dependent4400av.com

4400av.com  时间:2021-03-19  阅读:()
Availableonlineatwww.
sciencedirect.
comSensorsandActuatorsB130(2008)917–942ReviewMEMS-basedmicropumpsindrugdeliveryandbiomedicalapplicationsA.
Nisar,NitinAfzulpurkar,BanchongMahaisavariya,AdisornTuantranontIndustrialSystemsEngineering,SchoolofEngineeringandTechnology(SET),AsianInstituteofTechnology(AIT),P.
O.
Box4,KlongLuang,Pathumthani12120,ThailandReceived21July2007;accepted31October2007Availableonline20December2007AbstractThispaperbrieyoverviewsprogressonthedevelopmentofMEMS-basedmicropumpsandtheirapplicationsindrugdeliveryandotherbiomedicalapplicationssuchasmicrototalanalysissystems(TAS)orlab-on-a-chipandpointofcaretestingsystems(POCT).
Thefocusofthereviewistopresentkeyfeaturesofmicropumpssuchasactuationmethods,workingprinciples,construction,fabricationmethods,performanceparametersandtheirmedicalapplications.
Micropumpshavebeencategorizedasmechanicalornon-mechanicalbasedonthemethodbywhichactuationenergyisobtainedtodriveuidow.
ThesurveyattemptstoprovideacomprehensivereferenceforresearchersworkingondesignanddevelopmentofMEMS-basedmicropumpsandasourceforthoseoutsidetheeldwhowishtoselectthebestavailablemicropumpforaspecicdrugdeliveryorbiomedicalapplication.
Micropumpsfortransdermalinsulindelivery,articialsphincterprosthesis,antithrombogenicmicropumpsforbloodtransportation,micropumpforinjectionofglucosefordiabetespatientsandadministrationofneurotransmitterstoneuronsandmicropumpsforchemicalandbiologicalsensinghavebeenreported.
Variousperformanceparameterssuchasowrate,pressuregeneratedandsizeofthemicropumphavebeencomparedtofacilitateselectionofappropriatemicropumpforaparticularapplication.
Electrowetting,electrochemicalandionconductivepolymerlm(ICPF)actuatormicropumpsappeartobethemostpromisingoneswhichprovideadequateowratesatverylowappliedvoltage.
Electroosmoticmicropumpsconsumehighvoltagesbutexhibithighpressuresandareintendedforapplicationswherecompactnessintermsofsmallsizeisrequiredalongwithhigh-pressuregeneration.
Bimetallicandelectrostaticmicropumpsaresmallerinsizebutexhibithighself-pumpingfrequencyandfurtherresearchontheirdesigncouldimprovetheirperformance.
Micropumpsbasedonpiezoelectricactuationrequirerelativelyhigh-appliedvoltagebutexhibithighowratesandhavegrowntobethedominanttypeofmicropumpsindrugdeliverysystemsandotherbiomedicalapplications.
Althoughalotofprogresshasbeenmadeinmicropumpresearchandperformanceofmicropumpshasbeencontinuouslyincreasing,thereisstillaneedtoincorporatevariouscategoriesofmicropumpsinpracticaldrugdeliveryandbiomedicaldevicesandthiswillcontinuetoprovideasubstantialstimulusformicropumpresearchanddevelopmentinfuture.
2007ElsevierB.
V.
Allrightsreserved.
Keywords:MEMS;Microuidics;Micropump;Drugdelivery;Micrototalanalysissystems(TAS);Pointofcaretesting(POCT);Insulindelivery;Articialsphincterprosthesis;Antithrombogenicmicropump;Ionconductivepolymerlm(ICPF);Electrochemical;EvaporationtypemicropumpContents1.
Introduction9182.
Micropumpsclassication9203.
Basicmicropumpoutputparameters9214.
Mechanicalmicropumps9214.
1.
Electrostatic9214.
2.
Piezoelectric9244.
3.
Thermopneumatic.
9254.
4.
Shapememoryalloy9274.
5.
Bimetallic927Correspondingauthor.
E-mailaddress:st104180@ait.
ac.
th(A.
Nisar).
0925-4005/$–seefrontmatter2007ElsevierB.
V.
Allrightsreserved.
doi:10.
1016/j.
snb.
2007.
10.
064918A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–9424.
6.
Ionconductivepolymerlm9284.
7.
Electromagnetic9294.
8.
Phasechangetype9305.
Non-mechanicalmicropumps.
9305.
1.
Magnetohydrodynamic9305.
2.
Electrohydrodynamic.
9325.
3.
Electroosmotic9335.
4.
Electrowetting9345.
5.
Bubbletype9345.
6.
Flexuralplanarwave(FPW)micropumps.
9355.
7.
Electrochemical9355.
8.
Evaporationtype.
9366.
Discussion.
9377.
Conclusion939Acknowledgements939References9391.
IntroductionMicroelectromechanicalsystems(MEMS)isarapidlygrow-ingeldwhichenablesthemanufactureofsmalldevicesusingmicrofabricationtechniquessimilartotheonesthatareusedtocreateintegratedcircuits.
Inthelasttwodecades,MEMStechnologieshavebeenappliedtotheneedsofbiomedicalindus-trygivingrisetoanewemergingeldcalledMicrouidics.
Microuidicsdealswithdesignanddevelopmentofminia-turedeviceswhichcansense,pump,mix,monitorandcontrolsmallvolumesofuids.
Thedevelopmentofmicrouidicsys-temshasrapidlyexpandedtoawidevarietyofelds.
Principalapplicationsofmicrouidicsystemsareforchemicalanaly-sis,biologicalandchemicalsensing,drugdelivery,molecularseparationsuchasDNAanalysis,amplication,sequencingorsynthesisofnucleicacidsandforenvironmentalmonitoring.
Microuidicsisalsoanessentialpartofprecisioncontrolsys-temsforautomotive,aerospaceandmachinetoolindustries.
TheuseofMEMSforbiologicalpurposes(BioMEMS)hasattractedtheattentionofmanyresearchers.
ThereisagrowingtrendtofabricatemicrodrugdeliverysystemswithnewlywelldevelopedMEMSfabricationtechnologiesandareincreasinglybeingappliedinmedicalelds.
MEMS-basedmicrouidicdrugdeliverydevicesingeneralincludemicroneedlesbasedtransdermaldevices,osmosisbaseddevices,micropumpbaseddevices,microreservoirbaseddevicesandbiodegradableMEMSdevices.
Anintegrateddrugdeliverysystem(DDS)consistsofdrugreservoir,micropumps,valves,microsensors,microchannelsandnecessaryrelatedcircuits.
AsimpliedblockdiagramofadrugdeliverysystemisshowninFig.
1.
Atypicalmicrop-umpisaMEMSdevice,whichprovidestheactuationsourcetotransfertheuid(drug)fromthedrugreservoirtothebody(tissueorbloodvessel)withprecision,accuracyandreliability.
Micropumpsarethereforeanessentialcomponentinthedrugdeliverysystems.
Conventionaldrugdeliverymethodssuchasoralmedica-tions,inhalersandsubcutaneousinjectionsdonotdeliveralldrugsaccuratelyandefcientlywithintheirdesiredtherapeu-ticrange.
Generallymostofthedrugsareeffectiveifdeliveredwithinaspecicrangeofconcentrationbetweenthemaximumandminimumdesiredlevels.
Abovethemaximumrange,theyaretoxicandbelowthatrange,theyhavenotherapeuticbenet[1].
Inconventionaldrugdeliverymethodssuchasoraldelivery,etc.
,thereisasharpinitialincreaseindrugconcentration,fol-lowedbyafastdecreasetoalevelbelowthetherapeuticrange[2,3].
WithcontrolleddrugdeliverysystemsasshowninFig.
1,appropriateandeffectiveamountofdrugcanbepreciselycal-culatedbythecontrollerandreleasedatappropriatetimebythemicroactuatormechanismsuchasmicropump.
Thebenetsofcontrolleddrugreleaseincludesite-specicdrugdelivery,reducedsideeffectsandincreasedtherapeuticeffectiveness.
Micropumpsarealsoanessentialcomponentinuidtrans-portsystemssuchamicrototalanalysissystems(TAS),pointofcaretesting(POCT)systemsorlab-on-a-chip.
Micropumpsareusedasapartofanintegratedlab-on-a-chipconsistingofmicroreservoirs,microchannels,microltersanddetectorsforprecisemovementofchemicalandbiologicaluidsonamicroscale.
Pointofcaretesting(POCT)systemisaTAStoconductdiagnostictestingonsiteclosetopatientstoprovidebetterhealthcareandqualityoflife.
Insuchdiagnosticsystems,MEMSmicropumpsareintegratedwithbiosensorsonasinglechip.
ReviewsonresearchandrecentmethodsofusingBioMEMSformedicineandbiologicalapplicationshavebeenpreviouslyFig.
1.
Schematicillustrationofdrugdeliverysystem.
A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942919published[4–7].
ThesereviewshavereportedintroductoryoverviewsonapplicationsofBioMEMSinbiomedicalengineer-ingsuchassurgicalmicrosystems,therapeuticmicrosystemsanddrugtherapyincludingdevicesbasedonmicroporoussilicon,microneedles,micropumps,andmicroreservoirs,etc.
Reviewsonmicropumpsalonehavealsobeenpublishedprevi-ously[8–10].
ThelastmostcomprehensiveandexcellentreviewonmicropumpswaspublishedbyLaserandSantiago[8].
How-eversomeofthenovelactuationmethodssuchastheuseofpolymerMEMSactuatorslikeionconductivepolymerlm(ICPF)anddevelopmentofevaporationtypemicropumpswerenotcoveredinthereview[8].
Inaddition,someofthemostrecentandpromisingpracticalapplicationsofmicropumpsindrugdeliveryandbiomedicalsystemswerenotmentioned.
ThereviewbyWoias[9]wasabriefoverviewofavarietyofmicrop-umpsandtheirapplications.
Howeverionconductivepolymerlm(ICPF),electrowettingandevaporationtypemicropumpswerenotcoveredinthereview.
ThereviewbyTsaiandSue[10]mentionedaboutthetechnologicalimportanceofmicropumpsintheirmedicalapplicationsuchasdrugdelivery.
Althoughthisfactwasmentionedintheintroductionsectionofthereview,theapplicationofdifferentkindsofmicropumpsindrugdeliveryFig.
2.
Classicationofmicropumpswithdifferentactuationmethods.
920A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942wasnotlinkedandneithermentionedinconclusionstogetaglobalappreciationandoverviewofMEMS-basedmicropumpsandtheirmedicalapplications.
ThisreviewpresentsindepthfocusonsomeofthenovelusesofBioMEMSbasedvariouscategoriesofmicropumpsandtheirpotentialapplicationsindrugdeliveryandotherbiomedicalsystemssuchasmicrototalanalysissystems(TAS)orlab-on-a-chip.
Theemphasisofthereviewwillbetopresentkeyfeaturesofmicropumpssuchasactuationmethods,workingprinciples,construction,fabricationmethods,performanceparametersandtheirmedicalapplicationswherereported.
2.
MicropumpsclassicationAccordingtothedenitionof"MEMS",miniaturizedpump-ingdevicesfabricatedbymicromachiningtechnologiesarecalledmicropumps.
Ingeneral,micropumpscanbeclassiedaseithermechanicalornon-mechanicalmicropumps[11].
Themicropumpsthathavemovingmechanicalpartssuchaspump-ingdiaphragmandcheckvalvesarereferredtoasmechanicalmicropumpswhereasthoseinvolvingnomechanicalmovingpartsarereferredtoasnon-mechanicalmicropumps.
Mechanicaltypemicropumpneedsaphysicalactuatorormechanismtoperformpumpingfunction.
