地址.
1.
6.
4配置ARPMAD检测1.
配置限制和指导使用VLAN接口进行ARPMAD检测时,请注意表1-3所列配置注意事项.
1-23表1-3使用VLAN接口进行ARPMAD检测注意事项类别使用限制和注意事项ARPMAD检测VLAN不允许在Vlan-interface1接口上开启ARPMAD检测功能如果使用中间设备,需要进行如下配置:{在IRF设备和中间设备上,创建专用于ARPMAD检测的VLAN{在IRF设备和中间设备上,将用于ARPMAD检测的物理接口添加到ARPMAD检测专用VLAN中{在IRF设备上,创建ARPMAD检测的VLAN的VLAN接口建议勿在ARPMAD检测VLAN上运行其它业务兼容性配置指导如果使用中间设备,请确保满足如下要求:IRF和中间设备上均需配置生成树功能.
并确保配置生成树功能后,只有一条ARPMAD检测链路处于转发状态.
关于生成树功能的详细介绍请参见"二层技术-以太网交换配置指导"中的"生成树"如果中间设备本身也是一个IRF系统,则必须通过配置确保其IRF域编号与被检测的IRF系统不同2.
使用VLAN接口进行ARPMAD检测配置步骤(1)进入系统视图.
system-view(2)配置IRF域编号.
irfdomaindomain-id缺省情况下,IRF的域编号为0.
(3)将IRF的桥MAC保留时间配置为立即改变.
undoirfmac-addresspersistent缺省情况下,IRF的桥MAC的保留时间为6分钟.
(4)创建一个新VLAN专用于ARPMAD检测.
vlanvlan-id缺省情况下,设备上只存在VLAN1.
VLAN1不能用于ARPMAD检测.
如果使用中间设备,中间设备上也需要进行此项配置.
(5)退回系统视图.
quit(6)进入以太网接口视图.
interfaceinterface-typeinterface-number(7)将端口加入ARPMAD检测专用VLAN.
{将Access端口加入ARPMAD检测专用VLAN.
portaccessvlanvlan-id1-24{将Trunk端口加入ARPMAD检测专用VLAN.
porttrunkpermitvlanvlan-id{将Hybrid端口加入ARPMAD检测专用VLAN.
porthybridvlanvlan-id{tagged|untagged}ARPMAD检测对检测端口的链路类型没有要求,不需要刻意修改端口的当前链路类型.
缺省情况下,端口的链路类型为Access.
如果使用中间设备,中间设备上也需要进行此项配置.
(8)退回系统视图.
quit(9)进入VLAN接口视图.
interfacevlan-interfaceinterface-number(10)配置IP地址.
ipaddressip-address{mask|mask-length}缺省情况下,未配置VLAN接口的IP地址.
(11)开启ARPMAD检测功能.
madarpenable缺省情况下,ARPMAD检测功能处于关闭状态.
1.
6.
5配置NDMAD检测1.
配置限制和指导当NDMAD检测组网使用中间设备进行连接时,可使用普通的数据链路作为NDMAD检测链路;当不使用中间设备时,需要在所有的成员设备之间建立两两互联的NDMAD检测链路.
如果使用中间设备组网,在IRF和中间设备上均需配置生成树功能.
并确保配置生成树功能后,只有一条NDMAD检测链路处于转发状态,能够转发NDMAD检测报文.
关于生成树功能的详细描述和配置请参见"二层技术-以太网交换配置指导"中的"生成树".
2.
配置步骤(1)进入系统视图.
system-view(2)配置IRF域编号.
irfdomaindomain-id缺省情况下,IRF的域编号为0.
(3)将IRF的桥MAC保留时间配置为立即改变.
undoirfmac-addresspersistent缺省情况下,IRF的桥MAC的保留时间为6分钟.
(4)创建一个新VLAN专用于NDMAD检测.
vlanvlan-id缺省情况下,设备上只存在VLAN1.
VLAN1不能用于NDMAD检测.
1-25如果使用中间设备,中间设备上也需要进行此项配置.
(5)退回系统视图.
quit(6)进入以太网接口视图.
interfaceinterface-typeinterface-number(7)端口加入NDMAD检测专用VLAN.
{将Access端口加入NDMAD检测专用VLAN.
portaccessvlanvlan-id{将Trunk端口加入NDMAD检测专用VLAN.
porttrunkpermitvlanvlan-id{将Hybrid端口加入NDMAD检测专用VLAN.
porthybridvlanvlan-id{tagged|untagged}NDMAD检测对检测端口的链路类型没有要求,不需要刻意修改端口的当前链路类型.
缺省情况下,端口的链路类型为Access.
如果使用中间设备,中间设备上也需要进行此项配置.
(8)退回系统视图.
quit(9)进入VLAN接口视图.
interfacevlan-interfaceinterface-number(10)配置IPv6地址.
ipv6address{ipv6-address/pre-length|ipv6addresspre-length}缺省情况下,未配置VLAN接口的IPv6地址.
(11)开启NDMAD检测功能.
madndenable缺省情况下,NDMAD检测功能处于关闭状态.
1.
6.
6配置保留接口1.
功能简介IRF系统在进行多Active处理的时候,缺省情况下,会关闭Recovery状态IRF上除了系统保留接口外的所有业务接口.
系统保留接口包括:IRF物理端口BFDMAD检测接口用户配置的保留聚合接口的成员接口如果接口有特殊用途需要保持up状态(比如Telnet登录接口等),则用户可以通过命令行将这些接口配置为保留接口.
2.
配置限制和指导使用VLAN接口进行远程登录时,需要将该VLAN接口及其对应的以太网端口都配置为保留接口.
但如果在正常工作状态的IRF中该VLAN接口也处于UP状态,则在网络中会产生IP地址冲突.
1-263.
