ArticleEectsofAerobic-,Anaerobic-andCombined-BasedExercisesonPlasmaOxidativeStressBiomarkersinHealthyUntrainedYoungAdultsAchrafAmmar1,*,,KhaledTrabelsi2,3,,OmarBoukhris2,4,JordanMGlenn5,6,NickBott5,7,LiwaMasmoudi2,4,AhmedHakim8,HamdiChtourou2,4,*,TarakDriss9,AnitaHoekelmann1andKaisElAbed2,31InstituteofSportScience,Otto-von-Guericke-UniversityMagdeburg,39106Magdeburg,Germany;anita.
hoekelmann@ovgu.
de2InstitutSupérieurduSportetdel'EducationPhysiquedeSfax,UniversitédeSfax,Sfax3000,Tunisia;trabelsikhaled@gmail.
com(K.
T.
);omarboukhris24@yahoo.
com(O.
B.
);liwa.
masmoudi@yahoo.
fr(L.
M.
);kais.
elabed@gmail.
com(K.
E.
A.
)3ResearchLaboratory:Education,Motricité,SportetSanté,EM2S,LR19JS01,HighInstituteofSportandPhysicalEducationofSfax,UniversityofSfax,Sfax3000,Tunisia4ActivitéPhysique,SportetSanté,UR18JS01,ObservatoireNationalduSport,Tunis1004,Tunisia5NeurotrackTechnologies,RedwoodCity,CA94063,USA;jordan@neurotrack.
com(J.
M.
G.
);nick@neurotrack.
com(N.
B.
)6ExerciseScienceResearchCenter,DepartmentofHealth,HumanPerformanceandRecreation,UniversityofArkansas,Fayetteville,AR72701,USA7ClinicalExcellenceResearchCenter,DepartmentofMedicine,StanfordUniversitySchoolofMedicine,Stanford,CA94305,USA8LaboratoryofPharmacology,FacultyofMedicine,SfaxUniversity,Sfax3029,Tunisia;ahmed_hakim2002@yahoo.
fr9InterdisciplinaryLaboratoryinNeurosciences,PhysiologyandPsychology:PhysicalActivity,HealthandLearning(LINP2-2APS),UFRSTAPS,UPL,ParisNanterreUniversity,92000Nanterre,France;tarak.
driss@parisnanterre.
fr*Correspondence:ammar1.
achraf@ovgu.
de(A.
A.
);h_chtourou@yahoo.
fr(H.
C.
)Equallycontributedasrstauthors.
Received:17March2020;Accepted:8April2020;Published:10April2020Abstract:Currently,itiswellacceptedthatphysicalexercise-inducedoxidativestressmaydamagebiologicalstructuresandimpaircellularfunctions.
However,itisstillunclearwhichtypeofexerciseresultsinthegreatestoxidativestressresponsesamongahealthyuntrainedpopulation.
Theaimofthepresentstudywastocomparetheacuteoxidativestressresponse(i.
e.
,0to20min)followingdierenttypesofexercise(anaerobic,aerobic,andcombined).
Tenhealthy,untrainedmales(19.
5±1.
7years)performedthreerandomizedexercisebouts:anaerobic(30sWingatetest),aerobic(30minat60%maximalaerobicpower(MAP))orcombined(anaerobicandaerobic).
Venousbloodsampleswerecollectedbefore,aswellasat0(P0),5(P5),10(P10),and20(P20)minaftereachsession.
Ratesofmalondialdehyde(MDA)andantioxidantactivities(i.
e.
,glutathioneperoxidase(GPX),superoxidedismutase(SOD),glutathionereductase(GR),α-tocopherol,andtotalantioxidantstatus(TAS))wereassessed.
Independentofexercisetype,plasmaMDA,GPX,SOD,andGRcontentsincreasedabovebaseline,whereasplasmaα-tocopheroldecreasedunderbaselineafterthetestsessions(p<0.
05).
Aerobicandanaerobicexercisesgeneratedfasterresponses(atP0)whencomparedtothecombinedexercise(P5toP10)forthemajorityofthetestedparameters.
PlasmaTAScontentonlyincreasedfollowingtheaerobicexerciseatP10(p=0.
03).
Fivetotwenty-minutespostexercise,thehighestMDAresponsewasregisteredintheaerobiccondition,andthehighestGPXandSODresponseswererecordedintheanaerobic(atP5)andaerobic(atP20)conditions(p<0.
05).
Inconclusion,aerobic,anaerobic,orcombinedexerciseshavethepotentialtoacutelyincreaseoxidativestressandInt.
J.
Environ.
Res.
PublicHealth2020,17,2601;doi:10.
3390/ijerph17072601www.
mdpi.
com/journal/ijerphInt.
J.
Environ.
Res.
PublicHealth2020,17,26012of12antioxidantactivities,butwithdierentresponsesmagnitude.
Thesendingsconrmthatoxidativestressresponseseemstobedependentontheintensityandthedurationofthephysicalexerciseandmayhelpinunderstandinghowvaryingexerciseboutsinuencethedegreeofoxidativestressamonghealthyuntrainedyoungadults.
Keywords:redoxstatus;physicalexercise;untrainedhealthyyoungadults;physiologicalresponses;anaerobic;antioxidant1.
IntroductionOxidativestressischaracterizedbytheimbalancebetweenpro-oxidantandantioxidantstatus,withtheformeroutweighingthelatter[1].
Thisimbalancecanleadtophysiopathologicaleectsbyincreasingcellsandcellularcomponents'(i.
e.
,membranes,lipids,proteins,deoxyribonucleicacid(DNA),andlipoproteins,amongtheothers)vulnerabilitytoreactiveoxygenspecies(ROS)attacks[1,2].
Ifnotstrictlycontrolledandcounteracted,oxidativestresscancauseacutepathologies(i.
e.
,traumaandstroke)andberesponsiblefortheinsurgenceofseveralchronicanddegenerativediseases[3].
Inordertoproperlyprotectthecellsagainsttheharmfuleectsoffreeradicals,thehumanbodyisabletomountacascadeofdefensemechanisms,includingpreventative,repairing,andscavengingones,aswellasthroughtheameliorationofantioxidantactivities[4,5].
ItiswellacceptedthatphysicalexerciseisanactivitythatincreasesROSproductionviaincreasedphospholipaseA2(PLA2),nicotinamideadeninedinucleotidephosphate(NADPH)oxidase,andxanthineoxidase(XO)activities,which,whencombined,leadtooxidativestress[5–8].
Duringstrength-basedexercises[5,6,9],short-termmaximalsprints[10,11],andexerciseperformedneartheanaerobicthreshold[12],theleveloflipidperoxidationsignicantlyincreasesimmediatelyandupto48hfollowingtheeort.
Themitochondrialelectrontransportchaincomplex,thephenomenonofischemia-reperfusioninjury,andlocalinammationhaveallbeenidentiedasmajorsourcesoffreeradicalproductionandinducedoxidativestressduringexercise[13].
Theseacutechangesinoxidativestress-relatedbiomarkersfollowingexercisearealsoaccompaniedbyanincreaseinantioxidantresponses.
