loadedjapanese50m咸熟

japanese50m咸熟  时间:2021-01-11  阅读:()
9OptimizationofFoundationofBridgeonSoftGroundY.
Demura*andM.
Matsuo***DepartmentofCivilEngineering,IshikawaNationalCollegeofTechnology,Japan**DepartmentofGeotechnicalandEnvironmentalEngineering,NagoyaUniversity,JapanAbstractPresentedisaprocedureofoptimizingthedesignofbridge-pierfoundationsconstructedonsoftgroundwhichislikelytoexperiencethelong-timedeformationduetotheweightofthebridge.
Thewholestructureofabridgeconsistingofthesuperstructureandthefoundationsshouldbedesignedasawholeinsuchawaythatthetotalexpectedcostofthewholestructurebecomeminimum.
Thisprocedureistotallydifferentfromthecurrentdesignmethodinwhichthesuperstructureandthefoundationsaretreatedasasetofseparatesystemsratherthanasatotalsystemconsistingofsubsystems,i.
e.
,thesuperstructureandthefoundations.
Inevaluatingthetotalexpectedcostofabridge,theconstructioncostbothofthesuperstructureandthefoundationsaswellasthedamageoccurrenceprobabilityshouldbetakenintoaccount.
Keywords:FoundationofBridge,SoftGround,OptimumDesign,SystemReliability,Bayes'Theorem1.
INTRODUCTIONFigure1showsasketchofabridgeplacedonpile-supportedpiersrestingonthebearingstratumoverlainbythesoftclaylayer.
Thepierwillsettlebyamountofsduetotheconsolidationoftheground.
Thesettlementisinducedbythepenetrationofthepile-tipintothebearingstratum.
Thepilesaredrawndownbythenegativefrictioncausedbytheconsolidationoftheclaylayerloadedbytheweightoftheembankment.
Thepurposeofthisstudyistoproposethemethodologyofoptimizingthefoundationofstructureonsoftground.
SupposewehavetwobridgesAandB,oneofwhich,bridgeAisdesignedwithrelativelylowsafetyfactoroffoundationagainstthesettlement,whiletheother,bridgeBisdesignedwithrelativelyhighsafetyfactoroffoundation.
ThefoundationofbridgeR.
Rackwitzetal.
(eds.
),ReliabilityandOptimizationofStructuralSystemsSpringerScience+BusinessMediaDordrecht1995jpiles;Optimizationoffoundationofbridgeonsoftgroundbearingstratum1negativeskin11frictionFigure1BridgeConstructedonSoftGround113Aisinexpensive,butlikelytosufferfromtheunfavorablesettlementwithhighprobability.
Thesettlementoffoundationresultsintheadditionalstressesinthemaingirder,i.
e.
,themaingirderwillhavehighprobabilityoffailure.
Hence,themaintenancecostofmaingirderisexpensive.
Themaintenancecostincludestherepairworkstobeneededduetothefuturesettlement.
InthecaseoftheotherbridgeB,theconstructioncostoffoundationisexpensive,butthemaintenancecostofmaingirderisinexpensive.
ThecomparisonofthebridgesAandBindicatestheexistenceofthesafetyfactoragainstthesettlementwhichcorrespondstotheminimumsummationoftheconstructioncostandthemaintenancecost.
Figure2showstherelationshipbetweenthesafetyfactoroffoundationGsubandthecostsofthemaingirderandfoundation.
Itshouldberecognizedthatthemaintenancecostofmaingirdervariesasafunctionofthesafetyfactorofmaingirder.
Intheproceduredescribedinthispaper,(i)weconsiderthewholestructureasasystemconsistingoftwosubsystems,i.
e.
,thesuperstructure(maingirder)andsubstructure(foundation),and(ii)wechoosetheoptirnumdesignsoastorealizetheminimumofthetotalexpectedcost,i.
e.
,thesummationoftheconstructioncostandtheexpectedlossofthewholesystem.
Anaccuratepredictionofthesettlementofthepiersisunavoidablyneededinsuchatotalconstructioncost~offoundation8/maintenancecostofmaingirderFigure2RelationshipbetweenSafetyFactorandCost114PartTwoTechnicalContributionsprocedure.
Themodelproposedinthispaperincludestheprobabilisticsettlementpredictionmethoddevelopedbycollectinganumberofcaserecordsofthesettlementofbridgepiers.
2.
