detailsfastdomain

fastdomain  时间:2021-01-03  阅读:()
Manipulationofmagneticpropertiesofglass-coatedmicrowiresbyannealingA.
Zhukova,b,n,K.
Chichayc,A.
Talaata,V.
Rodionovac,d,J.
M.
Blancoe,M.
Ipatova,V.
ZhukovaaaDpto.
FisicadeMateriales,Fac.
Quimicas,UPV/EHU,20009SanSebastian,SpainbIKERBASQUE,BasqueFoundationforScience,48011Bilbao,SpaincImmanuelKantBalticFederalUniversity,236041Kaliningrad,RussiadNationalUniversityofScienceandTechnology(MISIS),119049Moscow,RussiaeDpto.
FísicaAplicada,EUPDSBasqueCountryUniversityUPV/EHU,SpainarticleinfoArticlehistory:Received12June2014Receivedinrevisedform30September2014Accepted2October2014Availableonline7October2014Keywords:ThinwiresMagneticanisotropyGiantmagnetoimpedanceDomainwallpropagationabstractWedemonstratedthatmagneticproperties(hysteresisloops,domainwallpropagationandgiantmagnetoimpedanceeffect)ofFeandCo-richamorphousmicrowirescanbetailoredbystressandconventionalannealing.
Observeddependencesdiscussedconsideringstressrelaxation,backstressesandchangeofthemagnetostrictionaftersamplesannealing.
Theseconsiderationshavebeenprovedbyexperimentalobservationofthechangeofthemagnetostrictioncoefcientsigninducedbyannealing.
&2014ElsevierB.
V.
Allrightsreserved.
1.
IntroductionStudiesofamorphousmagneticallysoftglass-coatedmicro-wireshaveattractedconsiderableinterestintheeldofappliedmagnetismbecauseoftheirreduceddimensionality(metallicnucleusdiameterrangingbetween0.
5and30μm),cheapandsimplefabricationmethodandoutstandingsoftmagneticproper-ties[1,2].
Fromtheapplicationspointofviewthemostattractivepropertiesofthesematerialsareexcellentsoftmagneticproper-tiesandgiantmagnetoimpedance,GMI,effectusuallyobservedinCo-richcompositionsandthemagneticbistabilityandfastdomainwallpropagationtypicalforFe-richcompositions[1,2].
MagneticsensorsdevelopedusingamorphouswireswithGMIeffectallowachievingofpTmagneticeldsensitivitywithlownoise[3].
HighcircumferentialpermeabilityusuallyexhibitedbyCo-richamor-phouswireswithvanishingmagnetostrictionconstantisessentialforobservationofhighGMIeffect[1].
TheFe-richamorphouswiresarealsoproposedforvariousapplicationsintheelectronicarticlesurveillance,magnetictags,magneticmemoriesandlogics[4–7].
MagneticbistablilitytypicalforFe-richglass-coatedmicro-wireshasbeeninterpretedintermsofdepinningofthereverseddomainsinsidetheinternalsingledomainandtheconsequentfastdomainwall,DW,propagation[1,4].
NaturallytheDWspeedisoneofmostimportantfactorsaffectingtheviabilityofaforementionedpotentialapplications.
AsreportedelsewhereamorphousandnanocrystallinemicrowiresexhibitextremelyhighDWvelocity[4,8,9].
Generallyhystereticmagneticpropertiesofamorphousferro-magneticmicrowiresareaffectedbythemagnetostrictioncoef-cient,λs,andbythestrengthofinternalstresses,si,inducedbyglass-coatingaffectedbytheρ-ratioofmetallicnucleusdiameter,d,tothetotalmicrowirediameter,D(ρd/D)[1].
Theoriginoftheinternalstressesisrelatedtothefabricationmethodofglass-coatedmicrowiresinvolvingrapidsolidicationofcompositemicrowirefromthemelt[1].
Consequentlyannealinghasbeensuccessfullyusedforoptimizationofmagneticpropertiesofglass-coatedmicrowires[10,11].
Usuallytheeffectofannealingisdiscussedconsideringthemagnetoelasticenergy,Kme3/2λss(wheresthetotalstresses,ssapplsi,,sapplareappliedstresses)[11,12].