Indeed,immediateincreasesinthecontentofuricacid(UA),catalase(CAT),andglutathioneperoxidase(GPX)areregisteredfollowingintensivestrength,sprint,andWingateeorts[14,15],withareturntobaselineoccurringfrom10min[16,17]to4–8h[5,6].
Theaforementionedstudiesclearlydescribeintensivephysicalexerciseasasituationresultinginoxidativestress,characterizedbyacuteanddelayedredoximbalance(i.
e.
,betweenpro-oxidantsandantioxidants).
However,itisstillunclearwhichtype(aerobic,anaerobic,orcombinedanaerobicplusaerobic)ofexerciseresultsinthegreatestoxidativestressresponses[18,19].
Forinstance,limitedinvestigationshaveexploredtheeectsofexercises'typeonredoxbalance[20–25].
Thesestudieshavebeenlimitedonlyonaerobic-andanaerobic-basedexercises,withnormconclusion.
Indeed,Bloomeretal.
[20–22]andParkeretal.
[23,24]suggestedaerobicexerciseinducesagreaterincreaseinpro-oxidantstatuswhencomparedtoanaerobicexercise,andInaletal.
[25]andMarzaticoetal.
[26]demonstratedtheactivitiesofenzymaticantioxidantdefenseincreasesimilarlyfollowingaerobicandanaerobicexercises,whileParkeretal.
[23,24]showedthatincreasingexerciseintensityresultedingreaterendogenousantioxidantdefenses.
Discrepanciesbetweenndingsmaybeattributabletoparticipanttraininglevel.
Inthissense,itiswelldescribedthatlongitudinalsteadystateexercise[25,26],aswellasaneectiveresistancetrainingprogram[1,5–8,27,28],couldpreventorsuppressincreasesinmalondialdehyde(MDA)levelsafterphysicaleortsandreinforcethebody'sdefenseagainstotheroxidativeattacksviaactivationoftheredoxsensitivetranscriptionfactorsthatnelyregulategeneandproteinexpressionwithinskeletalmuscleandincreasedproductionofendogenousantioxidants(GPX,CAT,superoxidedismutase(SOD),andglutathione(GSH))[19].
Int.
J.
Environ.
Res.
PublicHealth2020,17,26013of12Totheauthors'knowledge,thereareonlyonestudyfocusedontheeectofthreetypesofexercise(aerobic-basedexercise,anaerobicbasedexercise,andcombinedexercise)onoxidativestressresponse[29].
Thisrecentstudywasconductedbyourresearchteamandreportedthatredox-relatedbiomarkersexhibiteddivergentresponsedynamicsat20minfollowingexerciseswithaerobic-basedexercisegeneratesgreaterMDAresponse,whileanaerobic-basedexercisegenerateslowerantioxidantresponses(e.
g.
,GPX,SOD,glutathionereductase(GR),andtotalantioxidantstatus(TAS))comparedtothetwoothertypeofexercises.
However,giventhatthisstudyinvestigatedonlywell-trainedathletesandgiventhattraininglevelwasshowntobeadisruptivefactorinpreviousstudies,itwassuggestedthatthepracticalapplicationofthesepreliminaryndingsislimitedtoatrainedpopulation,andmoreresearchisneededtocorroborateitinanon-athleticpopulation.
Therefore,theaimofthepresentstudywastocomparelevelsoflipidperoxidationandantioxidantbiomarkersimmediatelyandupto20minfollowinganaerobic,aerobic,orcombined(anaerobicandaerobic)exerciseperformedbyhealthyuntrainedyoungadultmales.
Resolvingwhichexercisetypeelicitsthegreatestoxidativestressresponseinhealthyuntrainedsubjectsisimportantasthiswillhelpwithunderstandingofredoxhomeostasisandpreventingtheharmfuleectofexercise-inducedoxidativestressamongthispopulation.
2.
MaterialsandMethods2.
1.
ParticipantsSelection:InclusionandExclusionCriteriaTenhealthyuntrainedmales(19.
5±1.
7years,71.
8±2.
1kg,1.
76±0.
17m(mean±SD))volunteeredtoparticipateinthisstudy.
Theparticipantswererecruitedonthebasisthattheyhadnotparticipatedinanytypeofregularphysicaltrainingforatleastoneyearbeforetheexperiment,asmeasuredusingthe"InternationalPhysicalActivityQuestionnaire"andthattheywerenotsueringfromanykindofacuteorchronicdiseasesandanykindofinjurywithinthreemonthsofthestartoftheexperiment.
Toavoidanypossiblebiasrelatedtonutrition-derivedassetsofantioxidants(e.
g.
,dierentnutrients'protectionlevels),participantswereinstructedtoavoidtheconsumptionofanymedications(e.
g.
,antioxidantoranti-inammatorydrugs)ordietarysupplements(e.
g.
,creatine,foodsrichinantioxidantsorpolyphenols,suchasblueberries,coee,greentea,grapes,cherries,curcuma,redwine,anddarkchocolate)duringtheexperimentalperiodandforatleast8weeksbeforethecommencementofthestudy.
2.
2.
EthicalClearanceParticipantswereinformedofallprocedures,potentialrisks,andbenetsassociatedwiththestudyandtheyprovidedwritteninformedconsenttotakepartintheexperiment.
ThestudywasconductedaccordingtothedeclarationofHelsinki,andtheprotocolwasfullyapproved(identicationcode:8/16)bytheuniversityinstitutionalreviewboardbeforethecommencementoftheassessment.
2.
3.
ExperimentalDesignOneweekbeforethestartoftheexperimentalperiod,VO2peakandmaximalaerobicpower(MAP)outputwasdeterminedforeachparticipantfromanincrementallaboratorycyclingtest[29,30].
Aftera10minwarm-upat100W,thetestbeganataninitialpoweroutputof200W.
Subsequently,poweroutputwasincreasedby30Wevery4minuntilrespiratoryexchangeratio(RER)≥1.
Thereafter,poweroutputwasincreasedby10W/minuntilexhaustion.
Duringthetest,VO2wasmeasuredbreathbybreathusinganindirectcalorimetrysystem(QuarkPFT,Cosmed,Rome,Italy)[29,30].
MAPwascalculatedusingtheequationproposedbyKuipersetal.
[31].
TheVO2peakwasdeterminedfromthemeanVO2overthelast30softhetest[29].
Aspartofarepeated-measures,cross-overexperimentaldesign,participantsperformedthreerandomizedtestsessions,witharecoveryperiodof72hinbetween.
Toavoidanychronobiologicaleects[5,7,32–34],alltestsessionswereperformedatthesametimeofday(around08.
00hours).
Int.
J.
Environ.
Res.
PublicHealth2020,17,26014of12Thetestsessionsconsistedofeitheranaerobic-based(i.
e.
,30sstandardWingatetest),aerobic-based(i.
e.
,30minlow-intensitypedalingexercise),orcombined(aerobicandanaerobic)exercise.
Uponarrivalfortheirrsttestsession,eachparticipant'sbodymass(Tanita,Tokyo,Japan)andheightwererecorded.
Beforecompletingtheexperimentaltestingsessions,astandardized5mincyclingwarm-upwascompletedat75W.
Theanaerobic-basedprotocolcomprisedasinglestandard30sWingatetestonanelectronically-brakedcycleergometer(ExcaliburSport,LodeB.