Themostpopularmechanicalmicropumpsdiscussedhereincludeelectrostatic,piezoelectric,thermopneumatic,shapememoryalloy(SMA),bimetallic,ionicconductivepolymerlm(ICPF),electromag-neticandphasechangetype.
Non-mechanicaltypeofmicropumphastotransformcer-tainavailablenon-mechanicalenergyintokineticmomentumsothattheuidinmicrochannelscanbedriven.
Non-mechanicalmicropumpsincludemagnetohydrodynamic(MHD),electro-hydrodynamic(EHD),electroosmotic,electrowetting,bubbletype,exuralplanarwave(FPW),electrochemicalandevap-orationbasedmicropump.
TheclassicationofmicropumpsisshowninFig.
2.
Oneoftheveryrstdocumentsaboutaminiaturizedmicrop-umpisapatentbyThomasandBessman[12]whichdatesbackto1975.
Thedevicewasdesignedforimplantationintothehumanbodyandcomprisedofasolenoidvalveconnectedtoavari-ablepumpingchamberwhichwasactuatedbytwoopposedpiezoelectricdiscbenders.
Thedevicewasfabricatedusingcon-ventionaltechniquesanditwasnotuntil1984thatamicropumpbasedonsiliconmicrofabricationtechnologieswaspatentedbySmits[13].
Smitspublishedhisresultslaterin1990[14].
ThemicropumpdesignedbySmits[13]wasaperistalticpumpcon-sistingofthreeactivevalvesactuatedbypiezoelectricdiscs.
Thedevicewasprimarilydevelopedforuseincontrolledinsulindeliverysystems.
Themostcommontypesofmechanicalmicropumpsaredisplacementpumpsinvolvingapumpchamberwhichisclosedwithaexiblediaphragm.
Aschematicillustra-tionofdiaphragmtypemechanicalmicropumpisshowninFig.
3.
Fluidowisachievedbytheoscillatorymove-mentoftheactuatordiaphragmwhichcreatesunderandoverpressure(p)inthepumpchamber.
UnderpressureinthepumpchamberresultsintheowofuidinsidethepumpFig.
3.
Schematicillustrationofdiaphragmtypemicropump.
chamberthroughtheinletvalve.
Overpressureinthepumpchambertransferstheuidoutofthepumpchamberthroughtheoutletvalve.
Thepressuregeneratedinsidethepumpcham-berisafunctionofstrokevolume(V)producedbytheactuator.
Theactuatorhastocontendwiththedeadvolume(V0)presentinthepumpchamber.
Themajordesignparameterofmechanicaldiaphragmtypemicropumpsiscalledthecompressionratio(ε)whichisexpressedasfollows:ε=VV0(1)Mechanicalmicropumpdesignsmaycontainsinglepumpchamberorsequentiallyarrangedmultiplepumpchambersinseriesorinparallel.
Suchtypeofmicropumpsarecalledperi-stalticmicropumps.
Peristalticmovementofdiaphragmsinthesequentiallyarrangedpumpchambers,transferstheuidfromtheinlettotheoutlet.
AschematicillustrationofperistalticmicropumpbasedonthermopneumaticactuationisshowninFig.
4.
Microvalvesareanotherimportantelementofmechanicalmicropumps.
Microvalvesareclassiedaspassiveoractivevalves.
Passivevalvesdonotincludeanyactuation.
Thevalvingeffectofpassivevalvesisobtainedfromadifferenceinpressurebetweentheinletandtheoutletofthevalve.
Mechanicalmicrop-umpsreportedin[15,16,52]havepassivevalves.
Activevalvesareoperatedbyactuatingforceandofferimprovedperformancebutincreasecomplexityandfabricationcost.
Activevalveswithelectrostatic[17],thermopneumatic[18]andpiezoelectric[19]actuationhavebeenreported.
Valvelessmicropumpsaresimilartodiaphragmtypemechan-icalmicropumpsbutdonotusecheckvalvestorectifyow.
Insteadnozzle/diffuserelementsareusedasowrectiers.
AschematicillustrationofvalvelessmicropumpisshowninFig.
5.
Fig.
4.
Schematicillustrationofperistalticmicropump.
A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942921Fig.
5.
Schematicillustrationofvalvelessmicropump.
Thenozzle/diffuseelementsdirectowsuchthatduringthesup-plymode,moreuidentersthroughtheinletthanexitsattheoutlet.
Thereverseoccursforthepumpmode.
Therstvalvelessminiaturemicropumpusingnozzle/diffuserasowrectifyingelementswaspresentedin1993byStemmeandStemme[20].
Micropumpsfordrugdeliveryapplicationsmustmeetbasicrequirements,whichare[21]:drugbiocompatibility,actuationsafety,desiredandcontrollableowrate,smallchipsizeandlesspowerconsumption.
BiocompatibilityofMEMS-basedmicrop-umpsisbecomingincreasinglyimportantandisregardedasakeyrequirementfordrugdeliverysystems.
Biocompatibilityisdenedas"theabilityofamaterialtoperformwithanappropri-atehostresponseinaspecicapplication"[22].
Asmicropumpsindrugdeliverysystemscanbeimplantedinsidethehumanbody,thereforethematerialsusedforfabricationmustbeabletofullrigorousbiocompatibilityandbiostabilityrequirements[23].
Theimplantedmicropumpbaseddrugdeliverysystemmustbeabletowithstandlongtermexposuretophysiologi-calenvironmentandresisttheadverseimpactofsurroundingtissuesonitsworking[24].
Therefore,biocompatibilityofthematerialsusedtofabricateMEMS-basedmicropumpsanddrugdeliverysystemisanimportantmaterialsselectionparameter.
SiliconbasedMEMStechnologyhasbeensuccessfullyappliedinbiomedicaleldwiththerecentgrowthofimplantabledrugdeliverysystems.
Siliconassubstratematerialhasbeenusedextensivelyasagoodbiocompatiblematerial,howeveratrendtowardstheuseofpolymersassubstratematerialisgrowingaspolymermaterialsarewidelyusedinmedicineandaresuitableforhumanimplantation.
Polymermaterialssuchaspolymethylmethacrylate(PMMA),polydimethylsilox-ane(PDMS),SU-8photoresist,etc.
,possessrelativelybetterbiocompatibilityandareincreasinglybeingusedinfabricationofMEMSmicropumps.
3.
BasicmicropumpoutputparametersAtthedesignstage,severaldesignparametersneedtobecon-sideredtooptimizethemicropumpperformance.
Theseincludemaximumowrate(˙Qmax),maximumbackpressure(hmax),pumppower(Ppump)andpumpefciency(η).
Themaximumowrateisobtainedwhenthepumpisworkingatzerobackpres-sure.
Atthemaximumbackpressure,theowrateofthepumpbecomeszerobecausebackpressureopposestheworkdonebythepump.
Pumphead(h),ornethead,canbederivedfromthesteadyowenergyequationassumingincompressibleowandneglectingviscousworkandheattransfer.
Itistheworkdoneonaunitweightofliquidpassingfromtheinlettotheoutlet[25]:h=pγ+u22g+zoutpγ+u22g+zin(2)wherePisthepressure,γ(=ρg)thepressurehead,gtheaccelerationofgravity,ρtheuiddensity,utheuiddensity,u2/2gthevelocityheadandzistheelevation.
ThisrepresentsanincreaseinBernoulliheadfromtheinlettotheoutlet.
Usually,uoutanduinareaboutthesameandzoutzinisnegligible,sothemaximumpumpheadbecomes:hmax≈poutpinγ=pγ(3)Powerdeliveredtotheuidbythepumpistheproductofthespecicweight,discharge,andnetheadchange.
Itcanbeexpressedas[26]:Ppump=pmax˙Qmax=ρg˙Qmaxhmax(4)IfthepowerrequiredtodrivethepumpactuatorisPactuator,pumpefciencyisexpressedasη=PpumpPactuator(5)Inanidealpump,PpumpandPactuatorisidenticalasnolossesexist.
Efciencyisgovernedbyuidleakagelosses(vol-umetricefciency),frictionallosses(mechanicalefciency),andlossesduetoimperfectpumpconstruction(hydraulicef-ciency).
Therefore,totalefciencyconsistsofthreeparts[25]:η≡ηvηmηh(6)whereηvisthevolumetricefciency,ηmthemechanicalef-ciencyandηhisthehydraulicefciency.
4.
MechanicalmicropumpsMechanicalmicropumpsbasedondifferentactuationschemesalongwiththeirconstruction,fabricationdetailsandapplicationsarediscussed.
Keyfeaturesandperformancechar-acteristicsofmechanicalmicropumpsaresummarizedandreferencedinTable1.
4.
1.
ElectrostaticElectrostaticactuationisbasedontheCoulombattractionforcebetweenoppositelychargedplates.
Byusingtheparal-lelplateapproximationtoCoulomb'slaw,theforcegeneratedbetweentheplateswhenavoltageisappliedcanbeexpressedasF=dWdx=12ε0εrAV2x2(7)whereFistheelectrostaticactuationforce,Wtheenergystored,ε(=ε0εr)thedielectricconstant,Atheelectrodearea,Vthevoltageappliedandxistheelectrodespacing.
Inelectrostaticmicropump,themembraneoftheelectrostaticmicropump[27–30]isforcedtodeectineitherdirectionas922A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942Table1MechanicaldisplacementmicropumpsActuationmechanismReferenceStructureSize(mm)ValvesPumpchambersMembranematerialVoltage(V)Frequency(Hz)Pressure(kPa)Flowrate(l/min)PumpingmediumApplicationreportedinreferenceElectrostaticJudyetal.
[27]Polysiliconn/rActive1Polysilicon50n/rn/rn/rn/rDrugdeliveryZengerleetal.
[28]Si98mm3Cantilevertypepassive1Silicon170252.
570Watern/rZengerleetal.
[29]Si–Si98mm3Cantilevertypepassive1Silicon20030029160WaterChemicalanalysissystemCabuzetal.
[30]Injectionmoldplasticn/rPassive1MetallizedKapton.
160302030GasChemicalandbiologicalsensingMachaufetal.
[33]Si–Si5mm*5mmPassive1Electroplatednickel501830n/r1Watern/rPiezoelectricVanLinteletal.
[34]Glass-Si-glass4100mm3Passive1Glass1250.
1240.
6Watern/rStemmeandStemme[20]Brass2500mm3Nozzle/diffuser1Brass20110214400Watern/rKochetal.
[35]Si–Sin/rPassive1Silicon6002001.
80.
12EthanolDrugdeliverysuchasinsulinSchabmuelleretal.
[36]Si–Si122.
4mm3Nozzle/diffuser1Silicon190240011500Ethanoln/rJunwuetal.
[37]PMMAn/rCantilevertypepassive1Berylliumbronze50800233500WaterDrugdeliveryFengandKim[39]Si–Si160Passive1Silicon8060K0.
123.
2WaterImplantablemicropumpGeipeletal.
[40]Si–Sin/rActive1Silicon100<1104.
5WaterDrugdeliverysystemformetronomictherapyorchronotherapyMaetal.
[41]Si–Si2240mm3Passive1Silicon67.
22083.
431800FluidwithglucoseTransdermalinsulindeliveryDolletal.
[42]Si–Si330mm3Active1Siliconn/r27.
8601800WaterMedicalimplant;SphincterprosthesisHsuetal.
[45]Si-glass24mm*75mmPassive3Glass1404501.
850.
2BloodDrugdelivery/PointofCaretesting(POCT)Suzukietal.
[46]PDMS-glassn/rn/a1PDMS100872.
4k336n/rPointofCareTesting(POCT)ThermopneumaticVanDePoletal.
[52]Glass-Si–Si3000mm3Flap1Silicon61534Watern/rJeongandYang[49]Glass-Si-glassn/rNozzle/diffuser1Silicon84014Watern/rZimmermannetal.
[50]Glass-Sin/rFlap1n/an/r10169IsopropylalcoholCryogenicsystems/DrugDeliveryThermopneumaticHwangetal.