VanishingλsvaluescanbeachievedinamorphousFe–CobasedalloyswithCo/FeE70/5[12,13].
MoreoverlowmagnetostrictivecompositionsexhibitstressdependenceoftheContentslistsavailableatScienceDirectjournalhomepage:www.
elsevier.
com/locate/jmmmJournalofMagnetismandMagneticMaterialshttp://dx.
doi.
org/10.
1016/j.
jmmm.
2014.
10.
0030304-8853/&2014ElsevierB.
V.
Allrightsreserved.
nCorrespondingauthorat:Dpto.
FisicadeMateriales,Fac.
Quimicas,UPV/EHU,20009SanSebastian,Spain.
Fax.
34943017130.
E-mailaddress:arkadi.
joukov@ehu.
es(A.
Zhukov).
JournalofMagnetismandMagneticMaterials383(2015)232–236magnetostrictionexpressedasλλσ=σB(1)ss,,0whereλs,sisthemagnetostrictioncoefcientunderstress,λs,0isthezero-stressmagnetostrictioncoefcientandBisapositivecoefcientoforder1010MPaandsstresses[14].
Consequentlyannealingoflow-magnetostrictivemicrowirescanbemostinterestingfromtheimpactpointofviewonsoftmagneticproperties.
Therefore,weperformedstudiesoftheeffectofannealingonmagneticproperties,GMIeffect,DWpropagationandmagnetostrictioncoefcientofamorphousmagneticallysoftmicrowires.
2.
ExperimentaldetailsCoandFe-richglass-coatedmicrowireshavebeenfabricatedbytheTaylor–Ulitovskymethoddescribedelsewhere[1](seecom-positions,dandρ-valuesinTable1).
Hysteresisloopshavebeendeterminedbyux-metricmethod[4].
Werepresentthenormal-izedmagnetization,M/MHmax,versusmagneticeld,HwhereMisthemagneticmomentatagivenmagneticeldandMHmaxisthemagneticmomentofthesamplemeasuredatthemaximummagneticeld.
Wemeasuredmagneticelddependencesofimpedance,Z,andGMIratio,ΔZ/Z,foras-preparedsamplesandafterheattreatments.
Themagnetoimpedanceratio,ΔZ/Z,hasbeendenedas=ZZZHZHmaxZHmax100/()(2)AnaxialDC-eldwithmaximumvalue,Hmax,upto8kA/mwassuppliedbyamagnetizationcoils.
Weusedspeciallydesignedmicro-stripsampleholderde-scribedinourpreviouspublications[15].
ThetechniqueallowingmeasuringtheDWvelocityinthinwiresiswelldescribedelsewhere[1,4].
InordertoactivateDWpropagationalwaysfromthesamewireendinourexperimentweplacedoneendofthesampleoutsidethemagnetizationsolenoid.
Weused3pick-upcoils,mountedalongthelengthofthewireandpropagatingDWinduceselectromotiveforce(emf)inthecoils,asdescribedinref.
[16].
Theseemfsharppeaksarepickedupatanoscilloscopeuponpassingthepropagatingwall.
Wepaidspecialattentiononmagnetostrictioncoefcientmeasurements.
Weusedso-calledsmallanglemagnetizationrotation(SAMR)methodintroducedin1980-th[17,18]foramor-phousmaterials.
ThismethodhasbeenpreviouslyemployedonlyforCo-richglass-coatedmicrowireswherethemagnetizationrotationpresentsthedeterminingrole[19,20].
LaterpossibilitytoextendSAMRmethodforthemicrowireswithpositivemagne-tostrictionpresentingimportantcontributionofDWspropagationhasbeendemonstrated[21,22].
Themagneticpermeabilityinthecaseofmicrowirespresentingmagneticallybistablebehaviorisratherlow.
ThereforeextensionofthismethodforFe-richmicro-wiresisrelatedwiththeexperimentaldifcultiesrelatedtothinmicrowiredimensionsandneedsimprovementoftheresolution.