V,MedicalTechnology,Groningen,Netherlands)connectedtoacomputerwithdiagnosticsoftware(Ergocard,Medisoft,Dinant,Belgium).
Followingthewarm-up,participantswereinstructedtopedalasfastaspossibleduringa6saccelerationphasetoattainpeakcadence[29].
Immediatelyfollowingtheaccelerationphase,theloadwaselectronicallyappliedtotheywheelandsubjectspedaled"all-out"fortheentiretyof30s[29].
Theaerobic-basedprotocolconsistedofpedalingonthesamecycleergometeratanintensityequalto60%ofMAPoutputforadurationof30minatacadenceof60rpm[29].
Thecombinedprotocolinvolvedthecompletionoftheanaerobic-basedprotocolfollowedbytheaerobic-basedprotocolwith3minpassiverecoverybetweentheseprotocols.
Beforeandafter(i.
e.
,at0min(P0),5min(P5),10min(P10),and20min(P20))eachtrainingsession,bloodsampleswerecollectedfromaforearmvein(dominantarm)throughanintravenouscannula.
2.
4.
DietaryRecordsToassesstheadequacyandconsistencyofnutrientintake,adailydietaryrecordwascompletedoversevendays.
Allparticipantsreceiveddetailedverbalandwritteninstructionsontheprocessofrecordingtheirdiet.
Participantswereaskedtocontinuewiththeirusualdietaryhabitsduringtheperiodofdietaryrecordingandtobeasaccurateaspossibleinrecordingtheamountsandtypesoffoodanduidconsumed.
Alistofcommonhouseholdmeasures(e.
g.
,tablespoons,cups)andspecicinformationaboutthequantityineachmeasurement(grams,etc.
)wasgiventoeachparticipant.
Theindividual'sdietwasevaluatedusingtheBilnu4software(SCDANutrisoft,Cerelles,France),andthefoodcompositiontablespublishedbytheTunisianNationalInstituteofStatisticsin1978.
Estimatednutrientintakeswerecomparedtoreferencedietaryintakesforphysicallyactivepeople,andthedailynutrimentdatashowedthattotalcalorie,macronutrient,andmicronutrientintakeswerewithinthereferencedietaryintakesforhealthyTunisianadults,withnosignicantdierencesbetweenthethreetestsessions(e.
g.
,testsession1:2875±365kcal/day;testsession2:2798±402kcal/day;2906±438kcal/day).
2.
5.
BloodAnalysisToeliminateinter-assayvariance,allsampleswereanalyzedinthesameassayrun.
Allassayswereperformedinduplicateinthesamelaboratory,withsimultaneoususeofcommerciallyassaykitsfromRandox(RandoxLaboratoriesLimited,55DiamondRoad,Crumlin,CountyAntrim,BT294QY,UnitedKingdom).
SOD,GPX,glutathionereductase(GR),andtotalantioxidantstatus(TAS)weremeasuredusingstandardcolorimetricassays(RandoxLaboratoriesLimited,55DiamondRoad,Crumlin,CountyAntrim,BT294QY,UnitedKingdom)asdescribedbyElAbedetal.
[16,29].
Intra-andinter-assaycoecientofvariationfortheSODwere0.
8%and0.
9%;intra-andinter-assaycoecientofvariationfortheGPXwere0.
9%and1.
0%;intra-andinter-assaycoecientofvariationfortheGRwere0.
7%and0.
8%;andintra-andinter-assaycoecientofvariationfortheTASwere0.
6%and0.
7%.
α-tocopherolwasextractedwithhexanefromhumanplasmaandthenmeasuredviahighperformanceliquidchromatography(HPLC).
Forspecimenpreparation,100Lofinternalstandardwasmixedwith100Lofplasmaina1.
5mLEppendorftubeandvortexedfor5s.
Subsequently,200Lofethanolwasaddedandvortexedfor30s,followedby500LofHexaneandafurther1minvortex.
Themixturewascentrifugedat4000rpmand4Cfor8minwith450Lofthesupernatantremovedandevaporatedtodrynessunderastreamofnitrogenatroomtemperature.
Solidswereextractedviatheadditionof250Lofmethanol,followedbya30svortexandthesamecentrifugationprotocoldescribedabove,beforebeinganalyzedusingtheHPLCmethodInt.
J.
Environ.
Res.
PublicHealth2020,17,26015of12describedbySiluketal.
[35].
Intra-andinter-assaycoecientofvariationforthea-tocopherolwere1.
1and1.
2%MDAwasassayedasamarkeroflipidperoxidationusingacolorimetricreaction,whichuses1-methyl-2-phenylindoleaschromogen.
CondensationofonemoleculeofMDAwith2moleculesof1-methyl-2-phenylindole(MPI)underacidicconditionsresultsintheformationofachromophorewithanabsorbancemaximumat586nm.
A7.
6mMsolutionofMPIwaspreparedimmediatelypriortousein33%methanolinacetonitrile.
A650LaliquotofMPIwasplacedineachtesttube,towhichwasaddedasolutionof200Lofplasma.
Thetubeswerewellmixed,and150Lof10MHClwasadded.
Aftermixingoncemore,thetubesweresealed,andincubatedfor60minat45C.
Afterincubation,thetubeswerechilledinanicebathandspunat10,000*gfor5min,inordertofullyremovedebris.
Theabsorbanceat586nmwasmeasuredandsubtractedfromtheblankvalue,obtainedbyreplacingplasmawithwater.
Acalibrationgraphwaspreparedusing4mol/L,8mol/L,16mol/L,and20mol/Lof1,1,3,3-tetramethoxypropanein20mMTris-HCl,buer,pH7.
4.
Intra-andinter-assaycoecientofvariationfortheMDAwere1.
6and1.
7%.
2.
6.
StatisticalAnalysisAllstatisticalanalyseswereperformedusingthecommercialstatisticalsoftwareSTATISTICA(StatSoft,Paris,France,version10.
0).
NormalityofthedatadistributionwasconrmedusingtheShapiro-Wilks-W-test.
Valueswerecomputedandreportedasmean±SEM(standarderrorofthemean).
Thedataobtainedforallantioxidantsandoxidativestressmarkerswereanalyzedusingatwo-wayANOVA(3levels(exercisetype(anaerobic,aerobic,andcombined—aerobicandanaerobic))*5levels(samples-time(before,P0,P5,P10,andP20)))withrepeatedmeasure.
Fisher'sleastsignicantdierence(LSD)post-hoctestswereconductedwhenastatisticallysignicantmaineectwasfound.
Eectsizeswerecalculatedaspartialeta-squared(ηp2)toassessthepotentialpracticalsignicanceofthendings.
Forallanalyses,statisticalsignicancewassetatp<0.
05.
3.
ResultsThelevelsoflipidperoxidationatpre-testandatP0,P5,P10,andP20followingaerobic,anaerobic,andcombined(anaerobicandaerobic)exercisearepresentedinFigure1.
Figure1.
Plasmamalondialdehydeconcentrationbefore(Rest),immediatelyafter(P0),and5(P5),10(P10),and20(P20)minafteraerobic,anaerobic,andcombined(anaerobicandaerobic)exercise.