配置步骤(1)进入系统视图.
system-view(2)配置保留接口,当设备进入Recovery状态时,该接口不会被关闭.
madexcludeinterfaceinterface-typeinterface-number缺省情况下,设备进入Recovery状态时会自动关闭本设备上除了系统保留接口以外的所有业务接口.
1.
6.
7MAD故障恢复1.
功能简介当MAD故障恢复时,处于Recovery状态的设备重启后重新加入IRF,被MAD关闭的接口会自动恢复到正常状态.
如果在MAD故障恢复前,正常工作状态的IRF出现故障,可以通过配置本功能先启用Recovery状态的IRF.
配置本功能后,Recovery状态的IRF中被MAD关闭的接口会恢复到正常状态,保证业务尽量少受影响.
2.
配置步骤(1)进入系统视图.
system-view(2)将IRF从Recovery状态恢复到正常工作状态.
madrestore1.
7调整和优化IRF1.
7.
1配置成员设备的描述信息1.
功能简介当网络中存在多个IRF或者同一IRF中存在多台成员设备时可配置成员设备的描述信息进行标识.
例如当成员设备的物理位置比较分散(比如在不同楼层甚至不同建筑)时,为了确认成员设备的物理位置,在组建IRF时可以将物理位置设置为成员设备的描述信息,以便后期维护.
2.
配置步骤(1)进入系统视图.
system-view(2)配置IRF中指定成员设备的描述信息.
irfmembermember-iddescriptiontext缺省情况下,未配置成员设备的描述信息.
1-271.
7.
2配置IRF的桥MAC地址桥MAC冲突会引起通信故障,桥MAC变化可能导致流量短时间中断,请谨慎配置.
1.
功能简介桥MAC是设备作为网桥与外界通信时使用的MAC地址.
一些二层协议(例如LACP)会使用桥MAC标识不同设备,所以网络上的桥设备必须具有唯一的桥MAC.
如果网络中存在桥MAC相同的设备,则会引起桥MAC冲突,从而导致通信故障.
IRF作为一台虚拟设备与外界通信,也具有唯一的桥MAC,称为IRF桥MAC.
IRF合并时,如果有成员设备的桥MAC相同,则它们不能合并为一个IRF.
IRF的桥MAC不受此限制,只要成员设备自身桥MAC唯一即可.
两台IRF合并后,IRF的桥MAC为竞选获胜的一方的桥MAC.
通常情况下,IRF使用主设备的桥MAC作为IRF桥MAC,我们将这台主设备称为IRF桥MAC拥有者.
如果IRF桥MAC拥有者离开,IRF继续使用该桥MAC的时间可以通过"1.
7.
23.
配置IRF的桥MAC保留时间"配置.
当IRF的桥MAC保留时间到期后,系统会使用IRF中当前主设备的桥MAC做IRF的桥MAC.
2.
配置限制和指导当使用ARPMAD和MSTP组网或者NDMAD和MSTP组网时,需要将IRF配置为桥MAC地址立即改变,即配置undoirfmac-addresspersistent命令.
当IRF设备上存在跨成员设备的聚合链路时,请不要使用undoirfmac-addresspersistent命令配置IRF的桥MAC立即变化,否则可能会导致流量中断.
3.
配置IRF的桥MAC保留时间(1)进入系统视图.
system-view(2)配置IRF的桥MAC保留时间.
请选择其中一项进行配置.
{配置IRF的桥MAC永久保留.
irfmac-addresspersistentalways{配置IRF的桥MAC保留时间为6分钟.
irfmac-addresspersistenttimer{配置IRF的桥MAC不保留,立即变化.
undoirfmac-addresspersistent缺省情况下,IRF的桥MAC的保留时间为6分钟.
配置IRF桥MAC保留时间为6分钟适用于IRF桥MAC拥有者短时间内离开又回到IRF的情况(例如设备重启或者链路临时故障),可以减少不必要的桥MAC切换导致的流量中断.
1-281.
7.
3开启启动文件的自动加载功能1.
功能简介如果新设备加入IRF,并且新设备的软件版本和主设备的软件版本不一致,则新加入的设备不能正常启动.
此时:如果没有开启启动文件的自动加载功能,则需要用户手工升级新设备后,再将新设备加入IRF.
或者在主设备上开启启动文件的自动加载功能,重启新设备,让新设备重新加入IRF.
如果已经开启了启动文件的自动加载功能,则新设备加入IRF时,会与主设备的软件版本号进行比较,如果不一致,则自动从主设备下载启动文件,然后使用新的系统启动文件重启,重新加入IRF.
如果新下载的启动文件的文件名与设备上原有启动文件文件名重名,则原有启动文件会被覆盖.
2.
配置限制和指导加载启动软件包需要一定时间,在加载期间,请不要手工重启处于加载状态的从设备,否则,会导致该从设备加载启动软件包失败而不能启动.
用户可打开日志信息显示开关,并根据日志信息的内容来判断加载过程是否开始以及是否结束.
为了能够自动加载成功,请确保从设备存储介质上有足够的空闲空间用于存放新的启动文件.
如果从设备存储介质上空闲空间不足,系统会自动删除从设备的当前启动文件来完成加载.
如果删除从设备的当前启动文件后空间仍然不足,从设备将无法进行自动加载.
此时,需要管理员重启从设备并进入从设备的BootROM菜单,删除一些不重要的文件后,再让从设备重新加入IRF.
3.
配置步骤(1)进入系统视图.
system-view(2)开启IRF系统启动文件的自动加载功能.
irfauto-updateenable缺省情况下,IRF系统启动文件的自动加载功能处于开启状态.
1.
7.
4配置IRF链路状态变化延迟上报功能1.
功能简介该功能用于避免因端口链路层状态在短时间内频繁改变,导致IRF分裂/合并的频繁发生.
配置IRF链路状态变化延迟上报功能后,如果IRF端口状态变化(从up变为down或从down变为up),IRF端口不会立即向系统报告链路状态变化.