[54]Glass-SU8-Si105.
3mm3Capillarystopvalve1SU-8-210020n/rn/r3.
3WaterDrugdeliverysystems.
Kimetal.
[55]PDMS-glassn/rValveless(nozzle/diffuser)1PDMS556n/r0.
078MethanolDisposableLab-on-a-chipJeongetal.
[56]PDMSn/rActuatorasvalve3PDMS202021.
6WaterDrugdeliverysystemsShapememoryalloyBenardetal.
[57]Si–Sin/rPassivevalves1TiNialloy60.
94.
2349Watern/rBenardetal.
[58]Si–Sin/rPassivevalves1Polyimiden/r0.
90.
536Watern/rXuetal.
[59]Si–Si54mm3Passivevalves1NiTi/Sin/r40-60100kPa340Watern/rShuxiangetal.
[60]Acryl-siliconrubber16mmdia.
*74mmlengthDiffusers1NiTicoilactuator6n/rn/a700SalineIntracavityinterventionBimetallicZhanetal.
[61]Si–Si36mm3n/r1Aluminum-Si5.
50.
51245n/rn/rZouetal.
[63]Si-glass182Checkvalves1Aluminum-Si0.
50.
5336Watern/rICPFGuoetal.
[71]Acryl13mmdia.
*23mmlengthActivevalves2ICPF1.
52.
2n/r37.
8n/rBiomedicalElectromagneticBohmetal.
[74]Plastic800n/rn/rPlastic55002100Watern/rYamahataetal.
[76]PMMAn/rNozzle/diffuser1PDMSn/r120.
02400WaterLab-on-a-chipsystemsYamahataetal.
[77]PMMA4752mm3Checkvalves1n/an/rn/r2.
530WaterPanetal.
[78]PDMS600mm3Ballcheckvalves1PDMSn/rn/r3.
61000WaterLab-on-a-chipsystemsPhasechangeSimetal.
[79]72.
25mm3Passivevalves1silicon100.
506.
1WaterLab-on-a-chipsystemsBodenetal.
[80]Epoxy750mm3Activevalves1Epoxy2n/rn/r0.
074n/rn/rn/r:notreported.
A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942923Fig.
6.
Schematicillustrationofelectrostaticmicropump.
appropriatevoltageisappliedonthetwooppositeelectrostaticplateslocatedonbothsidesasshowninaschematicillustrationinFig.
6.
Thedeectedmembraneisreturnedtoitsinitialposi-tioniftheappliedvoltageiscutoff.
Thechambervolumeinsidethemicropumpvariesbyalternateswitchingofappliedvoltage.
Theuidinreservoirisforcedtoowinthemicrochannelsduetopressuredifferenceinducedbythemembranedeectioninthepumpchamber.
Theadvantagesofelectrostaticmicropumpsarelowpowerconsumptionwhichisoftheorderof1mWandfastresponsetime.
Thedeectionofthediaphragmcanbeeas-ilycontrolledbyappliedvoltage.
Amajordisadvantageisthesmallactuatorstroke,whichisusuallylimitedupto5mwithappliedactuationvoltagesofaround200V.
TherstmicropumpbasedonelectrostaticactuationwasdevelopedbyJudyetal.
[27].
Itwasalsotherstsurfacemicro-machinedmicropumpascomparedtopreviousbulksurfacemicromachinedmicropumps.
Nobulksiliconagentsorwaferbondingtechniqueswereusedinitsfabrication.
Instead,selec-tivedepositionandetchingofsacriciallayerswereusedtofabricatethestructure.
Themicropumpconsistedofanactivecheckvalve,apumpingmembraneandanactiveoutletvalve.
Allpartswereencapsulatedbysiliconnitrideandwereactu-atedbyelectrostaticforce.
Actuationvoltagesofapproximately50Vwererequiredforvalveclosureandmembranedeection.
Howevernopumpingactionwasreported.
Zengerleetal.
[28]developedtherstworkingelectrostaticmicropump.
Themicropumpconsistedofamembranemadeoffoursiliconlayerswhichformedtwocantileverpassivevalves,pumpmembraneandcounterelectrodeforelectrostaticactua-tion.
Themembranehadanareaof4mm*4mmandathicknessof25m.
Thevolumetricstrokeofthemembranewasbetween0.
01and0.
05l.
Theseparationbetweenthemovablemem-braneandtheelectricallyisolatedstatorwas4m.
Thepassivevalveswerecantileversmeasuring1mm*1mmwiththicknessvaryingbetween10and20m.
Duringfabricationallchipsweremadebyanisotropicetchingfromsinglesidepolishedsili-conwafers.
Forfabricatingvalves,lithographywasdoneonfrontsideofthewaferforapsandorices.
Pumpingwasachievedforthersttimeatactuationfrequenciesintherangeof1–100Hz.
Atfrequencyof25Hzand170V,aowrateof70l/minatzerobackpressurewasachieved.
Inadditionamaximumpressureheadof2.
5kPawasdeveloped.
Zengerleetal.
[29]laterreportedthedevelopmentofbidirectionalsiliconmicropumpwithelecrostaticallyactuatedmembraneandtwopassivecheckvalves.
Themicropumphaddimensionsof7mm*7mm*2mmandcontainedastackoffourlayers,pumpmembrane,passivecheckvalves,inletandoutlet.
Thebidirectionalpumpingwasdependentonactua-tionfrequencies.
Atlowactuationfrequenciesbetween0.
1and800Hz,themicropumpoperatedintheforwardmode.
Athigheractuationfrequenciesbetween2and6kHz,themicropumpoper-atedinthereversedirection.
Thebidirectionalphenomenonwasduetoaphaseshiftbetweentheresponseofthecheckvalvesandapressuredifferencethatresultedinuidow.
Themaximumpressureachievedbythemicropumpwas31kPa.
Themaximumvolumetricowratewas850l/minatasupplyvoltageof200V.
AdualdiaphragmmicropumpwasintroducedbyCabuzetal.
[30].
Themicropumpconsistedoftwodiaphragmswithseveralthroughholesinpumpchamber.
Thepumpchamberwasmadebyinjectionmolding.
Electrodesweredepositedbyevaporation.
Thindielectricmaterialwasdepositedbyionbeamsputtering.
Themicropumpwasmechanicallyassembled.
Themicropumpachievedowratesof30l/minatfrequencyof30Hzandpowerconsumptionof8mW.
Theoperatingvoltagewas160V.
Themicropumpoperatedinbidirectionalmodebutwasapplicableforgasesonly.
Thistypeofmicropumpwasanidealcandidateinchemicalandbiologicalsensingapplications.
ThedesignandsimulationofanelectrostaticperistalticmicropumpfordrugdeliveryapplicationswasreportedbyTeymooriandSani[31].
Thesizeofthemicropumpwas7mm*4mm*1mm.
Theproposedfabricationprocesscon-sistedofasiliconsubstrateonwhichmembranepartwasconstructedandglasssubstratewhichcontainedinputandout-putports.
Thesimulatedresultforthethresholdvoltageofthemicropumpwas18.
5V.
Theowrateofthedesignedmicropumpwas9.
1l/minwhichwasquitesuitablefordrugdeliveryapplicationssuchaschemotherapy.
Themicropumpwasdesignedtosatisfymajordrugdeliveryrequirementssuchasdrugcompatibility,owratecontrollabilityandlowpowercon-sumptionandsmallchipsize.
Howevertheactualfabricationandtestingofthedesignedmicropumptoverifyperformanceparameterswasnotreported.
Bourouinaetal.
[32]reportedonthedesignandsimulationofalowvoltageelectrostaticmicropumpfordrugdeliveryappli-cations.
Thetotalsizeofthemicropumpwas5mm*5mm.
The924A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942micropumpparameterssuchasmicrochanneldimensionswerechosenfordrugdeliveryapplicationswhereaverysmallowratewasinvolved.
Theworkingvoltagewas10V.
Simulatedowratesintherangeof0.
01–0.
1l/minwerereportedwhichweresuitablefordrugdeliveryapplications.
Thefabricationandtestingofthedeviceforcomparisonwiththeoreticalpredictionswasnotreported.
Machaufetal.
[33]reportedarstattempttofabricateamem-branemicropumpwhichwaselectrostaticallyactuatedacrosstheworkinguid.
Theowrateachievedwas1l/minat50Vactuationvoltage.
Thedesignwasbasedonutilizinghighelec-tricpermittivityoftheworkinguidaswellaslowconductivity.
Theelectrostaticforceactingonthemembranewasproportionaltotheworkinguidelectricpermittivityandhigherthepermit-tivity,thehighertheforceandowrateforagivenappliedvoltage.
ThisconceptwasincontrasttothemicropumpdesigndescribedbyZengerleetal.
[28]wherethevoltagewasappliedacrosstheairgapbetweenelectrodesabovethepumpcham-ber.
TheadvantageoftheapproachadoptedbyZengerleetal.
[28]wasthattheworkinguiddidnotcomeundertheinuenceoftheappliedelectriceldandthusbothconductiveandnon-conductiveuidscouldbepumpedinthisway.
Thelimitation,however,wasthecostandcomplexityofthedeviceduetotherequirementtocreateanairgapabovethepumpchamber.
Itwasaccomplishedwithastackoffoursiliconlayers.
AsthedesigndescribedbyMachaufetal.
[33]involvedapplicationofelec-triceldbetweenthepumpchamberandtheworkinguid,themainadvantageofthedesignwasthesimplicityofconstructionandlowfabricationcostasonlytwosiliconwaferswereused.
Howeverthemicropumpwaslimitedtopumponlyconductiveuids.
Thedevicewasfabricatedinsiliconandthediaphragmwasmadeofelectroplatednickel.
Theassemblywasdoneusingip–chipbonding.
4.
2.
PiezoelectricApiezoelectricmicropumpconsistsofapiezoelectricdiskattachedonadiaphragm,apumpingchamberandvalves.
Thepiezoelectricmicropumpisactuatedbythedeforma-tionofthepiezoelectricmaterials.
PiezoelectricactuationinvolvesthestraininducedbyanappliedelectriceldonthepiezoelectriccrystalasshowninaschematicillustrationinFig.
7.
Typicalcharacteristicsofpiezoelectricactuatorsincludelargeactuationforce,fastresponsetimeandsimplestructure.
However,fabricationiscomplexaspiezoelectricmaterialsarenoteasilyprocessed.
ThecomparativelyhighactuationvoltageFig.
7.
Schematicillustrationofpiezoelectricallyactuatedmicropump.
andsmallstroke,i.
e.
displacementperunitlengthareregardedasthedisadvantages.
VanLinteletal.
[34]reportedarstattempttofabricatesiliconmicropumpbasedonpiezoelectricactuation.
Therecip-rocatingdisplacementtypemicropumpwascomprisedofapumpchamber,athinglasspumpmembraneactuatedbypiezo-electricdiscandpassivesiliconcheckvalvestodirecttheow.
Thepiezoelectricdiscwasattachedbymeansofcyanoacry-lateadhesive.
Itwastherstreportedworkonasuccessfullyfabricatedmicropumpusingmicromachiningtechnologies.
Kochetal.
[35]proposedatypicalpiezoelectricmicropumpbasedonthedeformationofascreen-printedpiezoelectriczir-conatetitanate(PZT)onthesiliconmembrane.
Themicropumpconsistedofastackofthreesiliconchips.
Outletandinletvalveswereformedinthetwolowerlayersandmembraneactuatorformedthetoplayer.
Thedimensionsofthesiliconmembranewere8mm*4mm*70m.
Flowrateofupto120l/minwasachieved.
Amaximumbackpressureof2kPawasmeasuredwhenasupplyvoltageof600Vwasappliedat200Hzacrossa100mthickpiezoelectriclayer.