Dataareexpressedasthe%changefrompre-exerciserestingconcentrations.
signicantdierencewhencomparedtopre-testvaluesatthelevelofp<0.
05andp<0.
01espectively;a:signicantdierencewhencomparedtotheanaerobicexercise;b:signicantdierencewhencomparedtothecombined(anaerobicandaerobic)exercise.
Int.
J.
Environ.
Res.
PublicHealth2020,17,26016of12Statisticalanalysisshowedstatisticallysignicantmaineectsofsamples-timeandexercise-typewithF(4,36)=24.
84,p=0,000,ηp2=0.
28,andF(2,18)=4.
62,p=0.
03,ηp2=0.
32,respectively.
PlasmaMDAincreasedimmediately(P0)aftertheaerobicandanaerobictestsessionswhencomparedtotherestingbaselinewithp=0.
02.
However,MDAcontentdidnotincreaseabovetherestingbaselineinthecombined(anaerobicandaerobic)conditionuntil10minpostexercise(p=0.
04).
Moreover,MDAwashigheratP5postaerobicexercisewhencomparedtotheanaerobic(p=0.
05)andcombined(anaerobicandaerobic)exercise(p=0.
005)andhigheratP10andP20followingthesameexercisewhencomparedtothecombined(anaerobicandaerobic)conditionwithp=0.
000.
Figure2showstheenzymaticantioxidantresponsesfollowingthedierentexercisestypes.
Asignicantmaineectofsamples-timewasregisteredforSOD(F(4,36)=19.
38,p=0.
000,ηp2=0.
68),GPX(F(4,36)=25.
40,p=0.
000,ηp2=0.
74),andGR(F(4,36)=16.
04,p=0.
000,ηp2=0.
64).
Figure2.
Superoxidedismutase(panelA),plasmaglutathioneperoxidase(panelB),andglutathionereductase(panelC)contentbefore(Rest),immediatelyafter(P0),and5(P5),10(P10),and20(P20)minafteraerobic,anaerobic,andcombined(anaerobicandaerobic)exercise.
Dataareexpressedasthe%changefrompre-exerciserestingconcentrations.
signicantdierencewhencomparedtopre-testvaluesatthelevelofp<0.
05,p<0.
01andp<0.
001respectively;a:signicantdierencewhencomparedtotheaerobicexercise;b:signicantdierencecomparedtothecombined(anaerobicandaerobic)exercise.
Int.
J.
Environ.
Res.
PublicHealth2020,17,26017of12Regardlessofexercisetype,theplasmacontentofSODandGPXincreasedimmediately(P0)post-exercise(p=0.
02,p=0.
000andp=0.
03forSODandp=0.
004,p=0.
000,andp=0.
004forGPXatP0postaerobic,anaerobic,andcombined(anaerobicandaerobic)exercise,respectively).
However,animmediate(P0)increaseofGRcontentwasonlyregisteredfollowingtheaerobic(p=0.
048)andanaerobicexercise(p=0.
039),whilethiscontentwasnotincreasedabovetherestingbaselineinthecombined(anaerobicandaerobic)conditionuntil5minpostexercise(p=0.
000).
Whencomparedtotheaerobicandcombined(anaerobicandaerobic)conditions,anaerobicexerciseresultedingreaterSODandGPXlevelsatP0(p=0.
000forSODandp=0.
02forGPX)andP5(p=0.
02forSODandp=0.
05forGPX).
AtP20greaterSODlevelswereregisteredfollowingtheaerobicexercisewhencomparedtothecombined(anaerobicandaerobic)condition(p=0.
03),andgreaterGPXlevelswereregisteredfollowingthesameexercisewhencomparedtotheanaerobiccondition(p=0.
04).
PlasmaTASandα-tocopherolfollowingthedierentexerciseprotocolsareshowninFigure3.
Therewasastatisticallysignicantmaineectforsamples-timeforTAS(F(4,36)=3.
2,p=0.
025,ηp2=0.
26),andα-tocopherol(F(4,36)=15.
15,p=0.
000,ηp2=0.
63).
Figure3.
Plasmaantioxidantstatus(panelA)andα-tocopherolconcentration(panelB)before(Rest),immediatelyafter(P0),and5(P5),10(P10),and20(P20)minafteraerobic,anaerobic,andcombined(anaerobicandaerobic)exercise.
Dataareexpressedasthe%changefrompre-exerciserestingconcentrations.
*:signicantdierencewhencomparedtopre-testvalues;a:signicantdierencewhencomparedtotheaerobicexercise;b:signicantdierencewhencomparedtothecombined(anaerobicandaerobic)exercise.
AsignicantincreaseofTASvaluesfrompre-topost-exercisewasonlyregisteredfollowingtheaerobicexerciseatP10post-exercisewithp=0.
03.
Int.
J.
Environ.
Res.
PublicHealth2020,17,26018of12However,plasmaα-tocopheroldecreasedimmediately(P0)aftertheaerobic(p=0.
02)andanaerobic(p=0.
005)testsessionswhencomparedtotherestingbaseline,whilethisdecreasewasnotregisteredinthecombined(anaerobicandaerobic)conditionuntil5minpost-exercise(p=0.
002).
Whencomparedtotheaerobicandcombined(anaerobicandaerobic)exercise,lowercontentofα-tocopherolwasregisteredintheanaerobicconditionatP20withp=0.
04andp=0.
01,respectively.
4.
DiscussionTheaimofthepresentstudywastocomparetheacuteoxidativestressresponse(0to20min)followinganaerobic,aerobic,orcombined(anaerobicandaerobic)exerciseamonghealthyuntrainedyoungadultmales.
Immediatelyfollowingaerobicandanaerobicexercise,anincreasedlevelofplasmaMDA,SOD,GPX,andGRandadecreasedlevelofplasmaα-tocopherolwereregistered,whileimmediatelyfollowingthecombined(anaerobicandaerobic)exercise,onlyanincreasedlevelofGPXandSODwasregistered.
PlasmaTASincreasedfollowingonlytheaerobicexerciseatP10.
Mostimportantly,originalndingsofthecurrentstudyshowedthegreatestMDAresponsestartingat5minandcontinuingonfollowingtheaerobicexerciseandgreatestSODandGPXresponsesatP0andP5postanaerobicbased-exerciseandatP20postaerobicexercise.
Thesendingsoerinsightintoexercise-type-specicoxidativestressdevelopmentinhealthyuntrainedyoungadultpopulations.
Theeectofexercise-typeontheoxidativestressresponseisstillunderdebate.
Indeed,followingaerobicexercisesomeauthorshavefoundasignicantincreaseinoxidativestressresponse[10,29,30],whileotherstudieshavereportednochangesinMDAlevelsfrompre-topost-exercise[36–38].
Similarly,dierentndingswereshownduringcombined(anaerobicandaerobic)[10,29,39,40]oranaerobic[10]exercise,witheitherasignicantMDAincreasepre-postexercise[10,29,39,40]ornosignicanteectofthephysicalexercise[41].
Discrepancybetweenresultscouldbeattributedtomethodologicalissues,suchasthediversityofassaysusedtoevaluatelipidperoxidationproductsor/andtothetraininglevelofparticipants,withwell-trainedsubjectshavingmorereinforceddefenseagainstoxidativeattacks[42].