经过配置的时间间隔后,如果IRF端口状态仍然没有恢复,IRF端口才向系统报告链路状态的变化,系统再作出相应的处理.
需要注意的是,设备仅对IRF端口的状态变化做延迟上报处理,IRF物理端口的状态变化会立即上报.
1-292.
配置限制和指导如果某些协议配置的超时时间小于延迟上报时间(例如CFD、OSPF等),该协议将超时.
此时请适当调整IRF链路状态变化的延迟上报时间或者该协议的超时时间,使IRF链路状态变化的延迟上报时间小于协议超时时间,保证协议状态不会发生不必要的切换.
下列情况下,建议将IRF链路状态变化延迟上报时间配置为0:对主备倒换速度和IRF链路切换速度要求较高时在IRF环境中使用RRPP、BFD或GR功能时在执行关闭IRF物理端口或重启IRF成员设备的操作之前,请首先将IRF链路状态变化延迟上报时间配置为0,待操作完成后再将其恢复为之前的值3.
配置步骤(1)进入系统视图.
system-view(2)配置IRF链路状态变化延迟上报时间.
irflink-delayintervalIRF链路状态变化延迟上报时间为4秒.
1.
8IRF显示和维护在完成上述配置后,在任意视图下执行display命令可以显示配置后IRF的运行情况,通过查看显示信息验证配置的效果.
表1-4IRF显示和维护操作命令显示IRF中所有成员设备的相关信息displayirf显示IRF的拓扑信息displayirftopology显示IRF链路信息displayirflink显示所有成员设备上重启以后生效的IRF配置displayirfconfiguration显示MAD配置信息displaymad[verbose]1.
9IRF典型配置举例1.
9.
1IRF典型配置举例(LACPMAD检测方式)1.
组网需求如图1-14所示,配置DeviceA、DeviceB、DeviceC和DeviceD组成IRF设备.
由于IRF到中间设备DeviceE有跨成员设备的聚合链路,且DeviceE为支持LACP协议的H3C设备,我们配置LACPMAD进行分裂检测.
1-302.
组网图图1-14IRF典型配置组网图(LACPMAD检测方式)3.
配置步骤(1)配置DeviceA#根据图1-14选定IRF物理端口并关闭这些端口.
为便于配置,下文中将使用接口批量配置功能关闭和开启物理端口,关于接口批量配置的介绍,请参见"二层技术-以太网交换配置指导".
system-view[Sysname]interfacerangeten-gigabitethernet1/0/49toten-gigabitethernet1/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口1/1,并将它与物理端口Ten-GigabitEthernet1/0/49和Ten-GigabitEthernet1/0/50绑定.
[Sysname]irf-port1/1[Sysname-irf-port1/1]portgroupinterfaceten-gigabitethernet1/0/49[Sysname-irf-port1/1]portgroupinterfaceten-gigabitethernet1/0/50[Sysname-irf-port1/1]quit#配置IRF端口1/2,并将它与物理端口Ten-GigabitEthernet1/0/51和Ten-GigabitEthernet1/0/52绑定.
[Sysname]irf-port1/2[Sysname-irf-port1/2]portgroupinterfaceten-gigabitethernet1/0/511-31[Sysname-irf-port1/2]portgroupinterfaceten-gigabitethernet1/0/52[Sysname-irf-port1/2]quit#开启Ten-GigabitEthernet1/0/49~Ten-GigabitEthernet1/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet1/0/49toten-gigabitethernet1/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(2)配置DeviceB#将DeviceB的成员编号配置为2,并重启设备使新编号生效.
system-view[Sysname]irfmember1renumber2RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-14选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet2/0/49toten-gigabitethernet2/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口2/1,并将它与物理端口Ten-GigabitEthernet2/0/49和Ten-GigabitEthernet2/0/50绑定.
[Sysname]irf-port2/1[Sysname-irf-port2/1]portgroupinterfaceten-gigabitethernet2/0/49[Sysname-irf-port2/1]portgroupinterfaceten-gigabitethernet2/0/50[Sysname-irf-port2/1]quit#配置IRF端口2/2,并将它与物理端口Ten-GigabitEthernet2/0/51和Ten-GigabitEthernet2/0/52绑定.
[Sysname]irf-port2/2[Sysname-irf-port2/2]portgroupinterfaceten-gigabitethernet2/0/51[Sysname-irf-port2/2]portgroupinterfaceten-gigabitethernet2/0/52#开启Ten-GigabitEthernet2/0/49~Ten-GigabitEthernet2/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet2/0/49toten-gigabitethernet2/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(3)DeviceA和DeviceB间将会进行主设备竞选,竞选失败的一方将重启,重启完成后,IRF形成.
(4)配置DeviceC#将DeviceC的成员编号配置为3,并重启设备使新编号生效.
1-32system-view[Sysname]irfmember1renumber3RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-14选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet3/0/49toten-gigabitethernet3/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口3/1,并将它与物理端口Ten-GigabitEthernet3/0/49和Ten-GigabitEthernet3/0/50绑定.
[Sysname]irf-port3/1[Sysname-irf-port3/1]portgroupinterfaceten-gigabitethernet3/0/49[Sysname-irf-port3/1]portgroupinterfaceten-gigabitethernet3/0/50[Sysname-irf-port3/1]quit#配置IRF端口3/2,并将它与物理端口Ten-GigabitEthernet3/0/51和Ten-GigabitEthernet3/0/52绑定.
[Sysname]irf-port3/2[Sysname-irf-port3/2]portgroupinterfaceten-gigabitethernet3/0/51[Sysname-irf-port3/2]portgroupinterfaceten-gigabitethernet3/0/52[Sysname-irf-port3/2]quit#开启Ten-GigabitEthernet3/0/49~Ten-GigabitEthernet3/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet3/0/49toten-gigabitethernet3/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(5)DeviceC将自动重启,加入DeviceA和DeviceB已经形成的IRF.