Recentlynovelexperimentalset-upwithimprovedresolutionhasbeensuccessfullyemployedformeasurementsofthemagnetosr-trictionconstant,λs,inFe-richmicrowireswithpositivemagne-tostrictionconstant[23,24].
Themagnetostrictioncoefcientisdeterminedfromthemea-surementofthedependenceonaxialmagneticeld,Hz,versusonappliedstresssatxedvalueofinductionvoltageV(2f)inaccordingtotheexpression:λμσMHconstant(/3)[/](3)soszapplVf(2)whereμoMsisthesaturationmagnetizationandsappl—theappliedtensilestress.
AdditionaldetailsonSAMRmethodandset-upfeaturesde-signedforevaluationofmagnetostrictionconstant,λs,canbefoundelsewhere[20,21,23–25].
Samplesannealingunderstressorwithouthasbeenperformedinconventionalfurnace.
3.
Resultsanddiscussion3.
1.
Magnetostrictionofglass-coatedmicrowiresAsdescribedabove,weevaluatedthemagnetostrictioncoef-cientformicrowireswithdifferentcompositionandρ-ratio.
Vanishingnegativemagnetostrictioncoefcientvalues(λsE0.
39106and1.
05106)havebeenobservedinas-pre-paredCo-basedmicrowires(seeTable1).
Largestmagnetostric-tioncoefcienthasbeenobservedinFe74B13Si11C2is(λsE1.
05106).
Likepreviouslyreportedforconventionalamorphousmaterials[12]weobserveddecreasingofthemagnetostrictioncoefcientwithadditionofCo.
IncaseofCo-richmicrowireswithvanishingmagnetostrictioncoefcientevensmallcompositionvariationconsiderablyaffectsthemagnetostrictioncoefcientofmicrowires(seeTable1).
ForinvestigatedFe52.
5Co22.
5B15Si10microwireswithtwodiffer-entρ-ratios(ρE0.
79andρE0.
87)weobservedslightlydifferentλs-values:forFe52.
5Co22.
5B15Si10microwirewithρE0.
79λsE14.
6106.
ForthesamplesofthesamecompositionbutwithρE0.
87weobtainedaveragevalueofλsE13.
9106.
HysteresisloopsofstudiedmicrowiresarepresentedintheFig.
1.
AswecanobservedthehysteresisloopsofCo68.
7Fe4Ni1B13Si11Mo2.
3microwirespresentalmostlinearhyster-esisloops(Fig.
1a)typicalfornegativemagnetostrictioncoef-cient.
Fe3.
85Co67.
05Ni1.
44B11.
53Si14.
47Mo1.
66microwireswithlowerTable1.
Parametersofmicrowires,magnetostrictioncoefcients,measuredinstudiedmicrowireswithdifferentρ-ratiosandafterdifferenttreatments.
CompositionTreatmentρ/d(μm)λsx106Fe4Co68.
7Ni1B13Si11Mo2.
3As-prepared0.
72/171.
05Fe4Co68.
7Ni1B13Si11Mo2.
3Annealedat300°Cfor30min0.
72/170.
42Fe3.
83Co66.
94Ni1.
44B11.
51Si14.
59Mo1.
69As-prepared0.
9/22.
20.
39Fe52.
5Co22.
5B15Si10As-prepared0.
79/12.
414.
6Fe52.
5Co22.
5B15Si10As-prepared0.
87/18.
413.
9Fe67.
5Co7.
5B15Si10As-prepared0.
76/1621.
4Fe74B13Si11C2As-prepared0.
82/18.
825ρd/D–istheratioofmetalliccorediametertototaldiameterofmicrowireinaglassshell.
-300-200-1000100200300-1,0-0,50,00,51,0c)b)H,A/mM/MSa)Fig.
1.
Hysteresisloopsofas-preparedCo68.
7Fe4Ni1B13Si11Mo2.
3withρE0.
72(a),Fe3.
85Co67.
05Ni1.
44B11.
53Si14.
47Mo1.
66withρE0.
92(b),andFe67.
5Co7.
5B15Si10withρE0.
79(c)microwires.
A.
Zhukovetal.
/JournalofMagnetismandMagneticMaterials383(2015)232–236233magnetostrictioncoefcientpresenthighermagneticpermeabilityandalsohighercoercivity(about12A/m,Fig.