OPTIMIZATIONPROCEDURETheobjectivefunctionofthesystemtobeoptimizedisinprinciplegivenas(1}inwhichE[CT]denotesthetotalexpectedcost,Asubthedesignvariableofthesubstructure,Asupthedesignvariableofsuperstructure,Ce.
subtheconstructioncostofsubstructure,Ce.
suptheconstructioncostofthesuperstructure,andDKdenotesthecombinationofthedamagesdonetothesuperstructureandtothesubstructure.
Thesettlement-causeddamagestothesuperstructureareassumedtobedependentfromthesettlement-causeddamagestothesubstructure.
DKshouldbeevaluatedbytakingthemechanicalandfunctionalinteractionsbetweenthesuperstructureandsubstructureintoaccount.
Anexamplewillbepresentedlater.
P(~)istheoccurrenceprobabilityofDK,andL':CF(DK)P(DK;AA.
ub)istheexpectedlossproducedbyDK.
Theoptimumdesignchoiceisgivenby(2}.
.
inwhichAupandAubaretheoptimumdesignvariablesofthesuperstructureandthesubstructureselectedoutofmanydesignaltematives,AupandA.
ub.
3.
OCCURRENCEPROBABILITYOFSETTLEMENTSupposeabridgeshowninFigure3.
Thedifferential(uneven)settlementoisloadPQi1~S;#.
.
0njs;-H(i)thpierr-L-i+1)thpiersoft'piledgroundfoundationoN,+-'·M,.
.
.
.
,.
,.
.
,.
ocdenotestheexpectedlossforthecase@,P(Dsuh.
1)denotestheoccurrenceprobabilityofthedifferentialsettlementDsub.
1,P(Dsup,21Dsub.
1)denotes17.
4*(a)Gsub=l.
l3r~19(b)*~Gsup=l86=218Gsub=O.
1.
6'"-1GsubGsupFigure1OOptimumSolutionsOptimizationoffoundationofbridgeonsoftground119theprobabilityoffailureofthemaingirdersubjectedtotheadditionalstresses.
EachcaseshowninFig.
9ishandledinthesamefashion.
Thesummationoftheexpectedlossesforalithecasesplusconstructioncostistheobjectivefunctionwhichwetrytominimizebyproperlychoosingthedesignaltematives,AsupandAsubFigure1Oshowthefmalresultsoftheabovementionedoptimizationprocedure.
TheabscissaofFigure1O(a)isthesafetyfactorGsubagainstthedifferentialsettlementofthefoundation,whiletheordinateisthetotalexpectedcostE[Gr]plottedagainstGsubwiththesafetyfactorGsupofthemaingirderasaparameter.
TheabscissaofFigure1O(b)isthesafetyfactorGsupofthemaingirderandtheparameteristhesafetyfactoroffoundation.
ThesafetyfactorsatwhichthetotalexpectedcostbecomesminimizedareGsup=1.
86andGsub=1.
13.
Thesetwovaluesaretheoptimumcombinationoftwosafetyfactorsforthesuperandsubstructure.
Itmaybeinterestingtocomparetothesetwovalueswiththesafetyfactorsrequiredbythecurrentconventionaldesigncodes,i.
e.
,Gsup=l.
7andGsub=l.
4.
Thesafetyfactoroffoundationintheoptimumdesignissmallerthanthesafetyfactorinthecurrentdesigncode.
Thesafetyfactorofmaingirderintheoptimumdesignislargerthanthesafetyfactorinthecurrentdesigncode.
Theseresultsareduetothesettlementoffoundationattheoptimumdesignwhichislargerthanthesettlementallowableinthecurrentdesigncode.
5.
CONCLUSIONSTheoptimizationprocedureforthebridgedesignisbrieflyoutlinedandanexampleoftheapplicationoftheoptimizationprocedureispresented.
Astheconclusions,followingsshouldbenoted.
(1)Theuseoftheobjectivefunctionderivedforthetotalsystemincludingboththesuperstructureandthesubstructureleadstotheoptimumdesignmorerationalthanthedesignoptimizedseparatelyforthesuperstructureandsubstructure.
(2)Theexamplepresentedinthispaperresultedthesafetyfactorsforthesuperstructureandsubstructurewhichhappenedtobefairlyclosetothesafetyfactorsrequiredbytheconventionaldesigncodes.
(3)Theproposedmethodseemstobeusefulinseekingthebridgedesignswithmuchharmonyinthewholesystemofthesuperstructureandsubstructure.
REFERENCES1.
M.
MatsuoandY.
Demura,Proc.
ofJapanSocietyofCivilEngrg.
Vol.
340/ill-4,pp.
129-138,1984.
12(inJapanese).
2.
M.
MatsuoandY.
Demura,Proc.
ofJapanSocietyofCivilEngrg.
Vol.
364/ill-4,pp.
215-224,1985.
12(inJapanese).