Themicropumpdesignwassuitabletobeappliedinmedicineascheapdisposablemicrop-umpfordrugdeliverysuchasinsulin.
Schabmuelleretal.
[36]reportedapiezoelectricallyactuatedsiliconmembranemicropumpwithpassivevalves.
Thefabrica-tionofthemicropumpwasbasedondoublesidedprocessingofsiliconandbulkKOHetching.
Thesizeofthemicropumpwas12mm*12mmandtheheightincludingthepiezoelec-triczirconatetitanate(PZT)discwas0.
85mm.
Aowrateof1500l/minandabackpressureof1kPawereachievedwithethanolasthepumpingmedium.
Incaseofairasthepumpingmedium,amaximumowrateof690l/minwasmeasured.
AhighperformancepiezoelectricallyactuatedcantilevervalvemicropumpfordrugdeliveryapplicationwasinvestigatedbyJunwuetal.
[37].
Theoutputvaluesofthemicropumpwereimprovedbythedesignofthecantilevervalves.
Themicrop-umpwithshortercantilevervalvesobtainedhigherowrateof3500l/minandbackpressureof27kPa.
Thesamemicropumpwithlargercantilevervalvesobtainedaowrateof3000l/minandbackpressureof9kPa.
Themicropumpwascomprisedofastructureofstackedlayerswhichweregluedtogether.
ThepumpbodyanduppercoverweremadeofPMMAandmanufacturedbyconventionaltechnology.
Thecantilevervalvesweremadeofprecisionbronzemembrane.
Amaximumbackpressureof27kPaachievedbythemicropumpwashigherthanthenormalbloodpressureof15kPa[38].
Thereforethemicropumpdesignwasapplicablefordrugdelivery.
FengandKim[39]developedapiezoelectricmicropumpwithdomeshapeddiaphragmandonewayparylenevalves.
PiezoelectricZnOlmwithlessthan10mthicknesswasusedtoactuateaparylenediaphragmfabricatedonsiliconsubstrate.
Thesizeofthemicropumpwas10mm*10mm*1.
6mm.
Theowrateof3.
2l/minwasachievedatlowpowerconsumptionof3mW.
Theoperatingvoltagewas80Vandmaximumbackpressurewas0.
12kPa.
ThemicropumpwasfabricatedusingICcompatiblebatchprocessusingbiocompatiblematerials.
Thelowpowerconsumptionofthemicropumpmakesitanidealcandidateforimplantablemicropumppoweredbybattery.
A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942925Geipeletal.
[40]reportedforthersttimeanoveldesignofmicropumpwithbackowpressureindependentowrateforlowowraterequirementssuchasrequiredindrugdeliv-eryapplications.
Theconceptwasbasedonpiezoelectricallyactuateddiaphragmstoachieveowratesintherangeof1–50l/min.
Themajorlimitationwhichpreventsvolumetricdosingofamicropumpisbackpressuredependency.
Toaddressthisundesiredeffect,thedesignreportedinRef.
[40]workedontheprincipleofperistalticmicropump(micropumpwithmul-tiplechambersinseries)withnomiddlemembranenormallyusedaspumpmembrane.
Twoback-to-backconnectedactivevalvescontrolledtheuidowbyalternateswitchingofthree-phaseactuationscheme.
Theuidwasdrawnfromthereservoirintothepumpchamberuntilanequilibriumpressurewasestab-lished.
Thesimultaneousclosingoftheinletandopeningoftheoutletvalvemovedtheuidinthedesireddirection.
Thesimultaneousswitchingofthevalveswasthekeycharacter-isticofthemicropump.
Themicropumpwasmadefromtwomicromachinedsiliconwafersinabulksiliconprocess.
Backpressureindependencywasprovenupto20kPaforlowfre-quencies.
Thebackpressureindependentmicropumpwithlowpowerconsumptionisidealforapplicationindrugdeliverysystemsformedicaltreatmentsuchasmetronomictherapyorchronotherapy.
Maetal.
[41]presentedthedevelopmentofanovelpiezo-electriczirconatetitanate(PZT)insulinmicropumpintegratedwithmicroneedlearrayfortransdermaldrugdelivery.
Thesizeofsystemwas8mm*8mm*35mm.
Themicroneedlearrayonaexiblesubstratecouldbemountedonnon-planarsur-faceorevenonexibleobjectssuchasahumanngersandarms.
ThepiezoelectricmicropumpdesignwasbasedonthedesignpublishedbyVanLinteletal.
[34].
Flowratesweremea-suredusingdifferentconcentrationsofglucose.
Aowrateupto2400l/minwasachievedatappliedvoltageof67.
2V.
Thematerialsincontactwiththedrugweresilicon,silicondioxide,brassandsiliconepoxywhichareallbiocompatible.
Dolletal.
[42]presentednovelmedicalimplantbasedonbidi-rectionalmicropumpforarticialsphinctersystem.
Thefecalincontinenceisthelossofnaturalandsphinctercontrolandcanleadtounwantedlossoffeces.
Thereareseveraltreatmentoptionssuchasbiofeedbacktraining,strengtheningofthepelvicoorandreconstructivesurgicalmethodswithautologousmate-rialsbutwithlimitedsuccess.
TheGermanarticialsphinctersystem(GASS)isinfactahydraulicmusclefortreatmentoffecalincontinence[43,44].
ThedesignreportedbyDolletal.
[42]wasanintegratedstructurewithallfunctionsinonedevicewithapiezoelectricallyactuatedperistalticmicropumpembed-dedinthesystem.
Themicropumpwasfabricatedinsiliconandthepumpchamberandthevalvelipwerefabricatedbysiliconetchingprocess.
Themicropumpachievedaowrateof1800l/minandwasabletobuildupandmaintainback-pressuresupto60kPa.
Theoverallsizeofthemicropumpwas30mm*11mm*1mm.
Themicropumpfeaturedactivevalveswhichenabledthereversalofthepumpdirectionbyapplyingdifferentactuationschemes.
Hsuetal.
[45]investigateddevelopmentofantithrombo-genicmicropumpsforbloodtransportationtests.
Aperistalticmicropumpbasedonpiezoelectricactuationwasdevelopedtotransportwholeblood.
Themicropumpperformancewaseval-uatedusingdeionisedwaterandwholeblood.
Themicropumpwascomprisedofthreeparts,silicon,pyrexglassandacom-merciallyavailablebulkpiezoelectriczirconatetitanate(PZT)material.
Siliconetchingprocesswasusedtofabricatepumpchambersandchannels.
Threepiecesof12mmsquarebulkpiezoelectriczirconatetitanate(PZT)chipswithathicknessof191mweregluedontothesiliconmembraneusingsilverepoxy.
Thetotalsizeofthemicropumpwas24mm*75mm.
Topreventbloodfromclotting(thrombosis)inthemicrop-ump,twomaterials,polyethyleneoxideurethane(PEOU)andpolyethyleneglycol(PEG)wereusedtoformamonolayeronthesurfaceofthechip.
Theowrateofthemicropumpusingdeionisedwaterwas121.
6l/minat500Hzand140Vandmax-imumbackpressureof3.
2kPa.
Theowrateforbloodwas50.
2l/minat450Hzand140Vandmaximumbackpressureof1.
8kPa.
ThedesignedmicropumpreportedinRef.
[45]hastremendouspotentialinbiomedicalapplicationssuchasdrugdelivery.
Suzukietal.
[46]proposedatravellingwavepiezoelectri-callyactuatedmicropumpforpointofcaretesting(POCT)system.
ThesystemreportedinRef.
[46]comprisedofintegratedtravellingwavemicropumpandminiaturizedsurfaceplasmonresonance(SPR)imagingsensorononechip.
Surfaceplasmonresonance(SPR)imagingisoneofthemostsuitablebiosensorforTAS.
SPRbiosensorisusedtodetectthespecicbiosamplewithrealtimemultisensinganalysis.
ThemicropumpcomprisedofanarrayofpiezoelectricactuatorstoinduceatravellingwaveinaPDMSmicrochannel.
Themaximumowrateachievedbythemicropumpwas336l/min.
TheSPRimagingmeasure-mentswithbovineserumalbuminsolutionswerecarriedoutusingtheprototypediagnosticsystem.
Themajorlimitationofthepiezoelectricallyactuatedmicrop-umpsistherequirementofhighsupplyvoltages.
Inaddition,theapplicationofpiezoelectricdiscsisnotcompatiblewithintegratedfabrication.
Nevertheless,mechanicalmicropumpsbasedonpiezoelectricactuationhavegrowntobethedominanttypeofmicropumpsindrugdeliverysystemsandoptimiza-tionofthegeometricaldesignofpiezoelectricmicropumphasbeendonetoachievehigherstrokesatlowervoltages[47,48].
4.
3.
ThermopneumaticInthermopneumaticmicropump,thechamberwhichisfullofairinside,isexpandedandcompressedperiodicallybyapairofheaterandcoolerasshowninFig.
8.
Theperiodicchangeinvolumeofchamberactuatesthemembranewitharegularmovementforuidow.
Thermopneumaticactuationinvolvesthermallyinducedvol-umechangeand/orphasechangeofuidssealedinacavitywithatleastonecompliantwall.
Forliquids,thepressureincreaseisexpressedasP=EβTVV(8)926A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942Fig.
8.
Schematicillustrationofthermopneumaticmicropump.
wherePisthepressurechange,Ethebulkmodulusofelas-ticity,βthethermalexpansioncoefcient,TtheemperatureincreaseandV/Visthevolumechangepercentage.
ForsimplicityweassumethatthereisnovolumeexpansionandforwaterastheuidwetakethevalueofE=3.
3*105psiandβ=2.
3*104C1inEq.
(8).
Thus,forwater,thetemper-aturedependentpressurechangecanbeexpressedas76psi/Cfortheaboveconditions.
Suchalargepressuretranslatestolargedeectionsandforcesbutsufferfromhigh-powercon-sumptionandslowresponsetimewhicharecharacteristicofthermalactuationmethods.
Thethermopneumatictypeofmicropumps[49–51]generaterelativelylargeinducedpressureanddisplacementofmem-brane.
However,ontheotherhand,thedrivingpowerhastobeconstantlyretainedaboveacertainlevel.
Until1990,allmicrop-umpdesignsdevelopedwerebasedonpiezoelectricbimorphormonomorphdiscsforactuation.
Inordertofabricatemicropumpusingmicroengineeringtechniquessuchasthinlmtechnol-ogy,photolithographytechniquesandsiliconmicromachining,researcherslookedformicromachinableactuators.
TherstpieceofworkontheutilizationofmicromachinableactuatorswascarriedoutbyVanDePoletal.
[52].
ThethermopneumaticactuationprinciplewasadoptedfromZdelblicketal.
[53]whoreportedtherstthermopneumaticmicropump.
Themicrop-umpwasareciprocatingdisplacementmicropumpwithpassivevalves.
Theactuatorcomprisedofacavitylledwithair,asquaresiliconpumpmembraneandbuiltinaluminummeander,whichservedasaresistiveheater.
Theapplicationofanelectricvolt-agetotheheatercausedatemperatureriseoftheairinsidethecavityandarelatedpressureincreaseinducedadownwarddeectionofthepumpmembranecausingpressureincreaseinthepumpchamber.
Thepressuredifferenceresultedinopen-ingandclosingoftheinletandoutletvalvesrespectively.
Amaximumowrateof34l/minwasreportedat5kPapressureand6V.
Jeongetal.
designedathermopneumaticmicropump[49]withacorrugateddiaphragm.
Thethermopneumaticmicropumphadapairofnozzle/diffuserandanactuatorwithcorrugateddiaphragmandamicroheater.
Thebasematerialforactuatordiaphragmwasdoublesidepolished450mthickn-type(100)siliconwafer.
Theowratesofthemicropumpwiththecorru-gateddiaphragmandthatwiththeatoneweremeasured.