1b).
FinallyFe67.
5Co7.
5B15Si10samplespresentperfectlyrectangularhysteresisloopstypicalformagneticallybistableFe-richmicrowireswithpositivemagnetostrictioncoefcient(Fig.
1c).
Consequentlyob-tainedmagnetostrictioncoefcientvaluesareconsistentwithpreviouslyreporteddependenceofhysteresisloopsshapeonmagnetostrictioncoefcientvalues.
3.
2.
TailoringofmagneticpropertiesbyheattreatmentAnnealingconsiderablyaffectsmagneticpropertiesofstudiedsamples:hysteresisloopsofstudiedCo-richmicrowiresexperi-encessignicantchanges.
InthecaseofCo68.
7Fe4Ni1B13Si11Mo2.
3microwireannealedatannealingtemperatureTann523Kforannealingtimetann60minbecomesalmostrectangular(Fig.
2).
ThehysteresisloopoftheotherannealedCo-richmicrowiresisnotperfectlyrectangular,butconsiderablechangesafterannealingatthesameconditionsalsohavebeenobserved(Fig.
3).
Moreovereitherincreasingtheannealingtimeatxedannealingtempera-tureorincreasingtheannealingtemperatureatxedannealingtimethehysteresisloopsbecomesmoreandmorerectangular(Fig.
4).
Observedtendencyofincreasingoftherectangularityofthehysteresisloopwithincreasingofannealingtemperatureandtime(Figs.
2–4)allowsustoconsidertheroleofstressrelaxation.
Itiswell-knownthatinducedmagneticanisotropycanplayanimportantroleinannealedamorphousmaterials(especiallyinthepresenceofmagneticeldor/andappliedstress)[26–28].
Inthecaseofglass-coatedmicrowireswemusttakeintoaccountthatconventionalfurnaceannealingmustbeconsideredasstressannealinginthepresenceoninternalstresses.
Itisworthmen-tioningthattheaxialinternalstressescomponentinducedbyglass-coatingisthelargestone[1,29].
Thereforeapplyingtensileaxialstressduringannealingwemustexpectenhancementoftheinducedanisotropy.
Consequentlyweperformedconventionalandstressannealingofthesamplesatthesameannealingtemperature.
AscanbeappreciatedfromFig.
5stressannealedsamplegenerallyexhibitslowercoercivity(Fig.
5a,b).
MoreoverinthecaseofFe3.
85Co67.
05Ni1.
44B11.
53Si14.
47Mo1.
66hysteresisloopofstressannealedsampleisnotrectangular.
Consequentlypresenceofinternalstressesdoesnotexplainthehysteresisloopschangesinducedbyannealing.
Aforementionedpossibilitiesfortailoringofhystereticproper-tiesofglass-coatedmicrowiresallowdesigningfunctionalmag-neticpropertiesinterestingforapplications[30].
ThusinthecaseofCo69.
2Fe4.
1B11.
8Si13.
8C1.
1microwirestheannealingconsiderablyaffectsnotonlythehysteresisloops(asshowninFig.
4),butalsoGMIeffectandDWvelocity(seeFig.
6).
As-preparedCo69.
2Fe4.
1B11.
8Si13.
8C1.
1microwirespresentlowcoer-civity(about8A/m),linearhysteresisloopandhighGMIratio(maximumGMIratio,ΔZ/ZmaxE280%,seeFig.
6a).
Afterconven-tionalfurnaceannealinghysteresisloopsbecomesalmostperfectlyrectangularandΔZ/Zmaxdecreasesuptoabout160%.
Butafterstressannealing(undertensilestressofabout150MPa)atthesameconditions(573Kfor5min)ΔZ/Zmaxincreasesuptoabout330%(seeFig.
6a).
AscanbededucedfromFig.
4hysteresisloopsofCo69.
2Fe4.
1B11.
8Si13.
8C1.
1microwiresannealedathighenoughtemperatureand/ortimebecomesperfectlyrectangular.
Thisbehavioristypicalforas-preparedmicrowireswithpositivemagnetostrictioncoefcient.