(6)配置DeviceD#将DeviceD的成员编号配置为4,并重启设备使新编号生效.
system-view[Sysname]irfmember1renumber4RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-14选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet4/0/49toten-gigabitethernet4/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit1-33#配置IRF端口4/1,并将它与物理端口Ten-GigabitEthernet4/0/49和Ten-GigabitEthernet4/0/50绑定.
[Sysname]irf-port4/1[Sysname-irf-port4/1]portgroupinterfaceten-gigabitethernet4/0/49[Sysname-irf-port4/1]portgroupinterfaceten-gigabitethernet4/0/50[Sysname-irf-port4/1]quit#配置IRF端口4/2,并将它与物理端口Ten-GigabitEthernet4/0/51和Ten-GigabitEthernet4/0/52绑定.
[Sysname]irf-port4/2[Sysname-irf-port4/2]portgroupinterfaceten-gigabitethernet4/0/51[Sysname-irf-port4/2]portgroupinterfaceten-gigabitethernet4/0/52[Sysname-irf-port4/2]quit#开启Ten-GigabitEthernet4/0/49~Ten-GigabitEthernet4/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet4/0/49toten-gigabitethernet4/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(7)DeviceD将自动重启,加入DeviceA、DeviceB和DeviceC已经形成的IRF.
(8)配置LACPMAD#设置IRF域编号为1.
system-view[Sysname]irfdomain1#创建一个动态聚合接口,并使能LACPMAD检测功能.
[Sysname]interfacebridge-aggregation2[Sysname-Bridge-Aggregation2]link-aggregationmodedynamic[Sysname-Bridge-Aggregation2]madenableYouneedtoassignadomainID(range:0-4294967295)[Currentdomainis:1]:TheassigneddomainIDis:1Info:MADLACPonlyenableondynamicaggregationinterface.
[Sysname-Bridge-Aggregation2]quit#在聚合接口中添加成员端口GigabitEthernet1/0/1、GigabitEthernet2/0/1、GigabitEthernet3/0/1和GigabitEthernet4/0/1,用于DeviceA和DeviceB实现LACPMAD检测.
[Sysname]interfacerangegigabitethernet1/0/1gigabitethernet2/0/1gigabitethernet3/0/1gigabitethernet4/0/1[Sysname-if-range]portlink-aggregationgroup2[Sysname-if-range]quit(9)配置中间设备DeviceEDeviceE作为中间设备来转发、处理LACP协议报文,协助IRF中的四台成员设备进行多Active检测.
从节约成本的角度考虑,使用一台支持LACP协议扩展功能的交换机即可.
1-34如果中间设备是一个IRF系统,则必须通过配置确保其IRF域编号与被检测的IRF系统不同.
#创建一个动态聚合接口.
system-view[Sysname]interfacebridge-aggregation2[Sysname-Bridge-Aggregation2]link-aggregationmodedynamic[Sysname-Bridge-Aggregation2]quit#在聚合接口中添加成员端口GigabitEthernet1/0/1~GigabitEthernet1/0/4,用于帮助LACPMAD检测.
[Sysname]interfacerangegigabitethernet1/0/1togigabitethernet1/0/4[Sysname-if-range]portlink-aggregationgroup2[Sysname-if-range]quit1.
9.
2IRF典型配置举例(BFDMAD检测方式)1.
组网需求如图1-15所示,配置DeviceA、DeviceB、DeviceC和DeviceD组成IRF设备.
配置BFDMAD进行分裂检测.
1-352.
组网图图1-15IRF典型配置组网图(BFDMAD检测方式)3.
配置步骤(1)配置DeviceA#根据图1-15选定IRF物理端口并关闭这些端口.
system-view[Sysname]interfacerangeten-gigabitethernet1/0/49toten-gigabitethernet1/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口1/1,并将它与物理端口Ten-GigabitEthernet1/0/49和Ten-GigabitEthernet1/0/50绑定.
[Sysname]irf-port1/1[Sysname-irf-port1/1]portgroupinterfaceten-gigabitethernet1/0/49[Sysname-irf-port1/1]portgroupinterfaceten-gigabitethernet1/0/50[Sysname-irf-port1/1]quit#配置IRF端口1/2,并将它与物理端口Ten-GigabitEthernet1/0/51和Ten-GigabitEthernet1/0/52绑定.
[Sysname]irf-port1/2[Sysname-irf-port1/2]portgroupinterfaceten-gigabitethernet1/0/51[Sysname-irf-port1/2]portgroupinterfaceten-gigabitethernet1/0/52DeviceADeviceBIRFDeviceCDeviceDIRF链路BFD检测链路数据链路XGE1/0/51XGE1/0/52(IRF-port1/2)XGE2/0/49XGE2/0/50(IRF-port2/1)XGE2/0/51XGE2/0/52(IRF-port2/2)XGE4/0/49XGE4/0/50(IRF-port4/1)XGE4/0/51XGE4/0/52(IRF-port4/2)XGE3/0/49XGE3/0/50(IRF-port3/1)XGE3/0/51XGE3/0/52(IRF-port3/2)XGE1/0/49XGE1/0/50(IRF-port1/1)GE1/0/1GE3/0/1GE4/0/1GE2/0/1GE1/0/1GE1/0/2GE1/0/3GE1/0/4DeviceE1-36[Sysname-irf-port1/2]quit#开启Ten-GigabitEthernet1/0/49~Ten-GigabitEthernet1/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet1/0/49toten-gigabitethernet1/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(2)配置DeviceB#将DeviceB的成员编号配置为2,并重启设备使新编号生效.
system-view[Sysname]irfmember1renumber2RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-15选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet2/0/49toten-gigabitethernet2/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口2/1,并将它与物理端口Ten-GigabitEthernet2/0/49和Ten-GigabitEthernet2/0/50绑定.