Forthesameinputpower,themaximumowrateofthemicrop-umpwiththecorrugateddiaphragmwas3.
3timesthatwiththeatone.
Themaximumgeneratedpressurereached2.
5kPa.
Themaximumowrateofthemicropumpwithcorrugateddiaphragmreached14l/minat4Hzwhentheinputvoltageanddutyratiowere8Vand40%,respectively.
Zimmermannetal.
[50]developedathermopneumaticmicropumpforhighpressure/highowrateapplicationssuchascryogenicsystemsbutworkedequallywellwherelowowratesandprecisevolumecontrolarenecessarysuchasdrugdeliverysystems.
Themicropumpwasplanarandfabricatedusingawafer-level,four-maskprocess.
Apressureof16kPaandmaximumowrateof9l/minwasachievedatanaveragepowerconsumptionof180mW.
Hwangetal.
[54]reportedasubmicroliterlevelthermopneu-maticmicropumpfortransdermaldrugdelivery.
Themicropumpcomprisingoftwoairchambers,amicrochannelandstopvalve,wasfabricatedbythespincoatingprocess.
Thethermopneu-maticchamberconsistedofohmicheatersontheglasssubstrate.
Thenegativethickphotoresistwasusedtoformthemicrochan-nelsandthetwoairchambersontheglasssubstrate.
Theglassplatewasbondedwithsiliconsubstratebyheating.
Thetotalsizeofthemicropumpwas13mm*9mm*0.
9mmandtheresis-tanceofthemicroheaterwas690.
Thedischargevolumeswere0.
1lfor3sat15Vand0.
1lfor1.
8sat20V.
Thedesignedmicropumpwasfeasibleforsubmicroliterleveldrugdeliverysystems.
Kimetal.
[55]presentedathermopneumaticallyactuatedpolydimethylsiloxane(PDMS)micropumpwithnozzle/diffuserelementsforapplicationsinmicrototalanalysissystems(TAS)andlab-on-a-chip.
Themicropumpconsistedofaglasslayer,anindiumtinoxide(ITO)heater,aPDMSthermopneumaticchamber,aPDMSmembraneandaPDMScavity.
Themicrop-umpwasfabricatedusingspincoatingprocess.
ThethicknessofthePDMSmembranewas770m.
Amaximumowrateof0.
078l/minwasobservedforappliedpulsevoltageof55Vat6Hz.
Theperformanceofthemicropumpisapplicablefordisposablelab-on-a-chipsystems.
Jeongetal.
[56]reportedfabricationandtestofaperistalticthermopneumaticallyactuatedPDMSmicropump.
Themicrop-umpconsistedofmicrochannels,threepumpchambers,inletandoutletportsandthreeactuators.
AllpartsexceptthemicroheaterwerefabricatedwithPDMSelastomer.
Thethermopneumaticactuatorswereoperatedasthedynamicvalvesandcontrolledeasilybysequencingofthreephaseelectricinputpower.
Thusthedesignwassimpliedastherewasnoneedtofabricateaddi-tionalpartssuchascheckvalves.
Backowwasalsoeliminatedasthetwopumpchamberswerealwaysclosedatatime.
Thediameterofthe30m,thickactuatordiaphragmwas2.
5mm.
Themaximumowrateofthemicropumpwas21.
6l/minat2Hzatzeropressuredifference,whenthethree-phaseinputvoltagewas20V.
TheowrateachievedbythemicropumpwasA.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942927applicabletomicroliterleveluidcontrolsystemssuchasdrugdeliverysystems.
4.
4.
Shapememoryalloy(SMA)Shapememoryalloy(SMA)actuatedmicropumpsmakeuseoftheshapememoryeffectinSMAmaterialssuchastitaniumnickel.
Theshapememoryeffectinvolvesaphasetransforma-tionbetweentwosolidphases.
Thesetwophasesarecalledtheaustenitephaseathightemperatureandmartensitephaseatlowtemperature.
InSMAmaterials,themartensiteismuchmoreductilethanausteniteandthislowtemperaturestatecanundergosignicantdeformationbyselectivemigrationofvariantbound-ariesinthemultivariantgrainstructures.
Whenheatedtotheaustenitestarttemperature,thematerialstartstoformsinglevari-antaustenite.
Ifthematerialisnotmechanicallyconstrained,itwillreturntopredeformedshape,whichitretainsifcooledbacktothemartensitephase.
Ifthematerialismechanicallyconstrained,thematerialwillexertalargeforcewhileassum-ingthepre-deformedshape.
Thesephasetransitionsresultinmechanicaldeformationthatisusedforactuation.
Highpowerconsumptionisrequiredandtheresponsetimeisslow.
ShapememoryalloysarespecialalloyssuchasAu/Cu,In/Ti,andNi/Ti.
AschematicillustrationofSMAmicropumpisshowninFig.
9.
ThediaphragmofSMAmicropumps[57–60]isusuallymadeofmaterialtitanium/nickelalloy(TiNi).
TiNiisanattractivematerialasanactuatorformicropumpsbecauseitshighrecov-erablestrainandactuationforcesenablelargepumpingratesandhighoperatingpressures.
Highworkoutputperunitvol-umemakesitsuitableinsizesforMEMSapplications.
TherstSMAmicropumpwasreportedin1997byBenardetal.
[57].
TwoTiNimembraneswereseparatedbyasiliconspacer.
Bothxedandcantilevercheckvalveswerefabricatedtorectifyow.
ThereciprocatingmotionwasgeneratedbyalternatingthejouleheatingtothetwoTiNimembranes.
UponheatingthetopTiNilayer,theactuatorwaspositionedinitsmostdownwardposition.
Fig.
9.
Schematicillustrationofshapememoryalloy(SMA)micropump.
Themaximumowrateachievedwas49l/minatanoper-atingfrequencyof0.
9Hz.
Thebackpressureof4.
23kPawasachieved.
Theoperatingcurrentandvoltagewere0.
9Aand6V,respectively,andpowerconsumptionwas0.
5W.
ApolyimidespringbiasedSMAmicropumpwasreportedbyBenardetal.
[58];howevertheowratewasmuchlowerthantheowratereportedinRef.
[57].
Xuetal.
[59]reportedthestructureofamicroSMApump.
Itsoverallsizewasabout6mm*5mm*1.
5mm.
Themicrop-umpwascomposedofaNiTi/Sicompositedrivingmembrane,apumpchamberandtwoinletandoutletcheckvalves.
Thevolumetricowrateandbackpressureofthemicropumpwere340l/minand100kPa,respectively.
ThemicropumpdesignsreportedinRefs.
[57,58]wereactuatedbyfreestandingSMAthinlmsrequiringspecialbiasstructuretogetSMAeffectandspecialstructuretoseparateworkinguidfromdrivingcircuits.
Thismadethefabricationdifcult.
WhenutilizingaNiTi/SicompositedrivingmembraneasreportedinRef.
[59],nospe-cialbiasstructurewasneededbecausesiliconsubstrateprovidedthebiasingforceandnoisolatedstructurewasneedbecausesiliconstructureseparatedtheworkinguidfromSMAlmcompletely.
SMAeffectwasachievedbycombinedactionofthermalstressandsubstratebiasforce.
Thusthestructureofthemicropumpwassimpliedgivingalargeowrate,excellentdrivingefciencyandlongfatiguelife.
ShuxiangandFukuda[60]developedSMAactuatedmicropumpforbiomedicalapplications.
ThemicropumpwascomprisedofSMAcoilactuatorastheservoactuator,twodif-fusersasone-wayvalves,apumpchambermadeofelastictube,andacasing.
TheSMAcoilactuatorutilizedinthismicropumpwasaTiNiwirewithadiameterof0.
2mm.
Theoverallsizeofthemicropumpwas16mmindiameterand74mminlength.
Thebodyofthemicropumpwasmadefromacrylandchamberwasmadefromsiliconrubber.
Theowrateof500–700l/minwasobtainedbychangingthefrequency.
Thedesignedmicropumpwasabletodemonstratemicroowandwassuitablefortheuseinmedicalapplicationsandinbiotechnologysuchasintracavityinterventioninmedicalpracticefordiagnosisandsurgery.
4.
5.
BimetallicBimetallicactuationisbasedonthedifferenceofthermalexpansioncoefcientsofmaterials.
Whendissimilarmaterialsarebondedtogetherandsubjectedtotemperaturechanges,ther-malstressesareinducedandprovideameansofactuation.
Eventhoughtheforcesgeneratedmaybelargeandtheimplementa-tioncanbeextremelysimple,thedeectionofthediaphragmachievedaresmallbecausethethermalexpansioncoefcientsofmaterialsinvolvedarealsosmall.
Althoughbimetallicmicrop-umpsrequirerelativelylowvoltagescomparedtoothertypesofmicropumps,butarenotsuitabletooperateathighfrequencies.
AschematicillustrationofbimetallicmicropumpisshowninFig.
10.
Thediaphragmismadeoftwodifferentmetalsthatexhibitdifferentdegreesofdeformationduringheating[61,62].
Thedeectionofadiaphragm,madeofbimetallicmaterials,isachievedbythermalalternationbecausethetwochosenmateri-alspossessdifferentthermalexpansioncoefcients.
928A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942Fig.
10.
Schematicillustrationofbimetallicmicropump.
Zhanetal.
[61]designedasilicon-basedbimetallicmem-brane,foraspecicmicropump.
Amicro-drivingdiaphragmwasmadebydepositinga10mthicklayerofaluminumonthesiliconsubstrate.
Theoverallsizeofthemicropumpwasabout6mm*6mm*1mm.
Theowrateandmaximumbackpressurewereapproximately45l/minand12kPa,respectively,while5.
5Vdrivingvoltageat0.
5Hzwasapplied.
Zouetal.
[63]reportedanovelthermallyactuatedmicrop-ump.
Thismicropumputilizedbothbimetallicthermalactuationandthermalpneumaticactuation.
Thestructureofthemicrop-umpwascomposedoftwochambers(airandwater),abimetallicmicroactuatorandtwo-microcheckvalves.
Theoverallsizeofthemicropumpwas13mm*7mm*2mm.
Thebimetallicactuatorwasmadeofaluminummembraneandasiliconmem-brane.
Whenthebimetallicactuatorwasheated,themembranewasdeformeddownwardstopresstheuid.
Atthesametime,thegasintheairchamberwasheatedandexpandedtostrengthenthebimetallicactuation.
Thepressureowcharacteristicsofmicrocheckvalvewerereported.
Whentheopenpressureofthevalvewas0.
5kPa,theowrateofthevalvereached336l/min.
Pangetal.
[64]utilizedbimetallicandelectrostaticactuationfordrivingandcontrollingofthemicropumpsandmicrovalvesinasingleintegratedmicrouidicsystem.
Themicrouidicchipofthesizeof5.
9mm*6.
4mmwascomprisedofmicrop-umps,valves,channels,cavitiesandotherdifferentsensors.
Bothbimetallicandelectrostaticactuationwasusedtoactuatethemicropumpsandvalves.
Onthevalvemembrane,twoaluminumstructuresweredesignedtoprovidebidirectionaldeformation.
Bimetallicdrivingdeformationofthemicropumpmembraneinonlytheupdirectionwasdesigned.
Bimetallicelementsconsistedofheatingelements,topaluminumlayerandbot-tommechanicalmembrane.
Thedimensionsofthemicropumpdrivingmembranewere1mm*1mm*2m.
Thesizeofthevalvemembranewas6mm*0.
6mm*2m.
Inthemicrou-idicchip,3DstructureswereformedusingsurfaceandbulkmicromachiningfollowedbystandardICcompatibleprocessestofabricatedrivingcircuitsandothersensors.
4.
6.
Ionconductivepolymerlm(ICPF)PolymerMEMSactuatorscanbeactuatedinaqueousenvi-ronmentwithlargedeectionandrequirelesspowerinputthanconventionalMEMSactuators.