ConsequentlywemeasuredtheDWdynamicsinCo69.
2Fe4.
1B11.
8Si13.
8C1.
1microwireannealedat573Kfor5minwhichpresentsrectangularhysteresisloop(Fig.
4a).
Ascanbeappreciated,obtaineddependencesofdomainwallvelocity,vonmagneticeld,H,presentnearly-lineargrowthofDWvelocitywithmagneticeld,H.
Thesedependencesaresimilartothatreportedforthemicrowireswithpositivemagnetostrictioncoefcient.
Stress-annealedsamplealsopresentsfastDWpropa-gation,butmagneticeldrangeforsingleDWpropagationisshiftedtothelowereldsregion(seeFig.
6b).
Thisdifferencemustbeattributedtolowercoercivityofstress-annealedmicrowires(similarlytothatobservedinFig.
4).
ObservedDWvelocitiesareratherhigh,similarlytootherv-valuesreportedforlowmagne-tostrictivemicrowireswithmagneticbistabilitypresentingfastDWpropagation[8,30].
InFe-richFe74B13Si11C2microwireexhibitingrectangularhys-teresisloopannealingperformedat523Kfordifferentannealingtimeaffectcoercivity,Hcanddomainvelocity,v(Fig.
7).
Similarlytoourrecentresults[30]afterannealingweobserveddecreasingofthecoercivity.
MoreoversubstantialgrowthofDWvelocity,v,hasbeensimultaneouslyobservedinthesamesample(Fig.
7).
Forinterpretationofobserveddependenceofhysteresisloopsonannealingconditionswemustconsiderstressdependenceofthe-300-200-1000100200300-1,0-0,50,00,51,0M/MsH(A/m)annealedas-preparedFig.
2.
Hysteresisloopsofas-preparedandannealedat573Kfor60minCo68.
7Fe4Ni1B13Si11Mo2.
3microwires.
-200-1000100200-1,0-0,50,00,51,0-200-1000100200M/MSas-preparedannealedannealedas-preparedH(A/m)abFig.
3.
Hysteresisloopsofas-preparedandannealedat573Kfor60minFe3.
85Co67.
05Ni1.
44B11.
53Si14.
47Mo1.
66(a)andCo68.
6B14.
8Si10Mn6.
6(b)microwires.
A.
Zhukovetal.
/JournalofMagnetismandMagneticMaterials383(2015)232–236234magnetostrictiondescribedintheintroductionandexpressedbyEq.
(1).
Stressdependenceofthemagnetostrictioncoefcientmustbeassociatedwithbothapplied,sapplandinternal,sistresses(ssapplsi).
Inlow-magnetostrictivecompositions(withλs,0E107)andinternalstressesoftheorderof1000MPathesecondtermofEq.
(2)isalmostofthesameorderastherstone.
Thereforeonecanexpectdrasticchangesofthemagnetostrictioncoefcientafterstressrelaxationinducedbyannealing.
WeperformedmagnetostrictionmeasurementsinCo68.
7Fe4Ni1B13Si11Mo2.
3andobservedthatindeedstressrelaxationafterannealinginduceschangeofthemagnetostrictionsignfromlownegativetolowpositivevalues(seeTable1).
Thiscanexplaintheobservedchangesofthehysteresisloops(Figs.
2–4).
AsregardingtheeffectofstressannealingandsimilarlytothecaseofstressinducedanisotropyinFe-richmicrowireswemustconsiderthat"back"stressescompensateaxialinternalstressesexistingintheas-preparedmicrowires[29].
ConsideringtwocontributionsinthemagnetoelasticenergygivenbyEq.
(1)wecanassumethatifthemagnetostrictioncoefcientislowandnegativewemustconsidertwooppositeeffectsofinternalstresses.
Therstcontributionisincreasingofthetotalmagnetoelasticenergy(asusuallydescribedelsewhere,see[1]).
ThesecondonemustberelatedtothestressdependencethemagnetostrictioncoefcientdescribedbyEq.
(2).
Thiscon-tributionisespeciallyrelevantforthecaseofthelowzero-stressmagnetostrictioncoefcient,λs,0.