Forfutureinvestigations,investigatinghealthyuntrainedpopulationsandanalyzingthesameoxidativestressparameterswithinthesametestconditionscanhelpresolvethecontrastingndingsfrompreviousinvestigations.
Thepresentresultsconrmthefactthatphysicalexercise(i.
e.
,aerobic,anaerobicorcombined—anaerobicandaerobic)isaconditionthatresultsintooxidativestress[10,29,36,39,40]andspecicallysuggestthataerobicandanaerobicexercisesinducehigheroxidativestresswhencomparedtocombined(anaerobicandaerobic)exercisewithgreatestresponsesfollowingtheaerobicexerciseatP5post-exercise.
Thesendingsareconsistentwithpreviousndingsintrainedsubjectsshowingthataerobicexerciseinducesagreaterincreaseinpro-oxidantsthananaerobicexercise,suggestingoxidativestressresponsesaredependentonexercisemode(i.
e.
,intensityandduration)[29].
Exercise-inducedoxidativestresshasbeenattributedtoROSgeneratedthroughenzymaticandnon-enzymaticprocesses.
EnzymaticsourcesincludeNADPHoxidaseslocatedonthecellmembraneofpolymorphonuclearcells,macrophagesandendothelialcells[43,44],andcytochromeP450-dependentoxygenases[45],whilethenon-enzymaticsourceisrelatedtotheproductionofsuperoxideanion(O2).
Thelatteroccurswhenasingleelectronisdirectlytransferredtooxygenbyreducedcoenzymesorprostheticgroupsorbyxenobioticspreviouslyreducedbycertainenzymes[46].
Inthepresentstudy,thegreatestoxidativestressresponsefollowingtheaerobicexerciseat5minpost-exercisecouldbeexplainedbythehigheractivityofthemitochondrion(duetothehigheroxygenconsumption)duringsuchexercisecomparedtoanaerobicorcombinedexercise.
Besidesproducingnecessaryadenosinetriphosphate(ATP)duringandfollowingaerobicexercise,mitochondriaalsoappeartobethemainintracellularsourceofpro-oxidants.
Infact,themitochondrialelectrontransportchaincontainsseveralredoxcentersthatmayleakelectronstooxygenandreduceittoO2thatisinvolvedinthepropagationofoxidativechainreactions,whichisaprecursorofotherROS[46].
Int.
J.
Environ.
Res.
PublicHealth2020,17,26019of12Concerningtheantioxidantdefense,itwaspreviouslysuggestedthat,inresponsetoanincreasedproductionoffreeradicals,increasedconcentrationsofantioxidantenzymesmayoccurtocounteracttheradicalproductionandminimizeoxidativedamage.
Thepresentndingsconrmthissuggestionshowingsignicantincreasespre-postexercisefortheenzymaticdefense(i.
e.
,GPX,SOD,andGR),regardlessofthetypeofexercise.
Additionally,thesendingsareinlinewithpreviousstudiesreportingincreasedenzymaticantioxidantactivitiesimmediatelyfollowing(1)anaerobicexercise,suchasstrengtheccentricexercise[47]and100mswim[25],(2)aerobicexercise,suchaslowintensityrunning[27,28]orswimming[25]activities,andcombined(anaerobicandaerobic)exercise,suchasintermittent(6*150m)sprints[26].
Authorsofthesestudiesalsoattributedincreasesintheseenzymaticantioxidantlevelstotheincreaseoftheoxygenconsumption,acidosis,catecholamines,andxanthineoxidaseactivity.
Mostimportantly,presentndingssuggestthemajorityofchangesinplasmacontentsofantioxidantparametersappearedimmediately(P0)followingaerobicandanaerobicexerciseandat5minfollowingthecombined(anaerobicandaerobic)exercise.
Theseresultssuggestthattheresponseofantioxidant-mechanismmaytakeplace0to5minfollowingthephysicaleort,albeitthisisdependentonexercisetype.
Thisdurationhasalsobeendependentonthetime-kineticsoffreeradicalproduction[27,28]andproportionaltotheintensityofexercise[48].
Thepresentobservationsconrmthesesuggestionsandshowedsimilarmagnitudeoflipidperoxidationandantioxidantresponsestophysicalexercisewithfasterchangeinaerobicandanaerobicconditions(atP0)whencomparedtocombined(anaerobicandaerobic)one(P5toP10).
Apreviousstudyinathleticpopulationsshowedlevelsofenzymaticantioxidantswerereturnedtobaselinevaluesbetween10-and20minpost-exercise[16].
Incontrast,usinguntrainedpopulations,thepresentstudyshowednoneofthetestedparametersreturnedtobaselinelevelat20minpost-exercise.
Thelowtrainingstatusoftheinvolvedsubjectsmayexplaintheseresults.
Indeed,beingwelltrainedcouldinduceanactivationoftheredoxsensitivetranscriptionfactors(e.
g.
,nuclearfactor-kappaB(NFkB))thatimprovetheproductionofendogenousantioxidants,acceleratingtheirprotectiveeectagainstROSproduction[49]inresponsetophysicalexercise.
ConcerningtheTASandthenon-enzymaticantioxidantresponses,thepresentresultsshowedasignicantincreaseofplasmaTAScontentfollowingonlytheaerobicexercise(P10)andasignicantdecreaseinα-tocopherollevelsfollowingthethreetypesofexerciseswithfasterchangeinaerobicandanaerobicconditions.
Theseresultsareinlinewithpreviousstudiesreportingdecreasedα-tocopherollevelsfollowinganaerobic[14]andcombined[16]exercisesandincreasedTASlevelsfollowingaerobic[50]andcombined(anaerobicandaerobic)[16]exercises.
TheincreasedlevelofTAScouldbeattributedtoincreasedlevelsofuricacid[50].
LimitationsandFutureProspectsGiventhatTASessentiallymeasurestheeectivenessofwater-solubleantioxidants,suchasuricacid,albumin,thiols,orvitaminC[51],includingameasureofuricacidinfutureinvestigations,isneededtowellunderstandthekinetic-responseofTAS.
Similarly,themeasurementofconcentrationsofotherplasmanonenzymaticantioxidants(vitaminC,vitaminA,GSH)couldcomplementthemeasureofa-tocopherolsandmayprovidefurtherinformationconcerningtheeectofexercisemodeontheantioxidantstatus.
Finally,thepresentstudywasdesignedasapilotstudywithsmallnumberofparticipants,whichmakessuchastudyhighlyvulnerabletobiasesintroducedbyindividuallifestyleandhistory.
Therefore,futureinvestigationsinvolvinglargersamplesizesandfemalesarewarranted.
5.
ConclusionsTheresultsofthisstudydemonstrate,inasmallsampleofhealthyuntrainedyoungadults,anaerobic,aerobic,orcombined(anaerobicandaerobic)exercisecanalterantioxidantstatusasaresponsetotheincreasedlipidperoxidationwith(1)fasterresponsesoccurringduringtheaerobicandanaerobicconditions(atP0),(2)greaterlevelofMDAgeneratedfollowing5minoftheaerobicInt.
J.
Environ.
Res.