Oneofthemostpopularpoly-meractuatorsisionconductivepolymerlmactuator(ICPF)whichisactuatedbystressgradientbyionicmovementduetoelectriceld.
ICPFiscomposedofpolyelectrolytelmwithbothsideschemicallyplatedwithplatinum.
Duetotheapplicationofelectriceld,thecationsincludedinthetwosidesofthepoly-mermoleculechainwillmovetothecathode.
Atthesametime,eachcationwilltakesomewatermoleculestomovetowardsthecathode.
ThisionicmovementcausesthecathodeofICPFtoexpandandanodetoshrink.
Whenthereisanalternatingvoltagesignal,thelmbendsalternately.
AschematicillustrationofthestructureofICPFactuatorisshowninFig.
11A.
ThebendingprincipleofICPFactuatorisshowninFig.
11B.
TheICPFactuatoriscommonlycalledarticialmusclebecauseofitslargebendingdisplacement,lowactuationvoltageandbiocompatibility.
ResearcheshavereportedapplicationsofICPFinrobotic[65],medicaldevices[66]andmicromanipula-tors[67].
Guoetal.
[68–71]reporteddevelopmentofICPFpoly-meractuator-basedmicropumpforbiomedicalapplications.
TheFig.
11.
(A)SchematicillustrationofthestructureofanICPFand(B)schematicillustrationofanICPFbendingprinciple.
A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942929micropumpcomprisedoftheICPFactuatorasthediaphragm,pumpchamberandtwoonewaycheckvalvesdrivenbyICPFactuators.
ICPFactuatorswereinstalledinseriestoachievehighowrates.
ThesizeofthemicropumpreportedinRef.
[68]was13mmindiameterand23mminlength.
Theowrateofthemicropumpwas4.
5–37.
8l/minat1.
5Vdrivingvoltage.
Themicropumpdesignwithlowpowerconsumption,biocompatibil-ityandadequateowrate,haspotentialapplicationinmedicaleldandbiotechnology.
Guoetal.
havealsoreportedapplicationofICPFactuatorinotherareassuchasarticialshmicrorobot[72,73]withpoten-tialapplicationsinmedicaleldsuchasperformingdelicatesurgicaloperationsupportedbymicrorobottoavoidunneces-saryincisions.
ICPFactuatorhascertainadvantagessuchaslowdrivingvoltage,quickresponse,andbiocompatibility.
Besides,itcanworkinaqueousenvironments.
ThemajorlimitationiscomplexfabricationofICPFactuator.
4.
7.
ElectromagneticMicromagneticdevicesingeneralconsistofsoftmagneticcoresandareactivatedbycurrentsinenergizedcoilsorusepermanentmagnets.
AwirecarryingacurrentinthepresenceofamagneticeldwillexperiencetheLorentzforcegivenbelow:F=(I*B)L(9)whereFistheelectromagnetic(Lorentz)force,Ithecurrentpassingthroughwire,BthemagneticeldandListhelengthofwire.
Theforcegeneratedislarge,however,electromagneticactu-ationrequiresexternalmagneticeldusuallyintheformofapermanentmagnet.
AschematicillustrationofmagneticallyactuatedmicropumpisshowninFig.
12.
Fig.
12.
Schematicillustrationofamagneticallyactuatedmicropump.
Atypicalmagneticallyactuatedmicropumpconsistsofachamberwithinletandoutletvalves,aexiblemembrane,apermanentmagnetandasetofdrivecoils.
Eitherthemagnetorthesetofcoilsmaybeattachedtothemembrane.
Whenacurrentisdriventhroughthecoils,theresultingmagneticeldcreatesanattractionorrepulsionbetweenthecoilsandthepermanentmagnetwhichprovidestheactuationforce.
Electromagneticactuationprovideslargeactuationforceoverlongerdistanceascomparedtoelectrostaticactuation.
Italsorequireslowoperatingvoltage.
However,theelectromagneticactuationdoesnotbenetfromscalingdowninsizebecauseelectrostaticforcereducesbythecubeofscalingfactor.
There-foreitsutilizationformicrofabricatedactuatorsislimitedasonlyafewmagneticmaterialscanbemicromachinedeasily.
Ingeneral,electromagneticmicropumpshavehighpowercon-sumptionandheatdissipation.
AnelectromagneticactuatorwasproposedbyBohmetal.
[74].
Plasticmicropumpwithreasonableperformancewasfabri-catedusingconventionalmicromechanicalproductionmethods.
Themicropumpcomprisedoftwofoldedvalvespartswithathinvalvemembraneinbetween.
Theinletandoutletweresituatedonthebottomsideofthemicropump,whilethemicropumpmembranewasplacedonthetop.
Anelectromagneticactuatorconsistingofapermanentmagnetplacedinacoilwasusedincombinationwithaexiblemicropumpmembrane.
Powercon-sumptionwas0.
5Wandowratesof40,000l/minforairand2100l/minforwaterwereachieved.
Arelativelylargevolumewasoccupiedbytheelectromagneticcoil,thereforethemicrop-umpnaldimensions(10mm*10mm*8mm)wereslightlylarge.
Gongetal.
[75]reporteddesignoptimizationandsimula-tionofafourlayerelectromagneticmicropump.
Thedesignedmicropumpconsistedofelectromagneticactuator,pumpcham-ber,passivemicrovalvesandinletandoutletinterfaces.
Themicroelectromagneticactuatorlocatedonthetopofthemem-brane,wasmadeofplanarcoils.
Thedimensionsoftheactuatorandthepumpingmembranewere6mm*6mmand3mm*3mm,respectively.
Thesimulationresultsshowedthatmaximumowrateupto70l/minwasachievableatafre-quencyof125Hz.
Yamahataetal.
[76]describedthefabricationandcharacter-izationofelectromagneticallyactuatepolymethylmethacrylate(PMMA)valvelessmicropump.
Thecompletemicropumpwasathree-dimensionalstructurecomprisingoffoursheetsofPMMAfabricatedbystandardmicromachiningtechniques.
Themicropumpconsistedoftwodiffuserelements,andapoly-dimethylsiloxane(PDMS)membranewithanintegratedmagnetmadeofNdFeB(neodymium,iron,andboron)magneticpowder.
Alargestrokemembranedeectionupto200mwasobtainedusingexternalactuationbyanexternalmagnet.
Flowrateupto400l/minandbackpressureupto1.
2kPawasmeasuredatresonantfrequenciesof12and200Hz.
Thecombinationofnozzle/diffuserelementswithanelectromagneticallyactuatedPDMSmembraneprovidedlargedeectionamplitudeandade-quateowratesbothforwaterandairandtheconceptcouldbesuccessfullyappliedforlowcostanddisposablelab-on-a-chipsystems.
930A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942Yamahataetal.
[77]reporteddevelopmentofnewtypeofmicropumpbasedonmagneticactuationofthemagneticliquid.
Theferrouidwasnotindirectcontactwiththepumpingliq-uid.
ItwasexternallyactuatedbyNdFeB(neodymium,iron,andboron)permanentmagnet.
Themicropumpwasathreedimen-sionalmicrostructurefabricatedbystandardmicromachiningtechniques.
Theworkingprinciplewasbasedontheoscillatorymotionoftheferrouidicliquidinamicrochannel.
Thefer-rouidservedbothasanactuatorandseal.
Thelinearmotionoftheferrouidwasinducedbythecontrolledmechanicalmove-mentoftheexternalmagnetresultinginthepulsedowbyperiodicopeningandclosingofthecheckvalves.
Aowrateof30l/minwasachievedatabackpressureof2.
5kPa.
Panetal.
[78]reportedonthedesign,fabricationandtestofamagneticallyactuatedmicropumpwithPDMSmembraneandtwoonewayballcheckvalvesforlab-on-a-chipandmicrouidicsystems.
ThemicropumpcomprisedoftwofunctionalPDMSlayers.
Onelayerwasusedforholdingballcheckvalvesandanactuatingchamberwhiletheotherlayercontainedaperma-nentmagnetforactuation.
Themicropumpcouldbeactuatedbyexternalmagneticforceprovidedbyanothermagnetorinter-nalmagneticcoil.
Externalactuationofthemembranemountedmagnetprovidedaowrateof774l/minatpowerconsump-tionof13mW.
Alternateactuationofthemicropumpbya10turnplanarmicrocoilfabricatedonaPCboardprovidedaowrateof1000l/min.
Themicrocoildrivewasfullyintegratedandprovidedhigherpumpingratesattheexpenseofmuchhigherpowerconsumption.
4.
8.
PhasechangetypeTheactuatorinphasechangetypeofmicropumpsiscom-posedofaheater,adiaphragmandaworkinguidchamber.
Theactuationofthediaphragmisachievedbythevaporizationandcondensationoftheworkinguid.
AschematicillustrationofphasechangetypemicropumpisshowninFig.
13.
Fig.
13.
Schematicillustrationofaphasechangetypemicropump.
Simetal.
[79]presentedaphasechangetypeofmicrop-umpwithaluminumapvalves.
Themicropumpconsistedofapairofpassivevalvesandaphasechangetypeactuator.
Thedimensionsofthemicropumpwere8.
5mm*5mm*1.
7mm.
Theactuatorwascomposedofaexiblesiliconmembraneonasiliconsubstrateandamicroheateronaglasssubstrate.
Whentheinputpowerwasappliedtothemicroheater,theworkinguidwasheatedandvaporizedcausingpressureincreaseintheworkinguidchamberanddeectionofthemembrane.
Whenthepowersupplywascutoff,themembranewasrestoredduetocondensationoftheworkinguid.
Themaximumowrateofthemicropumpwas6.
1l/minatsupplyvoltageof10Vat0.
5Hz.
Themaximumbackpressureatzeroowratewas68.
9kPa.
Thelowowrateofthistypeofmicropumpwassuitableforappli-cationinlab-on-a-chiprequiringowrateslessthanfewl/minandbackpressureslessthan68.
9kPa.
Bodenetal.
[80]reportedaparafnmicropumpwithactivevalves.
Identicalmembraneactuatorsactivatedthepumpcham-berandactivevalves.
Heaterswereintegratedinsidetheparafn.
Whentheparafnwasmeltedbytheheaters,themembranesealedtheinletandoutletholes.
Themembranereturnedtoitsoriginalshapewhentheparafnsolidied.
Byasequenceofmeltingandsolidicationoftheparafn,thepumpingactionwasachieved.
Aowrateof0.
074l/minwasachievedatanappliedvoltageof2V.
5.
Non-mechanicalmicropumpsNon-mechanicalmicropumpsrequiretheconversionofnon-mechanicalenergytokineticenergytosupplytheuidwithmomentum.
Thesephenomenaarepracticalonlyinthemicroscale.
Incontrasttomechanicalmicropumps,non-mechanicalpumpsgenerallyhaveneithermovingpartsnorvalvessothatgeometrydesignandfabricationtechniquesofthistypeofpumpsarerelativelysimpler.
Howevertheyhavelimitationssuchastheuseofonlylowconductivityuidsinelectrohydrodynamicmicropumps.
Moreovertheactuationmechanismsaresuchthattheyinterferewiththepumpingliquids.
Sincetheearly1990s,manynon-mechanicalmicrop-umpshavebeenreported.
Non-mechanicalmicropumpswithdifferentactuationmethodsarediscussedbelow.
KeyfeaturesandperformancecharacteristicsofmechanicalmicropumpsaresummarizedandreferencedinTable2.
5.
1.
Magnetohydrodynamic(MHD)Magnetohydrodynamictheoryisbasedontheinteractionoftheelectricallyconductiveuidswithamagneticeld.
Thecon-ceptofmagnetohydrodynamic(MHD)micropumpisnewandoneoftherstdevelopedMHDmicropumpswasdevelopedbyJangandLee[81]in1999.