[Sysname]irf-port2/1[Sysname-irf-port2/1]portgroupinterfaceten-gigabitethernet2/0/49[Sysname-irf-port2/1]portgroupinterfaceten-gigabitethernet2/0/50[Sysname-irf-port2/1]quit#配置IRF端口2/2,并将它与物理端口Ten-GigabitEthernet2/0/51和Ten-GigabitEthernet2/0/52绑定.
[Sysname]irf-port2/2[Sysname-irf-port2/2]portgroupinterfaceten-gigabitethernet2/0/51[Sysname-irf-port2/2]portgroupinterfaceten-gigabitethernet2/0/52#开启Ten-GigabitEthernet2/0/49~Ten-GigabitEthernet2/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet2/0/49toten-gigabitethernet2/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(3)DeviceA和DeviceB间将会进行主设备竞选,竞选失败的一方将重启,重启完成后,IRF形成.
(4)配置DeviceC#将DeviceC的成员编号配置为3,并重启设备使新编号生效.
system-view1-37[Sysname]irfmember1renumber3RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-15选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet3/0/49toten-gigabitethernet3/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口3/1,并将它与物理端口Ten-GigabitEthernet3/0/49和Ten-GigabitEthernet3/0/50绑定.
[Sysname]irf-port3/1[Sysname-irf-port3/1]portgroupinterfaceten-gigabitethernet3/0/49[Sysname-irf-port3/1]portgroupinterfaceten-gigabitethernet3/0/50[Sysname-irf-port3/1]quit#配置IRF端口3/2,并将它与物理端口Ten-GigabitEthernet3/0/51和Ten-GigabitEthernet3/0/52绑定.
[Sysname]irf-port3/2[Sysname-irf-port3/2]portgroupinterfaceten-gigabitethernet3/0/51[Sysname-irf-port3/2]portgroupinterfaceten-gigabitethernet3/0/52[Sysname-irf-port3/2]quit#开启Ten-GigabitEthernet3/0/49~Ten-GigabitEthernet3/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet3/0/49toten-gigabitethernet3/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(5)DeviceC将自动重启,加入DeviceA和DeviceB已经形成的IRF.
(6)配置DeviceD#将DeviceD的成员编号配置为4,并重启设备使新编号生效.
system-view[Sysname]irfmember1renumber4RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-15选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet4/0/49toten-gigabitethernet4/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口4/1,并将它与物理端口Ten-GigabitEthernet4/0/49和Ten-GigabitEthernet4/0/50绑定.
1-38[Sysname]irf-port4/1[Sysname-irf-port4/1]portgroupinterfaceten-gigabitethernet4/0/49[Sysname-irf-port4/1]portgroupinterfaceten-gigabitethernet4/0/50[Sysname-irf-port4/1]quit#配置IRF端口4/2,并将它与物理端口Ten-GigabitEthernet4/0/51和Ten-GigabitEthernet4/0/52绑定.
[Sysname]irf-port4/2[Sysname-irf-port4/2]portgroupinterfaceten-gigabitethernet4/0/51[Sysname-irf-port4/2]portgroupinterfaceten-gigabitethernet4/0/52[Sysname-irf-port4/2]quit#开启Ten-GigabitEthernet4/0/49~Ten-GigabitEthernet4/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet4/0/49toten-gigabitethernet4/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(7)DeviceD将自动重启,加入DeviceA、DeviceB和DeviceC已经形成的IRF.
(8)配置BFDMAD#创建VLAN3,并将端口GigabitEthernet1/0/1、GigabitEthernet2/0/1、GigabitEthernet3/0/1和GigabitEthernet4/0/1加入VLAN3中.
[Sysname]vlan3[Sysname-vlan3]portgigabitethernet1/0/1gigabitethernet2/0/1gigabitethernet3/0/1gigabitethernet4/0/1[Sysname-vlan3]quit#创建VLAN接口3,并配置MADIP地址.
[Sysname]interfacevlan-interface3[Sysname-Vlan-interface3]madbfdenable[Sysname-Vlan-interface3]madipaddress192.
168.
2.
124member1[Sysname-Vlan-interface3]madipaddress192.
168.
2.
224member2[Sysname-Vlan-interface3]madipaddress192.
168.
2.
324member3[Sysname-Vlan-interface3]madipaddress192.
168.
2.
424member4[Sysname-Vlan-interface3]quit#因为BFDMAD和生成树功能互斥,所以在GigabitEthernet1/0/1、GigabitEthernet2/0/1、GigabitEthernet3/0/1和GigabitEthernet4/0/1端口上关闭生成树协议.
[Sysname]interfacerangegigabitethernet1/0/1gigabitethernet2/0/1gigabitethernet3/0/1gigabitethernet4/0/1[Sysname-if-range]undostpenable[Sysname-if-range]quit(9)配置中间设备DeviceEDeviceE作为中间设备来透传BFDMAD报文,协助IRF中的四台成员设备进行多Active检测.
#创建VLAN3,并将端口GigabitEthernet1/0/1~GigabitEthernet1/0/4加入VLAN3中,用于转发BFDMAD报文.
system-view1-39[DeviceE]vlan3[DeviceE-vlan3]portgigabitethernet1/0/1togigabitethernet1/0/4[DeviceE-vlan3]quit1.
9.
3IRF典型配置举例(ARPMAD检测方式)1.
组网需求如图1-16所示,配置DeviceA、DeviceB、DeviceC和DeviceD组成IRF设备.
配置ARPMAD进行分裂检测.
为防止环路发生,在IRF和DeviceE上启用生成树功能.
2.
组网图图1-16IRF典型配置组网图(ARPMAD检测方式)3.
