flinkApache Flink现在在大数据处理方面能够和Apache Spark分庭抗礼么

flink  时间:2021-08-10  阅读:()

{dede:flink 判断多少条后换行

1. dede:flink 是调用网站的友情链接 2. dedecms的标签只是调用数据,不会输出样式,当然也就不会自动换行了 3. 其实不用什么判断语句,只需要写好css样式就可以了 4. 例如div层定义宽度为1000px,高度为自动auto 5. 那么当友链超过宽度后就会自动换行了哦 6. dedecms模板可以到网站网址duosucai 参考寻求帮助 7. 提示:最好给友链定义? ?line-height: 高度。

8. 也就是说给定义行高,这样换行后就可以更加美观哦 多素材织梦模板 为您解答 望采纳

Apache Flink和Apache Spark有什么异同?它们的发展前景分别怎样

flink是一个类似spark的“开源技术栈”,因为它也提供了批处理,流式计算,图计算,交互式查询,机器学习等。

  flink 也是内存计算,比较类似spark,但是不一样的是,spark的计算模型基于RDD,将流式计算看成是特殊的批处理,他的DStream其实还是 RDD。

而flink吧批处理当成是特殊的流式计算,但是批处理和流式计算的层的引擎是两个,抽象了DataSet和DataStream。

  flink在性能上也标新很好,流式计算延迟比spark少,能做到真正的流式计算,而spark只能是准流式计算。

而且在批处理上,当迭代次数变多,flink的速度比spark还要快,所以如果flink早一点出来,或许比现在的Spark更火。

Apache Flink现在在大数据处理方面能够和Apache Spark分庭抗礼么

我们是否还需要另外一个新的数据处理引擎?当我第一次听到flink的时候这是我是非常怀疑的。

在大数据领域,现在已经不缺少数据处理框架了,但是没有一个框架能够完全满足不同的处理需求。

自从Apache spark出现后,貌似已经成为当今把大部分的问题解决得最好的框架了,所以我对另外一款解决类似问题的框架持有很强烈的怀疑态度。

不过因为好奇,我花费了数个星期在尝试了解flink。

一开始仔细看了flink的几个例子,感觉和spark非常类似,心理就倾向于认为flink又是一个模仿spark的框架。

但是随着了解的深入,这些API体现了一些flink的新奇的思路,这些思路还是和spark有着比较明显的区别的。

我对这些思路有些着迷了,所以花费了更多的时间在这上面。

flink中的很多思路,例如内存管理,dataset API都已经出现在spark中并且已经证明 这些思路是非常靠谱的。

所以,深入了解flink也许可以帮助我们分布式数据处理的未来之路是怎样的 在后面的文章里,我会把自己作为一个spark开发者对flink的第一感受写出来。

因为我已经在spark上干了2年多了,但是只在flink上接触了2到3周,所以必然存在一些bias,所以大家也带着怀疑和批判的角度来看这篇文章吧。

Apache Flink是什么 flink是一款新的大数据处理引擎,目标是统一不同来源的数据处理。

这个目标看起来和spark和类似。

没错,flink也在尝试解决spark在解决的问题。

这两套系统都在尝试建立一个统一的平台可以运行批量,流式,交互式,图处理,机器学习等应用。

所以,flink和spark的目标差别并不大,他们最主要的区别在于实现的细节。

后面我会重点从不同的角度对比这两者。

Apache Spark vs Apache Flink 1.抽象 Abstraction spark中,对于批处理我们有RDD,对于流式,我们有DStream,不过内部实际还是RDD.所以所有的数据表示本质上还是RDD抽象。

后面我会重点从不同的角度对比这两者。

在flink中,对于批处理有DataSet,对于流式我们有DataStreams。

看起来和spark类似,他们的不同点在于: 一)DataSet在运行时是表现为运行计划(runtime plans)的 在spark中,RDD在运行时是表现为java objects的。