InaccordingtotheEq.
(2)themagnetostrictionconstantunderstress,λs,s,mustdecrease.
-600-400-2000200400600-1,0-0,50,00,51,0-600-400-2000200400600tann=45mintann=5minAs-preparedTann=473KAs-preparedTann=573KH(A/m)M/MSabFig.
4.
Effectofannealingtime,tann,atTann523K(a)andannealingtemperatureattann5min(b)onhysteresisloopsofCo69.
2Fe4.
1B11.
8Si13.
8C1.
1microwires.
-200-1000100200-1.
0-0.
50.
00.
51.
0-200-1000100200M/MsH(A/m)annealedstressannealedabFig.
5.
Hysteresisloopsofannealedandstressannealedat573KCo68.
7Fe4Ni1B13Si11Mo2.
3(a)andFe3.
85Co67.
05Ni1.
44B11.
53Si14.
47Mo1.
66(b)microwires.
-2-10120100200300204060801001201400.
81.
21.
62.
02.
42.
83.
2312H(A/m)23V(km/s)H(kA/m)abFig.
6.
(a)GMIratiomeasuredat200MHzinas-prepared(1),annealedat573Kfor5minutes(3)andstressannealedat573Kfor5minutes(2)and(b)DWdynamicsmeasuredinannealedat573Kfor5minutes(3)andstressannealedatthesameconditions(2)Co69.
2Fe4.
1B11.
8Si13.
8C1.
1microwire.
A.
Zhukovetal.
/JournalofMagnetismandMagneticMaterials383(2015)232–2362354.
ConclusionsUnderstandingoftheprocessesaffectingformationofmagneticanisotropyanddeterminingtheremagnetizationprocessofCo–FerichmicrowiresallowsustotailormagneticpropertiesandtondtheannealingconditionsatwhichwecanoptimizefastDWpropagationandGMIeffect.
WedemonstratedthatmagneticpropertiesofvariousFeandCo-richamorphousmicrowirescanbetailoredbyannealing.
Conventionalandstressannealingconsiderablyaffecthysteresisloop,GMIeffectandDWdynamicsofstudiedsamples.
Observeddependencesdiscussedconsideringstressrelaxation,backstressesandchangeofthemagnetostrictionaftersamplesannealing.
Theseconsiderationshavebeenprovedbyexperimentalobservationofthechangeofsignofthemagnetostrictioncoefcientinducedbyannealing.
AcknowledgmentThisworkwassupportedbytheSpanishMINECOunderMAT2013-47231-C2-1-PProjectandbytheBasqueGovernmentunderSaiotek13PROMAGMI(S-PE13UN014)andDURADMAG(S-PE13UN007)projects.
TechnicalandhumansupportprovidedbySGIker(UPV/EHU,MICINN,GV/EJ,ERDFandESF)isgratefullyacknowledged.
A.
Z.
acknowledgesthenancialsupportofRussianMESunderMISISgrantК3-2014-028.
V.
R.
gratefullyacknowledgesthenancialsupportoftheMinistryofEducationandScienceoftheRussianFederationintheframeworkofIncreaseCompetitive-nessProgramofMISiSandintheframeworkofgovernmentassignment(No3.
2582.
2014/K).
K.
Ch.
greatlyacknowledgesGrantRFBR,Projectno.
14-02-31850.
References[1]V.
Zhukova,M.
Ipatov,A.
Zhukov,Sensors9(2009)9216.
[2]H.
Chiriac,S.
Corodeanu,M.
Lostun,G.
Stoian,G.
Ababei,T.
-A.
Ovari,J.
Appl.
Phys.
109(2011)063902.
[3]T.
Uchiyama,K.
Mohri,Sh.
Nakayama,IEEETrans.
Magn.
47(2011)3070.
[4]A.
Zhukov,J.
M.
Blanco,M.
Ipatov,A.
Chizhik,V.
Zhukova,NanoscaleRes.
Lett.
7(2012)223.
[5]S.
Gudoshnikov,N.
Usov,A.
Zhukov,V.
Zhukova,P.
Palvanov,B.
Ljubimov,O.
Serebryakova,S.
Gorbunov,Phys.