配置步骤(1)配置DeviceA#根据图1-16选定IRF物理端口并关闭这些端口.
system-view[Sysname]interfacerangeten-gigabitethernet1/0/49toten-gigabitethernet1/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口1/1,并将它与物理端口Ten-GigabitEthernet1/0/49和Ten-GigabitEthernet1/0/50绑定.
[Sysname]irf-port1/11-40[Sysname-irf-port1/1]portgroupinterfaceten-gigabitethernet1/0/49[Sysname-irf-port1/1]portgroupinterfaceten-gigabitethernet1/0/50[Sysname-irf-port1/1]quit#配置IRF端口1/2,并将它与物理端口Ten-GigabitEthernet1/0/51和Ten-GigabitEthernet1/0/52绑定.
[Sysname]irf-port1/2[Sysname-irf-port1/2]portgroupinterfaceten-gigabitethernet1/0/51[Sysname-irf-port1/2]portgroupinterfaceten-gigabitethernet1/0/52[Sysname-irf-port1/2]quit#开启Ten-GigabitEthernet1/0/49~Ten-GigabitEthernet1/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet1/0/49toten-gigabitethernet1/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(2)配置DeviceB#将DeviceB的成员编号配置为2,并重启设备使新编号生效.
system-view[Sysname]irfmember1renumber2RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-16选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet2/0/49toten-gigabitethernet2/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口2/1,并将它与物理端口Ten-GigabitEthernet2/0/49和Ten-GigabitEthernet2/0/50绑定.
[Sysname]irf-port2/1[Sysname-irf-port2/1]portgroupinterfaceten-gigabitethernet2/0/49[Sysname-irf-port2/1]portgroupinterfaceten-gigabitethernet2/0/50[Sysname-irf-port2/1]quit#配置IRF端口2/2,并将它与物理端口Ten-GigabitEthernet2/0/51和Ten-GigabitEthernet2/0/52绑定.
[Sysname]irf-port2/2[Sysname-irf-port2/2]portgroupinterfaceten-gigabitethernet2/0/51[Sysname-irf-port2/2]portgroupinterfaceten-gigabitethernet2/0/52#开启Ten-GigabitEthernet2/0/49~Ten-GigabitEthernet2/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet2/0/49toten-gigabitethernet2/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save1-41#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(3)DeviceA和DeviceB间将会进行主设备竞选,竞选失败的一方将重启,重启完成后,IRF形成.
(4)配置DeviceC#将DeviceC的成员编号配置为3,并重启设备使新编号生效.
system-view[Sysname]irfmember1renumber3RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-16选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet3/0/49toten-gigabitethernet3/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口3/1,并将它与物理端口Ten-GigabitEthernet3/0/49和Ten-GigabitEthernet3/0/50绑定.
[Sysname]irf-port3/1[Sysname-irf-port3/1]portgroupinterfaceten-gigabitethernet3/0/49[Sysname-irf-port3/1]portgroupinterfaceten-gigabitethernet3/0/50[Sysname-irf-port3/1]quit#配置IRF端口3/2,并将它与物理端口Ten-GigabitEthernet3/0/51和Ten-GigabitEthernet3/0/52绑定.
[Sysname]irf-port3/2[Sysname-irf-port3/2]portgroupinterfaceten-gigabitethernet3/0/51[Sysname-irf-port3/2]portgroupinterfaceten-gigabitethernet3/0/52[Sysname-irf-port3/2]quit#开启Ten-GigabitEthernet3/0/49~Ten-GigabitEthernet3/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet3/0/49toten-gigabitethernet3/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(5)DeviceC将自动重启,加入DeviceA和DeviceB已经形成的IRF.
(6)配置DeviceD#将DeviceD的成员编号配置为4,并重启设备使新编号生效.
system-view[Sysname]irfmember1renumber4RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot1-42#根据图1-16选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet4/0/49toten-gigabitethernet4/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口4/1,并将它与物理端口Ten-GigabitEthernet4/0/49和Ten-GigabitEthernet4/0/50绑定.
[Sysname]irf-port4/1[Sysname-irf-port4/1]portgroupinterfaceten-gigabitethernet4/0/49[Sysname-irf-port4/1]portgroupinterfaceten-gigabitethernet4/0/50[Sysname-irf-port4/1]quit#配置IRF端口4/2,并将它与物理端口Ten-GigabitEthernet4/0/51和Ten-GigabitEthernet4/0/52绑定.
[Sysname]irf-port4/2[Sysname-irf-port4/2]portgroupinterfaceten-gigabitethernet4/0/51[Sysname-irf-port4/2]portgroupinterfaceten-gigabitethernet4/0/52[Sysname-irf-port4/2]quit#开启Ten-GigabitEthernet4/0/49~Ten-GigabitEthernet4/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet4/0/49toten-gigabitethernet4/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(7)DeviceD将自动重启,加入DeviceA、DeviceB和DeviceC已经形成的IRF.
(8)配置ARPMAD#在IRF上全局使能生成树协议,并配置MST域,以防止环路的发生.
system-view[Sysname]stpglobalenable[Sysname]stpregion-configuration[Sysname-mst-region]region-namearpmad[Sysname-mst-region]instance1vlan3[Sysname-mst-region]activeregion-configuration#将IRF配置为桥MAC立即改变.
[Sysname]undoirfmac-addresspersistent#设置IRF域编号为1.
[Sysname]irfdomain1#创建VLAN3,并将端口GigabitEthernet1/0/1、GigabitEthernet2/0/1、GigabitEthernet3/0/1和GigabitEthernet4/0/1加入VLAN3中.
[Sysname]vlan3[Sysname-vlan3]portgigabitethernet1/0/1gigabitethernet2/0/1gigabitethernet3/0/1gigabitethernet4/0/1[Sysname-vlan3]quit#创建VLAN-interface3,并配置IP地址,使能ARPMAD检测功能.
1-43[Sysname]interfacevlan-interface3[Sysname-Vlan-interface3]ipaddress192.
168.
2.