通过引入Tungsten,这块有了些许的改变。

但是在flink中是被表现为logical plan(逻辑计划)的,听起来很熟悉?没错,就是类似于spark中的dataframes。

所以在flink中你使用的类Dataframe api是被作为第一优先级来优化的。

但是相对来说在spark RDD中就没有了这块的优化了。

flink中的Dataset,对标spark中的Dataframe,在运行前会经过优化。

在spark 1.6,dataset API已经被引入spark了,也许最终会取代RDD 抽象。

二)Dataset和DataStream是独立的API 在spark中,所有不同的API,例如DStream,Dataframe都是基于RDD抽象的。

但是在flink中,Dataset和DataStream是同一个公用的引擎之上两个独立的抽象。

所以你不能把这两者的行为合并在一起操作,当然,flink社区目前在朝这个方向努力(/jira/browse/FLINK-2320),但是目前还不能轻易断言最后的结果。

2.内存管理 一直到1.5版本,spark都是试用java的内存管理来做数据缓存,明显很容易导致OOM或者gc。

所以从1.5开始,spark开始转向精确的控制内存的使用,这就是tungsten项目了 flink从第一天开始就坚持自己控制内存试用。

这个也是启发了spark走这条路的原因之一。

flink除了把数据存在自己管理的内存以外,还直接操作二进制数据。

在spark中,从1.5开始,所有的dataframe操作都是直接作用在tungsten的二进制数据上。

3.语言实现 spark是用scala来实现的,它提供了Java,Python和R的编程接口。

flink是java实现的,当然同样提供了Scala API 所以从语言的角度来看,spark要更丰富一些。

因为我已经转移到scala很久了,所以不太清楚这两者的java api实现情况。

4.API spark和flink都在模仿scala的collection API.所以从表面看起来,两者都很类似。

下面是分别用RDD和DataSet API实现的word count // Spark wordcount object WordCount { def main(args: Array[String]) { val env = new SparkContext("local","wordCount") val data = List("hi","how are you","hi") val dataSet = env.parallelize(data) val words = dataSet.flatMap(value => value.split("\s+")) val mappedWords = words.map(value => (value,1)) val sum = mappedWords.reduceByKey(_+_) println(sum.collect()) } } // Flink wordcount object WordCount { def main(args: Array[String]) { val env = ExecutionEnvironment.getExecutionEnvironment val data = List("hi","how are you","hi") val dataSet = env.fromCollection(data) val words = dataSet.flatMap(value => value.split("\s+")) val mappedWords = words.map(value => (value,1)) val grouped = mappedWords.groupBy(0) val sum = grouped.sum(1) println(sum.collect()) } } 不知道是偶然还是故意的,API都长得很像,这样很方便开发者从一个引擎切换到另外一个引擎。

我感觉以后这种Collection API会成为写data pipeline的标配。

Steaming spark把streaming看成是更快的批处理,而flink把批处理看成streaming的special case。

这里面的思路决定了各自的方向,其中两者的差异点有如下这些: 实时 vs 近实时的角度 flink提供了基于每个事件的流式处理机制,所以可以被认为是一个真正的流式计算。

它非常像storm的model。

而spark,不是基于事件的粒度,而是用小批量来模拟流式,也就是多个事件的集合。

所以spark被认为是近实时的处理系统。

Spark streaming 是更快的批处理,而Flink Batch是有限数据的流式计算。

虽然大部分应用对准实时是可以接受的,但是也还是有很多应用需要event level的流式计算。

这些应用更愿意选择storm而非spark streaming,现在,flink也许是一个更好的选择。

流式计算和批处理计算的表示 spark对于批处理和流式计算,都是用的相同的抽象:RDD,这样很方便这两种计算合并起来表示。

而flink这两者分为了DataSet和DataStream,相比spark,这个设计算是一个糟糕的设计。

对 windowing 的支持 因为spark的小批量机制,spark对于windowing的支持非常有限。

只能基于process time,且只能对batches来做window。

而Flink对window的支持非常到位,且Flink对windowing API的支持是相当给力的,允许基于process time,data time,record 来做windowing。

我不太确定spark是否能引入这些API,不过到目前为止,Flink的windowing支持是要比spark好的。

Steaming这部分flink胜 SQL interface 目前spark-sql是spark里面最活跃的组件之一,Spark提供了类似Hive的sql和Dataframe这种DSL来查询结构化数据,API很成熟,在流式计算中使用很广,预计在流式计算中也会发展得很快。

至于flink,到目前为止,Flink Table API只支持类似DataFrame这种DSL,并且还是处于beta状态,社区有计划增加SQL 的interface,但是目前还不确定什么时候才能在框架中用上。