Stat.
SolidiA208(3)(2011)526.
[6]D.
A.
Allwood,G.
Xiong,C.
C.
Faulkner,D.
Atkinson,D.
Petit,R.
P.
Cowburn,Science309(2005)1688.
[7]M.
Hayashi,L.
Thomas,R.
Moriya,C.
Rettner,S.
S.
P.
Parkin,Science320(5873)(2008)209.
[8]A.
Zhukov,J.
M.
Blanco,M.
Ipatov,V.
Zhukova,Sens.
Lett.
11(1)(2013)170.
[9]J.
Olivera,R.
Varga,V.
M.
Prida,M.
L.
Sanchez,B.
Hernando,A.
Zhukov,Phys.
Rev.
B82(2010)094414.
[10]A.
P.
Zhukov,Mater.
Des.
5(1993)299.
[11]V.
Zhukova,A.
F.
Cobeo,A.
Zhukov,J.
M.
Blanco,S.
Puerta,J.
González,M.
Vázquez,J.
Non-Crystallinesolids287(2001)31.
[12]Y.
Konno,K.
Mohri,IEEETransMagnVol.
25,No.
5pp.
3623–3625,1989.
[13]A.
Zhukov,V.
Zhukova,J.
M.
Blanco,A.
F.
Cobeo,M.
Vazquez,J.
Gonzalez,J.
Magn.
Magn.
Mater.
258-259(2003)151–15157.
[14]J.
M.
Barandiaran,A.
Hernando,V.
Madurga,O.
V.
Nielsen,M.
Vazquez,M.
Vazquez-Lopez,Phys.
Rev.
B35(1987)5066.
[15]M.
Ipatov,V.
Zhukova,J.
Gonzalez,A.
Zhukov,Appl.
Phys.
Lett.
97(2010)252507.
[16]M.
Ipatov,V.
Zhukova,A.
K.
Zvezdin,A.
Zhukov,J.
Appl.
Phys.
106(2009)103902.
[17]K.
Narita,J.
Yamasaki,H.
Fukunaga,IEEETrans.
Magn.
Mag.
16(1980)435.
[18]A.
Siemko,H.
Lachowicz,IEEETrans.
Magn.
Mag.
23(1987)2563.
[19]V.
Zhukova,J.
M.
Blanco,A.
Zhukov,J.
Gonzalez,A.
Torcunov,V.
Larin,J.
Magn.
Magn.
Mater.
254-255(2003)94.
[20]V.
Zhukova,J.
M.
Blanco,A.
Zhukov,J.
Gonzalez,J.
Phys.
D:Appl.
Phys.
34(2001)L113.
[21]J.
Gonzalez,A.
P.
Zhukov,J.
M.
Blanco,A.
F.
Cobeo,M.
Vázquez,K.
Kulakowski,J.
Appl.
Phys.
87(No9)(2000)5950.
[22]A.
F.
Cobeo,A.
Zhukov,A.
R.
deArellano-Lopez,F.
Elías.
,J.
M.
Blanco,V.
Larin,J.
González,J.
Mater.
Res.
14(1999)3775.
[23]ChuryukanovaM.
,V.
Zhukova,A.
Talaat,S.
Kaloshkin,E.
Kostitcyna,E.
Shuvaeva,S.
Gudoshnikov,V.
Sudarchikova,A.
Zhukov,J.
AlloysComp.
(2014),http://dx.
doi.
org/10.
1016/j.
jallcom.
2013.
11.
191.
[24]S.
Kaloshkin,A.
Talaat,M.
Ipatov,V.
Zhukova,J.
M.
Blanco,M.
Churyukanova,K.
Chichay,A.
Zhukov,Phys.
Stat.
Sol.
(a)211(No.
5)(2014)1083.
[25]K.
Chichay,V.
Rodionova,V.
Zhukova,S.
Kaloshkin,M.
ChuryuknovaandA.
Zhukov,J.
Appl.
Phys.
(Inpress).
[26]M.
Vazquez,E.
Ascasibar,A.
Hernando,O.
Nielson,J.
Magn.
Magn.
Mater.
66(1987)37.
[27]A.