MHDreferstotheowofelec-tricallyconductinguidinelectricandmagneticelds.
ThetypicalstructureoftheMHDmicropumpisrelativelysimplewithmicrochannelsandtwowallsboundedbyelectrodestogeneratetheelectriceldwhiletheothertwowallsboundedbypermanentmagnetsofoppositepolarityforgeneratingthemagneticeld.
Inmagnetohydrodynamicmicropumps,LorentzA.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942931Table2MechanicaldisplacementmicropumpsActuationmechanismReferenceFabricatedstructureSize(mm)Voltage(V)Pressure(kPa)Flowrate(l/min)PumpingmediumApplicationreportedinreferenceMHD-DCtypeJangandLee[81]Si–Sin/r600.
1763Seawatern/rHuangetal.
[82]PMMAn/r15n/r1200n/rDrugdelivery,biomedicalstudiesMHD-ACtypeHengetal.
[83]Glass-PMMAn/r15n/r1900n/rn/rLemoffandLee[85]Glass-Si-glassn/rn/a018NaClsolutionn/rEHDRitcherandSandmaier[86]Si–Si3mm*3mm6000.
4314000Ethanoln/rFuhretal.
[87]Si-glassn/r40n/r2Watern/rDarabietal.
[88]Ceramic638.
4mm32500.
78n/r3MHFE-7100n/rElectroosmoticZengetal.
[91]Packedsilicaparticles85mm3200020003.
6Watern/rChenandSantiago[92]Soda–limeglass9000mm310003315Watern/rTakemorietal.
[94]Si-plasticn/r2000100.
1Degassed50mmTrisboratebuffer(pH9.
3)n/rWangetal.
[95]Fusedsilica-glassn/r6000252.
6WaterMicro-analysissystemsElectrowettingYunetal.
[96]Glass-SU8-Si–Sin/r2.
30.
7170Watern/rBubbletypeTsaiandLin[97]Glass-Sin/r200.
384.
5Isopropylalcoholn/rZahnetal.
[99]SOI-quartzdicen/rn/r3.
90.
12WaterContinuousmonitoringDDS/monitorglucoselevelsfrodiabetespatientsFPWLuginbuhletal.
[103].
Silicon-platinum-sol–gel-derivedpiezoelectricceramicn/rn/rn/r0.
255Watern/rNguyenetal.
[104]Aluminum,piezoelectriczincoxide,siliconnitriden/rn/rn/rn/rWaterTAS,cellmanipulatingsystems,anddrugdeliverysystems.
ElectrochemicalSuzukiandYoneyama[107]Glass-Sin/rn/rn/rn/rStandardsolutionofCuSO4DrugdeliveryYoshimietal.
[108]Glass-platinumelectroden/r3n/rn/rNeurotransmittersolutionAdministrationofneurotransmitterstoneurons.
CreateSynapsesinarticialsensoryorgans.
KabataandSuzuki[109]Glass-platinumelectrode-polyimiden/r1.
4n/r13.
8InsulinInjectionofinsulinandmonitoringofglucoseconcentrationEvaporationbasedEffenhauseretal.
[110]Plexiglassn/rn/rn/r0.
35RingerssolutionContinuousmonitoringDDS/continuousglucosemonitoringfordiabetespatientsn/r:notreported.
932A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942Fig.
14.
SchematicillustrationofMHDmicropump.
forceisthedrivingsourcewhichisperpendiculartobothelectriceldandmagneticeld[82–85].
Theworkinguidtobeusedshouldhaveaconductivity1s/morhigher,inadditiontoexter-nallyprovidingelectricandmagneticelds.
IngeneralMHDmicropumpscanbeusedtopumpuidswithhigherconduc-tivity.
ThisgreatlywidenstheutilizationofMHDmicropumpsinmedicalbiologicalapplications.
ThebubblesgenerationduetoionizationisregardedasamajordrawbackofMHDmicrop-umps.
AschematicillustrationofMHDmicropumpisshowninFig.
14.
JangandLee[81]investigatedperformanceoftheMHDdevicebyvaryingtheappliedvoltagefrom10to60Vwhilethemagneticuxdensitywasretainedat0.
19T.
Theworkinguidusedwasseawater.
Themaximumowratereachedto63l/minwhendrivingcurrentwasretainedat1.
8mA.
Themaximumpressurehead,124kPa,frominlettooutletwasobtainedifthedrivingcurrentwassetandretainedat38mA.
Huangetal.
[82]reporteddesign,microfabricationandtestofDCtypeMHDmicropumpusingLIGAmicrofabricationmethod.
LIGAistheacronymfor"X-rayLithographieGal-vanoformungAbformung,"whichmeansX-raylithography,electrodepositionandmolding.
Adcvoltagesourcewassup-pliedacrosstheelectrodestogeneratethedistributedbodyforceontheuidinthepumpingchamber.
Theexternalmag-neticeldwasappliedusingpermanentmagnets.
Differentconductingsolutionswereusedasthepumpinguids.
Bub-blegenerationaffectedtheowrates.
Bubblegenerationwascausedbyelectrolysisofthepumpinguids.
Bubblegen-erationcouldbereducedbyreversingthedirectionoftheappliedvoltageandacdrivingmechanismwouldimprovetheperformance.
Hengetal.
[83]reportedUV-LIGAmicrofabricationandtestofanac-typemicropumpbasedonthemagnetohydrodynamic(MHD)principle.
Themicrochannelmaterialwasglasssub-stratebasewithPMMAcoverplate.
Aowrateof1900l/minwasachievedwhenacvoltageof15Vwassuppliedat1Hzat75mAcurrent.
Themagneticuxdensity"B"was2.
1T.
LemoffandLee[85]proposedac-typeMHDmicropumpusinganisotropicetchingmicrofabricationprocess.
Flowratesof18.
3and6.
1l/minwereachievedwhenacvoltageof25Vwassuppliedat1kHz.
5.
2.
Electrohydrodynamic(EHD)Themechanismwhichallowsthetransductionofelectricaltomechanicalenergyinanelectrohydrodynamic(EHD)microp-umpisanelectriceldactingoninducedchargesinauid.
TheuidowinEHDmicropumpisthusmanipulatedbyinteractionofelectriceldswiththechargestheyinduceintheuid.
OneoftherequirementsofEHDmicropumpsisthattheuidmustbeoflowconductivityanddielectricinnature.
Theelectricbodyforcedensity→FthatresultsfromanappliedelectriceldwithmagnitudeEisgivenasfollows[86]:→F=q→E+→P·→E12E2E2ερTρ(10)whereqisthechargedensity,εtheuidpermittivity,ρtheuiddensity,Ttheuidtemperatureand→Pisthepolarizationvector.
AschematicgeometryofEHDmicropumpisshowninFig.
15.
ThedrivingforceofDCchargedinjectionEHDmicropumpistheCoulombforceexertedonthechargesbetweenthetwoelec-trodes.
EHDmicropumprequirestwopermeableelectrodesindirectcontactwiththeuidtobepumped.
Ionsareinjectedfromoneorbothelectrodesintotheuidbyelectrochemicalreac-tions.
Apressuregradientdevelopsbetweentheelectrodesandthisleadstouidmotionbetweentheemitterandthecollector.
TherstDCchargedinjectionEHDmicropumpwasdesignedandfabricatedbyRitcheretal.
[86].
Themicropumpconsistedoftwoelectricallyisolatedgrids.
Aowrateof15,000l/minandapressureheadofaround1.
72kPawerereportedat800V.
Thedrivingvoltagecouldbereducedbyreducingthegriddistance.
Fuhretal.
[87]reportedtherstEHDmicropumpbasedontravellingwave-inducedelectroconvection.
Wavesofelectriceldstravellingperpendiculartothetemperatureandconductiv-itygradient,inducechargesintheliquid.
Thesechargesinteractwiththetravellingeldandvolumeforcesaregeneratedtoini-tiateuidtransport.
IntheEHDmicropumpdesignreportedbyFuhretal.
[87],theelectrodearraywasformedonthesub-strateandtheowchannelwasformedacrosstheelectrodes.
ThelimitationsoftheearlierEHDmicropumpswerehighvolt-ageandliquidconductivitywhichmustliebetween1014and109s/cm.
ThemicropumpreportedinRef.
[87]showedthatbyusinghighfrequencybetween100kHzto30MHzandlowvolt-agebetween20and50V,liquidswithconductivitiesbetween104and101s/cmcouldalsobepumped.
Flowintherangeof0.
05–5l/minwasobtained.
Darabietal.
[88]reportedanelectrohydrodynamic(EHD)iondragmicropump.
ThedimensionsofthemicropumpwereFig.
15.
SchematicgeometryofEHDmicropump.
A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–94293319mm*32mm*1.
05mm.
Thedrivingmechanismwasacombinationofelectricaleld,dielectrophoreticforce,dielectricforceandelectrostrictiveforce.
Theparticlesindielectricuidwerechargedbytheappliedelectricaleldsothattheuidwasconveyedbyinducedelectrostrictiveforces.
Theelectriceldwasdevelopedbyapairofelectrodesconsistingofanemitterandacollector.
Badranetal.
[89]investigatedseveraldesignsofanelectro-hydrodynamic(EHD)iondragmicropump.
Theoveralldimen-sionsofthemicropumpchannelwere500m*80m*60m.
Theeffectofseveraldesignparameterssuchasdiffer-entcombinationsofthegapbetweentheelectrodesonthepressure–voltagerelationshipwerestudiedinthiswork.
DarabiandRhodes[90]reportedonthecomputationaluiddynamics(CFD)modellingofiondragelectrohydrodynamicmicropump.
ThesimulationsweredonetonumericallymodelEHDpump-ingtostudytheeffectsofelectrodegap,stagegap,channelheight,andappliedvoltage.
Itwasfoundthatforagivenchan-nelheighttherewasanoptimumd/gratioatwhichtheowrateismaximumwhere'd'isthestagegapand'g'istheelectrodegap.
5.
3.
Electroosmotic(EO)Electroosmosisalsocalledelectrokineticphenomenon,canbeusedtopumpelectrolytesolutions.
Inelectroosmosis,anionicsolutionmovesrelativetostationary,chargedsurfaceswhenelectriceldisappliedexternally.
Whenanionicsolutioncomesincontactwithsolidsurfaces,instantaneouselectricalchargeisacquiredbythesolidsurfaces.
Forexample,fusedsil-icathatisusedcommonlyinthemanufacturingofmicrochannelsbecomesnegativelychargedwhenanaqueoussolutioncomesincontactwithit.
Thenegativelychargedsurfaceattractsthepositivelychargedionsofthesolution.
Whenanexternalelec-triceldisappliedalongthelengthofthechannel,thethinlayerofcation-richuidadjacenttothesolidsurfacesstartmovingtowardsthecathode.
Thisboundarylayerlikemotioneventuallysetsthebulkliquidintomotionthroughviscousinteraction.
AsketchshowingtheelectroosmoticpumpingofuidinachannelispresentedinFig.
16.
Electroosmotic(EO)micropumpshavecertainadvantages.
Animportantoneisthatelectroosmoticpumpingdoesnotinvolveanymovingpartssuchascheckvalves.
StandardandcheapMEMStechniquescanbeusedforfabrication.
Theoperationofelectroosmoticmicropumpisquite.
Flowdirectioninelectroosmoticmicrop-umpsiscontrolledbyswitchingthedirectionoftheexternalelectriceld.
Themajorlimitationsofelectroosmoticmicrop-umpsarehighvoltagerequiredandelectricallyconductivesolution.
Zengetal.
[91]reportedonthedesignanddevelopmentofelectroosmoticmicropumpfabricatedbypacking3.
5mnon-poroussilicaparticlesinto500–700mdiameterfusedsilicacapillariesusingsilicatefritfabricationprocess.
Themicropumpgeneratedmaximumpressureupto2026.
5kPaandmaximumowrateof3.