所以这个部分,spark胜出。

Data source Integration Spark的数据源 API是整个框架中最好的,支持的数据源包括NoSql db,parquet,ORC等,并且支持一些高级的操作,例如predicate push down Flink目前还依赖map/reduce InputFormat来做数据源聚合。

这一场spark胜 Iterative processing spark对机器学习的支持较好,因为可以在spark中利用内存cache来加速机器学习算法。

但是大部分机器学习算法其实是一个有环的数据流,但是在spark中,实际是用无环图来表示的,一般的分布式处理引擎都是不鼓励试用有环图的。

但是flink这里又有点不一样,flink支持在runtime中的有环数据流,这样表示机器学习算法更有效而且更有效率。

这一点flink胜出。

Stream as platform vs Batch as Platform Spark诞生在Map/Reduce的时代,数据都是以文件的形式保存在磁盘中,这样非常方便做容错处理。

Flink把纯流式数据计算引入大数据时代,无疑给业界带来了一股清新的空气。

这个idea非常类似akka-streams这种。

成熟度 目前的确有一部分吃螃蟹的用户已经在生产环境中使用flink了,不过从我的眼光来看,Flink还在发展中,还需要时间来成熟。

结论 目前Spark相比Flink是一个更为成熟的计算框架,但是Flink的很多思路很不错,Spark社区也意识到了这一点,并且逐渐在采用Flink中的好的设计思路,所以学习一下Flink能让你了解一下Streaming这方面的更迷人的思路。

GeorgeDatacenter:洛杉矶/达拉斯/芝加哥/纽约vps云服务器;2核/8GB/250GB/2TB流量/1Gbps端口,$84/年

georgedatacenter怎么样?GeorgeDatacenter是一家2017年成立的美国商家,正规注册公司(REG: 10327625611),其实是oneman。现在有优惠,有几款特价VPS,基于Vmware。支持Paypal付款。GeorgeDatacenter目前推出的一款美国vps,2核/8GB内存/250GB NVMe空间/2TB流量/1Gbps端口/Vmware/洛杉矶/达拉...

TabbyCloud周年庆&七夕节活动 美國INAP 香港CN2

TabbyCloud迎来一周岁的生日啦!在这一年里,感谢您包容我们的不足和缺点,在您的理解与建议下我们也在不断改变与成长。为庆祝TabbyCloud运营一周年和七夕节,TabbyCloud推出以下活动。TabbyCloud周年庆&七夕节活动官方网站:https://tabbycloud.com/香港CN2: https://tabbycloud.com/cart.php?gid=16购买链...

Megalayer优化带宽和VPS主机主机方案策略 15M CN2优化带宽和30M全向带宽

Megalayer 商家主营业务是以独立服务器和站群服务器的,后来也陆续的有新增香港、菲律宾数据中心的VPS主机产品。由于其线路的丰富,还是深受一些用户喜欢的,有CN2优化直连线路,有全向国际线路,以及针对欧美的国际线路。这次有看到商家也有新增美国机房的VPS主机,也有包括15M带宽CN2优化带宽以及30M带宽的全向线路。Megalayer 商家提供的美国机房VPS产品,提供的配置方案也是比较多,...

flink为你推荐
trapezoid梯形中最多有多少个直角?js代码格式化js怎么得到一个格式化的日期provisionedwindows server 2012 R2系统中,哪种方法可以增加thin provisioned磁盘大小?rbo在么?那个RBO出招表到底怎么回事 斩舰刀怎么用安卓模拟器哪个好用PC平台的安卓模拟器哪个最好用实数的定义实数的概念是什么torrent文件怎么打开BT文件怎么打开传奇私服教程传奇私服怎么开服教程团购网源码我想弄个自己的团购网站,请求帮助wifi快速破解器电脑版wifi密码破解破解器怎么快速破解密码
域名注册godaddy 郑州服务器租用 网游服务器租用 谷歌域名邮箱 日本软银 主机评测 香港服务器99idc 国外idc 优惠码 美国主机论坛 天猫双十一秒杀 远程登陆工具 52测评网 建立邮箱 泉州电信 服务器合租 东莞服务器 域名与空间 免费ftp 石家庄服务器托管 更多