Zhukov,J.
Gonzalez,J.
M.
Blanco,M.
J.
Prieto,E.
Pina,M.
Vazquez,J.
Appl.
Phys.
87(2000)1402.
[28]J.
González,M.
Vázquez,J.
M.
Barandiarán,V.
Madurga,A.
Hernando,J.
Magn.
Magn.
Mater.
68(1987)151.
[29]A.
Zhukov,Adv.
Func.
Mat.
16(2006)675.
[30]K.
Chichay,V.
Zhukova,V.
Rodionova,M.
Ipatov,A.
Talaat,J.
M.
Blanco,J.
Gonzalez,A.
Zhukov,J.
Appl.
Phys.
113(2013)17A318.
501001502002503005001000150020002500-60-40-200204060-1.
0-0.
50.
00.
51.
0030609012015045505560650min30min60min90min120min150minH(A/m)v(m/s)M/MsH(A/m)Hc(A/m)tann(min)Fig.
7.
Hysteresisloopinas-preparedFe74B13Si11C2microwire(a),dependencesofcoercivity(b)andDWvelocitymeasuredatdifferentannealingtimeinFe74B13Si11C2microwire(c).
A.
Zhukovetal.
/JournalofMagnetismandMagneticMaterials383(2015)232–236236

陆零(¥25)云端专用的高性能、安全隔离的物理集群六折起

陆零网络是正规的IDC公司,我们采用优质硬件和网络,为客户提供高速、稳定的云计算服务。公司拥有一流的技术团队,提供7*24小时1对1售后服务,让您无后顾之忧。我们目前提供高防空间、云服务器、物理服务器,高防IP等众多产品,为您提供轻松上云、安全防护 为核心数据库、关键应用系统、高性能计算业务提供云端专用的高性能、安全隔离的物理集群。分钟级交付周期助你的企业获得实时的业务响应能力,助力核心业务飞速成...

Digital-VM80美元新加坡和日本独立服务器

Digital-VM商家的暑期活动促销,这个商家提供有多个数据中心独立服务器、VPS主机产品。最低配置月付80美元,支持带宽、流量和IP的自定义配置。Digital-VM,是2019年新成立的商家,主要从事日本东京、新加坡、美国洛杉矶、荷兰阿姆斯特丹、西班牙马德里、挪威奥斯陆、丹麦哥本哈根数据中心的KVM架构VPS产品销售,分为大硬盘型(1Gbps带宽端口、分配较大的硬盘)和大带宽型(10Gbps...

ProfitServer$34.56/年,西班牙vps、荷兰vps、德国vps/不限制流量/支持自定义ISO

profitserver怎么样?profitserver是一家成立于2003的主机商家,是ITC控股的一个部门,主要经营的产品域名、SSL证书、虚拟主机、VPS和独立服务器,机房有俄罗斯、新加坡、荷兰、美国、保加利亚,VPS采用的是KVM虚拟架构,硬盘采用纯SSD,而且最大的优势是不限制流量,大公司运营,机器比较稳定,数据中心众多。此次ProfitServer正在对德国VPS(法兰克福)、西班牙v...

fastdomain为你推荐
台湾主机电脑主板那些牌子是台湾的?那些牌子是国产的?香港虚拟空间香港虚拟空间哪家好?重庆网站空间重庆建网站选择哪家比较好,还有域名空间等,独立ip虚拟主机独立ip空间的虚拟主机一般多少钱100m虚拟主机100M的虚拟主机都能做些什么虚拟主机控制面板万网的虚拟主机控制面板指的是什么呢?山东虚拟主机济宁梦网科技天津虚拟主机在天津哪个地方能买到较好的价格又实惠还可以送货上门的虚拟主机!免费域名免费域名是什么花生壳域名一个花生壳使用域名的限制
me域名 asp网站空间 免费com域名申请 cn域名个人注册 电信测速器 安云加速器 rackspace php主机 idc评测网 正版win8.1升级win10 青果网 搜狗12306抢票助手 商家促销 浙江独立 小米数据库 有益网络 圣诞促销 百兆独享 稳定免费空间 太原网通测速平台 更多