星梦云-年中四川100G高防云主机月付仅60元,西南高防月付特价活动,,买到就是赚到!

官方网站:点击访问星梦云活动官网活动方案:机房CPU内存硬盘带宽IP防护流量原价活动价开通方式成都电信优化线路4vCPU4G40G+50G10Mbps1个100G不限流量210元/月 99元/月点击自助购买成都电信优化线路8vCPU8G40G+100G15Mbps1个100G不限流量370元/月 160元/月点击自助购买成都电信优化线路16vCPU16G40G+100G20Mb...

易探云服务器怎么过户/转让?云服务器PUSH实操步骤

易探云服务器怎么过户/转让?易探云支持云服务器PUSH功能,该功能可将云服务器过户给指定用户。可带价PUSH,收到PUSH请求的用户在接收云服务器的同时,系统会扣除接收方的款项,同时扣除相关手续费,然后将款项打到发送方的账户下。易探云“PUSH服务器”的这一功能,可以让用户将闲置云服务器转让给更多需要购买的用户!易探云服务器怎么过户/PUSH?1.PUSH双方必须为认证用户:2.买家未接收前,卖家...

GigsGigsCloud($26/年)KVM-1GB/15G SSD/2TB/洛杉矶机房

GigsGigsCloud新上了洛杉矶机房国际版线路VPS,基于KVM架构,采用SSD硬盘,年付最低26美元起。这是一家成立于2015年的马来西亚主机商,提供VPS主机和独立服务器租用,数据中心包括美国洛杉矶、中国香港、新加坡、马来西亚和日本等。商家VPS主机基于KVM架构,所选均为国内直连或者优化线路,比如洛杉矶机房有CN2 GIA、AS9929或者高防线路等。下面列出这款年付VPS主机配置信息...

japanese50m咸熟为你推荐
虚拟空间租赁大家说哪里的虚拟空间租用价格便宜,稳定性好啊?美国虚拟空间国内虚拟空间与美国虚拟主机有什么不一样asp主机sulzer主机类型有哪些网络服务器租用服务器租用 使用方法网络服务器租用租网络服务器在哪些平台比较合适?vpsVPS是干嘛用的?便宜的虚拟主机哪儿有便宜的虚拟主机?网站空间域名网站空间,域名,操作网站空间商个人网站备案如何从空间商到备案网站空间免备案哪有不用备案的网站空间?
租服务器价格 动态ip的vps 希网动态域名 联通c套餐 asp.net主机 paypal认证 国外空间服务商 网站保姆 debian源 网站实时监控 华为4核 坐公交投2700元 最好的qq空间 如何安装服务器系统 香港新世界中心 国外在线代理服务器 金主 电信宽带测速软件 带宽测试 广州主机托管 更多