124[Sysname-Vlan-interface3]madarpenableYouneedtoassignadomainID(range:0-4294967295)[Currentdomainis:1]:TheassigneddomainIDis:1(9)配置中间设备DeviceEDeviceE作为中间设备来转发、处理ARP报文,协助IRF中的四台成员设备进行多Active检测.
从节约成本的角度考虑,使用一台支持ARP功能的交换机即可.
如果中间设备是一个IRF系统,则必须通过配置确保其IRF域编号与被检测的IRF系统不同.
#在全局使能生成树协议,并配置MST域,以防止环路的发生.
system-view[DeviceE]stpglobalenable[DeviceE]stpregion-configuration[DeviceE-mst-region]region-namearpmad[DeviceE-mst-region]instance1vlan3[DeviceE-mst-region]activeregion-configuration#创建VLAN3,并将端口GigabitEthernet1/0/1~GigabitEthernet1/0/4加入VLAN3中,用于转发ARPMAD报文.
[DeviceE]vlan3[DeviceE-vlan3]portgigabitethernet1/0/1togigabitethernet1/0/4[DeviceE-vlan3]quit1.
9.
4IRF典型配置举例(NDMAD检测方式)1.
组网需求如图1-17所示,配置DeviceA、DeviceB、DeviceC和DeviceD组成IRF设备.
在IPv6环境我们采用NDMAD进行分裂检测.
为防止环路发生,在IRF和DeviceE上启用生成树功能.
1-442.
组网图图1-17IRF典型配置组网图(NDMAD检测方式)3.
配置步骤(1)配置DeviceA#根据图1-17选定IRF物理端口并关闭这些端口.
system-view[Sysname]interfacerangeten-gigabitethernet1/0/49toten-gigabitethernet1/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口1/1,并将它与物理端口Ten-GigabitEthernet1/0/49和Ten-GigabitEthernet1/0/50绑定.
[Sysname]irf-port1/1[Sysname-irf-port1/1]portgroupinterfaceten-gigabitethernet1/0/49[Sysname-irf-port1/1]portgroupinterfaceten-gigabitethernet1/0/50[Sysname-irf-port1/1]quit#配置IRF端口1/2,并将它与物理端口Ten-GigabitEthernet1/0/51和Ten-GigabitEthernet1/0/52绑定.
[Sysname]irf-port1/2[Sysname-irf-port1/2]portgroupinterfaceten-gigabitethernet1/0/51[Sysname-irf-port1/2]portgroupinterfaceten-gigabitethernet1/0/52[Sysname-irf-port1/2]quit1-45#开启Ten-GigabitEthernet1/0/49~Ten-GigabitEthernet1/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet1/0/49toten-gigabitethernet1/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(2)配置DeviceB#将DeviceB的成员编号配置为2,并重启设备使新编号生效.
system-view[Sysname]irfmember1renumber2RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-17选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet2/0/49toten-gigabitethernet2/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口2/1,并将它与物理端口Ten-GigabitEthernet2/0/49和Ten-GigabitEthernet2/0/50绑定.
[Sysname]irf-port2/1[Sysname-irf-port2/1]portgroupinterfaceten-gigabitethernet2/0/49[Sysname-irf-port2/1]portgroupinterfaceten-gigabitethernet2/0/50[Sysname-irf-port2/1]quit#配置IRF端口2/2,并将它与物理端口Ten-GigabitEthernet2/0/51和Ten-GigabitEthernet2/0/52绑定.
[Sysname]irf-port2/2[Sysname-irf-port2/2]portgroupinterfaceten-gigabitethernet2/0/51[Sysname-irf-port2/2]portgroupinterfaceten-gigabitethernet2/0/52[Sysname-irf-port2/2]quit#开启Ten-GigabitEthernet2/0/49~Ten-GigabitEthernet2/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet2/0/49toten-gigabitethernet2/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(3)DeviceA和DeviceB间将会进行主设备竞选,竞选失败的一方将重启,重启完成后,IRF形成.
(4)配置DeviceC#将DeviceC的成员编号配置为3,并重启设备使新编号生效.
system-view1-46[Sysname]irfmember1renumber3RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-17选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet3/0/49toten-gigabitethernet3/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口3/1,并将它与物理端口Ten-GigabitEthernet3/0/49和Ten-GigabitEthernet3/0/50绑定.
[Sysname]irf-port3/1[Sysname-irf-port3/1]portgroupinterfaceten-gigabitethernet3/0/49[Sysname-irf-port3/1]portgroupinterfaceten-gigabitethernet3/0/50[Sysname-irf-port3/1]quit#配置IRF端口3/2,并将它与物理端口Ten-GigabitEthernet3/0/51和Ten-GigabitEthernet3/0/52绑定.
[Sysname]irf-port3/2[Sysname-irf-port3/2]portgroupinterfaceten-gigabitethernet3/0/51[Sysname-irf-port3/2]portgroupinterfaceten-gigabitethernet3/0/52[Sysname-irf-port3/2]quit#开启Ten-GigabitEthernet3/0/49~Ten-GigabitEthernet3/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet3/0/49toten-gigabitethernet3/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(5)DeviceC将自动重启,加入DeviceA和DeviceB已经形成的IRF.
(6)配置DeviceD#将DeviceD的成员编号配置为4,并重启设备使新编号生效.
system-view[Sysname]irfmember1renumber4RenumberingthememberIDmayresultinconfigurationchangeorloss.
Continue[Y/N]:y[Sysname]quitreboot#根据图1-17选定IRF物理端口并进行物理连线.
#重新登录到设备,关闭选定的所有IRF物理端口.
system-view[Sysname]interfacerangeten-gigabitethernet4/0/49toten-gigabitethernet4/0/52[Sysname-if-range]shutdown[Sysname-if-range]quit#配置IRF端口4/1,并将它与物理端口Ten-GigabitEthernet4/0/49和Ten-GigabitEthernet4/0/50绑定.