PublicHealth2020,17,260110of12exercise,and(3)greaterlevelsofSODandGPXgeneratedduringtheanaerobic(atP0andP5)andaerobicconditions(P20).
Theseobservationssupport,inthepresentinvestigateduntrainedpopulation,thedevelopmentofexercise-inducedoxidativestressbut,mostimportantly,showedthemagnitudeanddynamicsofoxidativestressappearance/developmenttobedependentontheintensityanddurationofexercise.
Thesepilotndingssuggestinsightintohowdierenttypesofexerciseinuencethedegreeofoxidativestressresponsesamonghealthyuntrainedyoungadultpopulation.
However,alargerstudytakingintoconsiderationindividuallifestylevariablesisneededtocorroboratethesendings.
AuthorContributions:Conceptualization,A.
A.
,K.
T.
,A.
H.
(AhmedHakim)andK.
E.
A.
;Datacuration,K.
T.
,A.
H.
(AhmedHakim)andK.
E.
A.
;Formalanalysis,A.
AandL.
M.
;Fundingacquisition,A.
AandA.
H.
(AnitaHoekelmann);Investigation,A.
A,K.
T.
andK.
E.
A.
;Methodology,K.
T.
,A.
H.
(AhmedHakim)andK.
E.
A.
;Projectadministration,K.
E.
A.
;Resources,A.
H.
(AnitaHoekelmann)andK.
E.
A.
;Supervision,A.
H.
(AhmedHakim)andK.
E.
A.
;Validation,A.
A,A.
H.
(AhmedHakim),H.
C.
,A.
H.
(AnitaHoekelmann),andK.
E.
A.
;Visualization,A.
H.
(AnitaHoekelmann)andK.
T.
;Writing—originaldraft,A.
H.
(AnitaHoekelmann),K.
T.
andK.
E.
A.
;Writing—review&editing,O.
B.
,J.
M.
G.
,N.
B.
,L.
M.
,A.
H.
(AhmedHakim),H.
C.
,T.
D.
andA.
H.
(AnitaHoekelmann).
Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
ConictsofInterest:Theauthorsdeclarenoconictofinterest.
References1.
Bloomer,R.
J.
Eectofexerciseonoxidativestressbiomarkers.
Adv.
Clin.
Chem.
2008,46,1–50.
[PubMed]2.
Halliwell,B.
Biochemistryofoxidativestress.
Biochem.
Soc.
Trans.
2007,35,1147–1150.
[CrossRef][PubMed]3.
Pizzino,G.
;Irrera,N.
;Cucinotta,M.
;Pallio,G.
;Mannino,F.
;Arcoraci,V.
;Squadrito,F.
;Altavilla,D.
;Bitto,A.
OxidativeStress:HarmsandBenetsforHumanHealth.
Oxid.
Med.
Cell.
Longev.
2017,2017,8416763.
[CrossRef][PubMed]4.
Willcox,J.
K.
;Ash,S.
L.
;Catignani,G.
L.
Antioxidantsandpreventionofchronicdisease.
Crit.
Rev.
FoodSci.
Nutr.
2004,44,275–295.
[CrossRef]5.
Ammar,A.
;Chtourou,H.
;Hammouda,O.
;Turki,M.
;Ayedi,F.
;Kallel,C.
;AbdelKarim,O.
;Hoekelmann,A.
;Souissi,N.
RelationshipbetweenBiomarkersofMuscleDamageandRedoxStatusinResponsetoaWeightliftingTrainingSession:EectofTime-of-Day.
Physiol.
Int.
2016,103,243–261.
[CrossRef]6.
Ammar,A.
;Turki,M.
;Chtourou,H.
;Hammouda,O.
;Trabelsi,K.
;Kallel,C.
;Abdelkarim,O.
;Hoekelmann,A.
;Bouaziz,M.
;Ayadi,F.
;etal.
PomegranateSupplementationAcceleratesRecoveryofMuscleDamageandSorenessandInammatoryMarkersafteraWeightliftingTrainingSession.
PLoSONE2016,11,e0160305.
[CrossRef]7.
Ammar,A.
;Chtourou,H.
;Hammouda,O.
;Trabelsi,K.
;Chiboub,J.
;Turki,M.
;AbdelKarim,O.
;ElAbed,K.
;BenAli,M.
;Hoekelmann,A.
;etal.
AcuteandDelayedResponsesofC-ReactiveProtein,MalondialdehydeandAntioxidantMarkersafterResistanceTrainingSessioninEliteWeightlifters:EectofTimeofDay.
Chronobiol.
Int.
2015,32,1211–1222.
[CrossRef]8.
Ammar,A.
;Turki,M.
;Hammouda,O.
;Chtourou,H.
;Trabelsi,K.
;Bouaziz,M.
;Abdelkarim,O.
;Hoekelmann,A.
;Ayadi,F.
;Souissi,N.
;etal.
EectsofPomegranateJuiceSupplementationonOxidativeStressBiomarkersFollowingWeightliftingExercise.
Nutrients2017,9,819.
[CrossRef]9.
Finaud,J.
;Lac,G.
;Filaire,E.
OxidativeStress:RelationshipwithExerciseandTraining.
SportsMed.
2006,36,327–358.
[CrossRef]10.
Baker,J.
S.
;Bailey,D.
M.
;Hullin,D.
;Young,I.
;Davies,B.
Metabolicimplicationsofresistiveforceselectionforoxidativestressandmarkersofmuscledamageduring30sofhigh-intensityexercise.
Eur.
J.
Appl.
Physiol.
2004,92,321–327.
[CrossRef]11.
Kayatekin,B.
M.
;Gnen,S.
;Aikgz,O.
;Uysal,N.
;Dayi,A.
Eectsofsprintexerciseonoxidativestressinskeletalmuscleandliver.
Eur.
J.
Appl.
Physiol.
2002,87,141–144.
[CrossRef][PubMed]12.
Alessio,H.
M.
;Goldfarb,A.
H.
;Cutler,R.
G.
MDAcontentincreasesinfast-andslow-twitchskeletalmusclewithintensityofexerciseinarat.
Am.
J.
Physiol.
1988,255,C874–C877.
[CrossRef][PubMed]13.
Bloomer,R.
J.
;Goldfarb,A.
H.
Anaerobicexerciseandoxidativestress:Areview.
Can.
J.
Appl.
Physiol.
2004,29,245–263.
[CrossRef][PubMed]Int.
J.
Environ.
Res.
PublicHealth2020,17,260111of1214.
Groussard,C.
;Rannou-Bekono,F.
;Machefer,G.
;Chevanne,M.
;Vincent,S.
;Sergent,O.
;Cillard,J.
;Gratas-Delamarche,A.
Changesinbloodlipidperoxidationmarkersandantioxidantsafterasinglesprintanaerobicexercise.
Eur.
J.
Appl.
Physiol.
2003,89,14–20.
[CrossRef][PubMed]15.
Hammouda,O.
;Chtourou,H.
;Chahed,H.
;Ferchichi,S.
;Chaouachi,A.
;Kallel,C.
;Miled,A.
;Chamari,K.
;Souissi,N.
Highintensityexerciseaectsdiurnalvariationofsomebiologicalmarkersintrainedsubjects.
Int.
J.