1-47[Sysname]irf-port4/1[Sysname-irf-port4/1]portgroupinterfaceten-gigabitethernet4/0/49[Sysname-irf-port4/1]portgroupinterfaceten-gigabitethernet4/0/50[Sysname-irf-port4/1]quit#配置IRF端口4/2,并将它与物理端口Ten-GigabitEthernet4/0/51和Ten-GigabitEthernet4/0/52绑定.
[Sysname]irf-port4/2[Sysname-irf-port4/2]portgroupinterfaceten-gigabitethernet4/0/51[Sysname-irf-port4/2]portgroupinterfaceten-gigabitethernet4/0/52[Sysname-irf-port4/2]quit#开启Ten-GigabitEthernet4/0/49~Ten-GigabitEthernet4/0/52端口,并保存配置.
[Sysname]interfacerangeten-gigabitethernet4/0/49toten-gigabitethernet4/0/52[Sysname-if-range]undoshutdown[Sysname-if-range]quit[Sysname]save#激活IRF端口下的配置.
[Sysname]irf-port-configurationactive(7)DeviceD将自动重启,加入DeviceA、DeviceB和DeviceC已经形成的IRF.
(8)配置NDMAD#在IRF上全局使能生成树协议,并配置MST域,以防止环路的发生.
system-view[Sysname]stpglobalenable[Sysname]stpregion-configuration[Sysname-mst-region]region-namendmad[Sysname-mst-region]instance1vlan3[Sysname-mst-region]activeregion-configuration#将IRF配置为桥MAC立即改变.
[Sysname]undoirfmac-addresspersistent#设置IRF域编号为1.
[Sysname]irfdomain1#创建VLAN3,并将端口GigabitEthernet1/0/1、GigabitEthernet2/0/1、GigabitEthernet3/0/1和GigabitEthernet4/0/1加入VLAN3中.
[Sysname]vlan3[Sysname-vlan3]portgigabitethernet1/0/1gigabitethernet2/0/1gigabitethernet3/0/1gigabitethernet4/0/1[Sysname-vlan3]quit#创建VLAN-interface3,并配置IPv6地址,使能NDMAD检测功能.
[Sysname]interfacevlan-interface3[Sysname-Vlan-interface3]ipv6address2001::164[Sysname-Vlan-interface3]madndenableYouneedtoassignadomainID(range:0-4294967295)[Currentdomainis:1]:TheassigneddomainIDis:1(9)配置中间设备DeviceE1-48DeviceE作为中间设备来转发、处理ND报文,协助IRF中的四台成员设备进行多Active检测.
从节约成本的角度考虑,使用一台支持ND功能的交换机即可.
如果中间设备是一个IRF系统,则必须通过配置确保其IRF域编号与被检测的IRF系统不同.
#在全局使能生成树协议,并配置MST域,以防止环路的发生.
system-view[DeviceE]stpglobalenable[DeviceE]stpregion-configuration[DeviceE-mst-region]region-namendmad[DeviceE-mst-region]instance1vlan3[DeviceE-mst-region]activeregion-configuration#创建VLAN3,并将端口GigabitEthernet1/0/1~GigabitEthernet1/0/4加入VLAN3中,用于转发NDMAD报文.
[DeviceE]vlan3[DeviceE-vlan3]portgigabitethernet1/0/1togigabitethernet1/0/4[DeviceE-vlan3]quit

VoLLcloud(月付低至2.8刀)香港vps大带宽,三网直连

VoLLcloud LLC是一家成立于2020年12月互联网服务提供商企业,于2021年1月份投入云计算应用服务,为广大用户群体提供云服务平台,已经多个数据中心部署云计算中心,其中包括亚洲、美国、欧洲等地区,拥有自己的研发和技术服务团队。现七夕将至,VoLLcloud LLC 推出亚洲地区(香港)所有产品7折优惠,该产品为CMI线路,去程三网163,回程三网CMI线路,默认赠送 2G DDoS/C...

Hostodo:$34.99/年KVM-2.5GB/25G NVMe/8TB/3个数据中心

Hostodo在九月份又发布了两款特别套餐,开设在美国拉斯维加斯、迈阿密和斯波坎机房,基于KVM架构,采用NVMe SSD高性能磁盘,最低1.5GB内存8TB月流量套餐年付34.99美元起。Hostodo是一家成立于2014年的国外VPS主机商,主打低价VPS套餐且年付为主,基于OpenVZ和KVM架构,美国三个地区机房,支持支付宝或者PayPal、加密货币等付款。下面列出这两款主机配置信息。CP...

妮妮云(30元),美国300G防御 2核4G 107.6元,美国高速建站 2核2G

妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款,超过2天不退款 物...

软件虚拟化为你推荐
金评媒朱江雷克萨斯中国朱江简历陈嘉垣大家觉得陈嘉桓漂亮还是钟嘉欣漂亮?www.yahoo.com.hk香港有什么有名的娱乐门户网站吗?www.qq530.com谁能给我一个听歌的网站?8090lu.com《8090》节目有不有高清的在线观看网站啊?125xx.com高手指教下,www.fshxbxg.com这个域名值多少钱?www.789.com.cn有什么网站可以玩游戏的.baqizi.cc和空姐一起的日子电视剧在线观看 和空姐一起的日子全集在线观看www.toutoulu.comSEO行业外链怎么做?www.toutoulu.comWWW【toutoulu】cOM怎么搜不到了?到哪里能看到toutoulu视频?
虚拟主机申请 郑州服务器租用 香港ufo 域名商 arvixe 香港机房 html空间 免费个人网站申请 合租空间 如何安装服务器系统 新世界服务器 免费私人服务器 西安服务器托管 webmin wordpress安装 nano cc攻击 大硬盘分区 戴尔主机 更多