SportsMed.
2012,33,886–891.
[CrossRef]16.
ElAbed,K.
;Rebai,H.
;Bloomer,R.
J.
;Trabelsi,K.
;Masmoudi,L.
;Zbidi,A.
;Sahnoun,Z.
;Hakim,A.
;Tabka,Z.
Antioxidantstatusandoxidativestressatrestandinresponsetoacuteexerciseinjudokasandsedentarymen.
J.
StrengthCond.
Res.
2011,25,2400–2409.
[CrossRef]17.
ElAbed,K.
;Trabelsi,K.
;Latiri,I.
;Hakim,A.
;Tabka,Z.
;Zbidi,A.
Eetsd'unexercicedetypeanaérobiesurlestatutantioxydantenzymatiqueaucoursdelarécupérationchezlesjudokas.
Sci.
Sports.
2009,24,36–39.
[CrossRef]18.
Powers,S.
K.
;Hogan,M.
C.
Exerciseandoxidativestress.
J.
Physiol.
2016,594,5079–5080.
[CrossRef]19.
Powers,S.
K.
;Jackson,M.
J.
Exercise-inducedoxidativestress:Cellularmechanismsandimpactonmuscleforceproduction.
Physiol.
Rev.
2008,88,1243–1276.
[CrossRef]20.
Bloomer,R.
J.
;Goldfarb,A.
H.
;Wideman,L.
;McKenzie,M.
J.
;Consitt,L.
A.
EectsofAcuteAerobicandAnaerobicExerciseonBloodMarkersofOxidativeStress.
J.
StrengthCond.
Res.
2005,19,276–285.
21.
Bloomer,R.
J.
;Fry,A.
C.
;Falvo,M.
J.
;Moore,C.
A.
ProteinCarbonylsAreAcutelyElevatedFollowingSingleSetAnaerobicExerciseinResistanceTrainedMen.
J.
Sci.
Med.
Sport2007,10,411–417.
[CrossRef][PubMed]22.
Bloomer,R.
J.
;Falvo,M.
J.
;Fry,A.
C.
;Schilling,B.
K.
;Smith,W.
A.
;Moore,C.
A.
OxidativeStressResponseinTrainedMenFollowingRepeatedSquatsorSprints.
Med.
Sci.
SportsExerc.
2006,38,1436–1442.
[CrossRef]23.
Parker,L.
;McGuckin,T.
A.
;Leicht,A.
S.
Inuenceofexerciseintensityonsystemicoxidativestressandantioxidantcapacity.
Clin.
Physiol.
Funct.
Imaging2014,34,377–383.
[CrossRef][PubMed]24.
Parker,L.
;Trewin,A.
;Levinger,I.
;Shaw,C.
S.
;Stepto,N.
K.
Exercise-intensitydependentalterationsinplasmaredoxstatusdonotreectskeletalmuscleredox-sensitiveproteinsignaling.
J.
Sci.
Med.
Sport2018,21,416–421.
[CrossRef]25.
Inal,M.
;Akyüz,F.
;Turgut,A.
;Getsfrid,W.
M.
EectofAerobicandAnaerobicMetabolismonFreeRadicalGenerationSwimmers.
Med.
Sci.
SportsExerc.
2001,33,564–567.
[CrossRef][PubMed]26.
Marzatico,F.
;Pansarasa,O.
;Bertorelli,L.
;Somenzini,L.
;DellaValle,G.
Bloodfreeradicalantioxidantenzymesandlipidperoxidesfollowinglong-distanceandlactacidemicperformancesinhighlytrainedaerobicandsprintathletes.
J.
SportsMed.
Phys.
Fit.
1997,37,235–239.
27.
Ji,L.
L.
AntioxidantEnzymeResponsetoExerciseandAging.
Med.
Sci.
SportsExerc.
1993,25,225–231.
[CrossRef]28.
Ji,L.
L.
AntioxidantsandOxidativeStressinExercise.
Proc.
Natl.
Acad.
Sci.
USA1999,222,283–292.
[CrossRef]29.
ElAbed,K.
;Ammar,A.
;Boukhris,O.
;Trabelsi,K.
;Masmoudi,L.
;Bailey,S.
J.
;Hakim,A.
;Bragazzi,N.
L.
Independentandcombinedeectsofall-outsprintandlow-intensitycontinuousexerciseonplasmaoxidativestressbiomarkersintrainedjudokas.
Front.
Physiol.
2019,10,842.
[CrossRef]30.
González-Haro,C.
;Galilea,P.
A.
;Drobnic,F.
;Escanero,J.
F.
Validationofaeldtesttodeterminethemaximalaerobicpowerintriathletesandendurancecyclists.
Br.
J.
SportsMed.
2007,41,174–179.
[CrossRef]31.
Kuipers,H.
;Verstappen,F.
T.
;Keizer,H.
A.
;Geurten,P.
;VanKranenburg,G.
Variabilityofaerobicperformanceinthelaboratoryanditsphysiologiccorrelates.
Int.
J.
SportsMed.
1985,6,197–201.
[CrossRef][PubMed]32.
Ammar,A.
;Chtourou,H.
;Trabelsi,K.
;Padulo,J.
;Turki,M.
;ElAbed,K.
;Hoekelmann,A.
;Hakim,A.
Temporalspecicityoftraining:Intra-dayeectsonbiochemicalresponsesandOlympic-Weightliftingperformances.
J.
SportsSci.
2015,33,358–368.
[CrossRef][PubMed]33.
Ammar,A.
;Chtourou,H.
;Souissi,N.
Eectoftime-of-dayonbiochemicalmarkersinresponsetophysicalexercise.
J.
StrengthCond.
Res.
2017,31,272–282.
[CrossRef][PubMed]34.
Ammar,A.
;Chtourou,H.
;Turki,M.
;Hammouda,O.
;Chaari,A.
;Boudaya,M.
;Driss,T.
;Ayedi,F.
;Souissi,N.
Acuteanddelayedresponsesofsteroidalhormones,bloodlactateandbiomarkersofmuscledamageafteraresistancetrainingsession:Time-of-dayeects.
J.
SportsMed.
Phys.
Fit.
2018,58,980–989.
Int.
J.
Environ.
Res.
PublicHealth2020,17,260112of1235.
Siluk,D.
;Mager,D.
E.
;Gronich,N.
;Abernethy,D.
;Wainer,I.
W.
HPLC–atmosphericpressurechemicalionizationmassspectrometricmethodforenantioselectivedeterminationofR,S-propranololandR,S-hyoscyamineinhumanplasma.
J.
Chromatogr.
BAnal.
Technol.
Biomed.
LifeSci.
2007,859,213–221.
[CrossRef]36.
Child,R.
B.
;Wilkinson,D.
M.
;Falloweld,J.
L.
;Donnelly,A.
E.
ElevatedSerumAntioxidantCapacityandPlasmaMalondialdehydeConcentrationinResponsetoaSimulatedHalf-MarathonRun.
Med.
Sci.
SportsExerc.
1998,30,1603–1607.
[CrossRef]37.
Margaritis,I.
;Tessier,F.
;Richard,M.
J.
;Marconnet,P.
NoEvidenceofOxidativeStressafteraTriathlonRaceinHighlyTrainedCompetitors.
Int.
J.
SportsMed.
1997,18,186–190.
[CrossRef]38.
Niess,A.
;Hartmann,M.
;Grünert-Fuchs,M.
;Poch,B.
;Speit,G.
DNADamageafterExhaustiveTreadmillRunninginTrainedandUntrainedMen.
Int.
J.
SportsMed.
1996,17,397–403.
[CrossRef]39.
Ascenso,A.
;Rebelo,A.
;Oliveira,E.
;Marques,F.
;Pereira,L.
;Magalhes,J.
Biochemicalimpactofasoccermatch—Analysisofoxidativestressandmuscledamagemarkersthroughoutrecovery.
Clin.
Biochem.
2008,41,841–851.
[CrossRef]40.
Thompson,D.
;Williams,C.
;Garcia-Roves,P.
;McGregor,S.
J.
;McArdle,F.
;Jackson,M.
J.
Post-ExerciseVitaminCSupplementationandRecoveryfromDemandingExercise.
Eur.
J.
Appl.
Physiol.
2003,89,393–400.
[CrossRef]41.
Svensson,M.
;Malm,C.
;Tonkonogi,M.
;Ekblom,B.
;Sjdin,B.
;Sahlin,K.
EectofQ10SupplementationonTissueQ10LevelsandAdenineNucleotideCatabolismduringHigh-IntensityExercise.
Int.
J.
SportNutr.
Exerc.
Metab.
1999,9,166–180.
[CrossRef][PubMed]42.
Cuevas,M.
J.
;Almar,M.
;García-Glez,J.
C.
;García-López,D.
;DePaz,J.
A.
;Alvear-Ordenes,I.
;González-Gallego,J.
ChangesinOxidativeStressMarkersandNF-KappaBActivationInducedbySprintExercise.
FreeRadic.
Res.
2005,39,431–439.
[CrossRef][PubMed]43.
Vignais,P.
V.
Thesuperoxide-generatingNADPHoxidase:Structuralaspectsandactivationmechanism.
Cell.
Mol.
LifeSci.
2002,59,1428–1459.
[CrossRef][PubMed]44.
Babior,B.
M.
;Lambeth,J.
D.
;Nauseef,W.
TheNeutrophilNADPHOxidase.
Arch.
Biochem.
Biophys.
2002,397,342–344.
[CrossRef][PubMed]45.
Coon,M.
J.
;Ding,X.
X.
;Pernecky,S.
J.
;Vaz,A.
D.
CytochromeP450:Progressandpredictions.
FASEBJ.
1992,6,669–673.
[CrossRef][PubMed]46.
Turrens,J.
F.
MitochondrialFormationofReactiveOxygenSpecies.
J.
Physiol.
2003,552,335–344.
[CrossRef][PubMed]47.
Childs,A.
;Jacobs,C.
;Kaminski,T.
;Halliwell,B.
;Leeuwenburgh,C.
SupplementationwithVitaminCandN-Acetyl-CysteineIncreasesOxidativeStressinHumansafteranAcuteMuscleInjuryInducedbyEccentricExercise.
FreeRadic.
Biol.
Med.
2001,31,745–753.
[CrossRef]48.
Criswell,D.
;Powers,S.
;Dodd,S.
;Lawler,J.
;Edwards,W.
;Renshler,K.
;Grinton,S.
HighIntensityTraining-InducedChangesinSkeletalMuscleAntioxidantEnzymeActivity.
Med.
Sci.
SportsExerc.
1993,25,1135–1140.
[CrossRef]49.
Wilber,R.
L.
;Holm,P.
L.
;Morris,D.
M.
;Dallam,G.
M.
;Subudhi,A.
W.
;Murray,D.
M.
;Callan,S.
D.
EectofFIO2onOxidativeStressduringIntervalTrainingatModerateAltitude.
Med.
Sci.
SportsExerc.
2004,36,1888–1894.
[CrossRef]50.
Kyparos,A.
;Vrabas,I.
S.
;Nikolaidis,M.
G.
;Riganas,C.
S.
;Kouretas,D.
IncreasedOxidativeStressBloodMarkersinWell-TrainedRowersFollowingTwoThousand-MeterRowingErgometerRace.
J.
StrengthCond.
Res.
2009,23,1418–1426.
[CrossRef]51.
Cao,G.
;Prior,R.
L.
Comparisonofdierentanalyticalmethodsforassessingtotalantioxidantcapacityofhumanserum.
Clin.
Chem.
1998,44,1309–1315.
[CrossRef][PubMed]2020bytheauthors.
LicenseeMDPI,Basel,Switzerland.
ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution(CCBY)license(http://creativecommons.
org/licenses/by/4.
0/).
青云互联怎么样?青云互联是一家成立于2020年6月的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务,目前提供有美国免费主机、香港主机、香港服务器、美国云服务器,让您的网站高速、稳定运行。美国cn2弹性云主机限时8折起,可选1-20个IP,仅15元/月起,附8折优惠码使用!点击进入:青云互联官方网站地址青云互联优惠码:八折优惠码:ltY8sHMh (续费同价)青云互联活动方案:美国洛杉矶...
大硬盘服务器、存储服务器、Chia矿机。RackNerd,2019年末成立的商家,主要提供各类KVM VPS主机、独立服务器和站群服务器等。当前RackNerd正在促销旗下几款美国大硬盘服务器,位于洛杉矶multacom数据中心,亚洲优化线路,非常适合存储、数据备份等应用场景,双路e5-2640v2,64G内存,56G SSD系统盘,160T SAS数据盘,流量是每月200T,1Gbps带宽,配5...
全新PHP短网址系统URL缩短器平台,它使您可以轻松地缩短链接,根据受众群体的位置或平台来定位受众,并为缩短的链接提供分析见解。系统使用了Laravel框架编写,前后台双语言使用,可以设置多域名,还可以开设套餐等诸多功能,值得使用。链接: https://pan.baidu.com/s/1ti6XqJ22tp1ULTJw7kYHog?pwd=sarg 提取码: sarg文件解压密码 www.wn7...
caoadult.com为你推荐
空间邮箱QQ邮箱在哪里固态硬盘是什么固态硬盘是什么意思vc组合维生素C和维生素E混合胶囊有用吗,还是分开的好?特朗普取消访问丹麦特朗普出国访问什么飞机护送?杨紫别祝我生日快乐周杰伦的祝我生日快乐这首歌有什么寓意或者是在什么背景下写的funnymudpee京东的显卡什么时候能降回正常价格啊,想买个1060中老铁路一带一路的火车是什么火车广东GDP破10万亿在已披露的2017年GDP经济数据中,以下哪个省份GDP总量排名第一?巫正刚阿迪三叶草彩虹板鞋的鞋带怎么穿?详细点,最后有图解。高分求同一ip网站同一个IP不同的30个网站,是不是在一个服务器上呢?
罗马假日广场 mach5 128m内存 http500内部服务器错误 lamp配置 申请个人网页 150邮箱 域名转接 tna官网 电信托管 中国电信宽带测速器 联通网站 linode支付宝 独立主机 wordpress中文主题 ledlamp 注册阿里云邮箱 网页加速 免费主页空间 restart 更多