6l/minat2kVappliedvoltage.
ChenandSantiago[92]reportedaplanarelectroosmoticmicropump.
ThemicropumpwasfabricatedusingtwopiecesFig.
16.
Schematicillustrationofelectoosmoticowinachannel.
ofsodalimeglasssubstrate.
Standardmicrolithographytech-niqueswereusedtogeneratephotoresistetchmasks.
Chemicalwetetchingwasusedtofabricatethepumpingchannelanduidreservoirs.
Themicropumpgeneratedamaximumpressureof33kPaandamaximumowrateof15l/minat1kV.
Chenetal.
[93]reportedonthedevelopmentandchar-acterizationofmultistageelectroosmoticmicropumps.
A1–3stageselectroosmoticmicropumpswerefabricatedusing100mm*320minternaldiametercolumnspackedwith2mporoussilicaparticles,fused-silicacapillariesandstainlesselec-trodes.
Comparedto1-stageelectroosmoticmicropump,theoutpressuresof2and3stageelectroosmoticmicropumpsweretwotothreetimeshigherandtheowratesof2and3stageelectroosmoticmicropumpswereidenticalwiththatofthe1-stagemicropumpatthesamedrivingvoltage.
Thusn-stageelectroosmoticmicropumpscouldbefabricatedwithpotentialapplicationsinminiaturizeduidbasedsystemssuchasmicro-totalanalysissystems(TAS).
Takemorietal.
[94]reportedanovelhigh-pressureelectroos-moticmicropumppackedwithsilicananospheres.
Aplasticchipwasfabricatedthatconneduniformsilicananosphereswithinthechanneltoproducemoreefcientelectroosmoticowthanthesinglemicrochannelwiththesamecrosssectionalarea.
Themaximumowrateof0.
47l/minandthemaximumpressureof72kPawereachievedwhen3kVwasappliedtotheelectroos-moticpump.
Wangetal.
[95]usedsilica-basedmonolithswithhighchargedensityandhighporosityforahigh-pressureelectroosmoticmicropumphavingadiameterof100m.
Themaximumowratesandmaximumpressuregeneratedbythemicropumpusingdeionisedwaterwere2.
9l/minand304kParespectively,at6kVappliedvoltage.
934A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942Fig.
17.
Continuouselectrowetting.
5.
4.
Electrowetting(EW)Electrowettinginvolveswettabilitychangeduetoappliedelectricpotential.
Inelectrowetting,theuidistransportedusingsurfacetension.
Surfacetensionisaninterfacialforcewhichdominatesatmicroscale.
Voltageisappliedonthedielectriclayer,decreasingtheinterfacialenergyofthesolidandliquidsurfacewhichresultsinuidow.
Continuouselectrowetting(EW)isusuallyappliedtoadjustthesurfacetensionbetweentwoimmiscibleliquidssuchasliquid-phasedmetal(e.
g.
mercury)andelectrolyte.
Itsinter-faceisreferredtoas"electricdoublelayer"(EDL)asshowninFig.
17.
Duetoprotonationeffectonthemercurysurface,theelectricpotentialbetweenrightendofmercurydropletandthecathodeofelectrodepairishigherthanthecounterelectricpotentialontheleftside.
Thesurfacetensiondifferencebesideamercurydropletthuspushesthedroplettowardright.
Continu-ouselectrowettinginvolvesnoheatingoftheliquid,demonstratefasterspeedandlowpowerconsumptioncomparedtothermocapillary.
Yunetal.
[96]reportedacontinuouselectrowetting(EW)micropump.
Surfacetensioninducedmotionofmercurydropinamicrochannellledwithelectrolytewasusedastheactuationenergyforthemicropump.
Themicropumpwascomprisedofastackofthreewafersbondedtogether.
Themicrochannelwasformedonaglasswaferandlledwithanelectrolytewherethemercurydropwasinserted.
Themovementofthemercurydropdraggedtheelectrolytewhichdeectedthemembraneformedonthesecondsiliconwafer.
Thevolumetricowratereachedupto70l/minatdrivingvoltage2.
3Vandpowerconsumptionof170W.
Themaximumpressurewasabout0.
8kPabyapplyingvoltageof2.
3Vat25Hzfrequency.
5.
5.
BubbletypeThepumpingeffectinbubbletypemicropumpsisbasedontheperiodicexpansionandcollapseofbubblegeneratedinmicrochannel.
Aschematicillustrationofexpandingandcol-lapsingbubbletypemicropumpisshowninFig.
18.
Fig.
18.
Abubblemicropump.
Thebubbletypemicropumpsalwaysneedtobeheatedsothattheirapplicationscopeislimitedincaseheatingprocessisnotallowedorpreferred.
TsaiandLin[97]reportedavalvelessmicropumpbasedonthermalbubbleactuationandnozzle/diffuserowregulation.
Microbubblewasgeneratedinthemicrochambertocreatepumpingchamber.
Duetoexpansionofthebubble,theowrateatthediffuser,Qdwaslargerthantheoneatthenozzle,Qn.
Whenthepumpingbubblecollapsed,QdwassmallerthanQn.
Thusanetowwasgeneratedfromnozzletodiffuserbyperiodicallycontrolledvoltageinputduringeachcycleconsistingofbubbleexpansionandcollapse.
Thepumpingchamber,nozzle/diffuserowregulatorsandchannelswerefabricatedonasiliconsubstrate.
Themaximumvalueoftheowrateofthebubbletypemicropumpwas5l/minastheappliedvoltagewasexertedperiodicallyat250Hzwith10%dutycycleandpowerconsumptionof1W.
Gengetal.
[98]reportedabubble-basedmicropumpforelec-tricallyconductingliquids.
Thedevicedevelopedaheadofafewmillimetersofwaterwithtypicalowratesintherangeof100l/min.
HoweverhighlocaltemperaturewasobservedduetoahighACvoltageappliedbetweentwochannels.
Zahnetal.
[99]reportedmicroneedlesintegratedwithanon-chipMEMSbubblemicropumpforcontinuousdrugdeliveryapplications.
Theexpansionandcollapseofthermallygeneratedbubbleswithowrectifyingcheckvalveswereusedtoachievethenetowratethroughthedevice.
Themicropumpwasfab-ricatedusingsilicononinsulator(SOI)fabricationprocessandquartzdice.
Visualmethodswereusedtorecordowratesandnetowrateofwateroutofthemicroneedleswasapproximately0.
12l/minwithapressureof3.
9kPa.
DrugdeliverysystemsuchasreportedinRef.
[99]withmicroneedlesintegratedwithmicropump,offersverytightcontroloverinjectionowratesatgivendrugconcentrations.
Inadditionsuchdevicescanalsobeusedforsamplecollectionforanalysis.
Theowdirectioncanbereversedbyreversingthevalvedirectionanduidcanbeextractedviamicropumpthroughmicroneedles.
Thussuchanintegrateddevicecanbeusedtodetermineglucoselevelsfordiabetespatients.
YinandProsperetti[100]reporteddataobtainedonasim-plemicropumpbasedontheperiodicgrowthandcollapseofasinglevapourbubbleinamicrochannel.
Themicropumpwasfabricatedbylasermachiningofmicrochannelof150mdiam-eteronacrylicplate.
Thebottomplatewascoveredbyanotherequalsizedacrylicplate.
Platinumwireswereembeddedinthegroovesinthetopplatetoprovidetheheatingsource.
Forachanneldiameterintherangeof100m,pumpingratesofsev-eraltensofl/minandpressuredifferencesofseveralkPawereA.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942935achievedbythesystem.
Thedesignofsuchtypeofmicrop-umpswassuitableforpumpingelectricallyconductinguidssuchassaltsinsomebiomedicalapplicationsforwhichjouleheatingcanbeusedtogeneratethebubble.
Non-conductinguidsontheotherhandrequiretheuseofheatersembeddedinthemicrochannel.
ApreliminarydemonstrationofmixingeffectwasalsopresentedbyoperatingthemicropumpinparallelintwomicrochannelsjoinedataY-junction.
Thiscouldbepotentiallyusefulwheretwoormorekindsofdosesarerequiredtobemixedupduringtheexpanding/collapsingcycles.
JungandKwak[101]fabricatedandtestedabubble-basedmicropumpwithembeddedmicroheater.
Themicropumpwhichconsistedofapairofvalvelessnozzle/diffuserelementsandapumpchamber,wasfabricatedbyembeddingmicroheatersinasilicondioxidelayeronasiliconwaferwhichservedasthebaseplate.
Thetopplateofthemicropumpwithinletandoutletportswasmadeofglasswafer.
Theperformanceofthemicropumpwasmeasuredusingdeionisedwater.
Theappliedsquarewavevoltagepulsetotheheaterwas30V.
Volumeowratesweremeasuredat40,50,60,70,and80%dutyratiosoverthesevendifferentoperationfrequenciesfrom0.
5to2.
0Hz.
Anoptimalowrateof6l/minat60%dutyratioforthecircularcham-berand8l/minat40%dutyratioforthesquarechamberwasmeasuredwhichindicatedthatmicropumpowratedecreasedasthedutyratioincreased.
5.
6.
Flexuralplanarwave(FPW)micropumpsInultrasonicallydrivenorexuralplatewave(FPW)microp-umps,aphenomenoncalledacousticstreamingoccursinwhichaniteamplitudeacousticeldisutilizedtoinitiatetheuidow.
Anarrayofpiezoelectricactuatorssettheacousticeldbygeneratingexuralplanarwaveswhichpropagatealongathinplate.
ThethinplateformsonewalloftheowchannelasshowninFig.
19.
Thereismomentumtransferfromchannelwalltotheuid.
Fluidmotionbytravellingexuralwaveisusedforthetrans-portofliquidsinanultrasonicallydrivenmicropump.
Flexuralplatewave(FPW)micropumprequireslowoperatingvoltageandthereisnorequirementsofvalvesorheating.
IncontrastFig.
19.
Schematicillustrationofacousticstreaming.
totheEHDmicropumps,thereisnolimitationontheconduc-tivityofliquidsorgases.
FPWpumpingeffectwasreportedbyMoroneyetal.
[102].
Fluidmotionwasdemonstratedwhenultrasonicexuralwavespropagatedinthinmembrane.
Zincoxidewasusedaspiezoelectriclayertogeneratewave.
AFPWmicropumpwasreportedbyLuginbuhletal.
[103].
Piezoelec-triczirconatetitanate(PZT)sol–gelthinlmswereusedasthepiezoelectriclayer.
Thedeviceconsistedofdualtransducerspat-ternedonathinlmcompositemembraneofsiliconnitrideandasol–gelderivedpiezoelectricthinlm.
FPWactuatorwasusedtopumpliquidsinsilicontubeswithaowrateof0.
255l/min.
Nguyenetal.
[104]proposedmicrouidicsystembasedonFPWmicropump.
Themicropumpwasmadeofanaluminum,piezo-electriczincoxide,polysilicon,andlow-stresssiliconnitridemembranewithatypicalthicknessof1–3m.
Themicrouidicsystemhavingasizeof10mm*10mmwasfabricatedusingcommonfabricationtechniques.
TheFPWmicropumprequiredlowoperatingvoltageandlesspowerconsumption(lessthan10mW).
Themicropumpwassuitablefordeliveringsensitivebiomaterials.
Potentialapplicationsincludemicrototalanalysissystem(TAS),cellmanipulatingsystems,anddrugdeliverysystems.
Mengetal.
[105]reportedamicromachinedmicropumpusingultrasonicexuralwaveplatewavetravellingalongathinmembranetoexciteanacousticeldintheuidincon-tactwiththemembrane.
Theacousticeldgeneratedtheuidow.
Bidirectionalandfocusedowwasachievedbyanovelcombinationofradialtransducers.
Potentialapplicationsofthistypeofmicropumpsincludemicrototalanalysissystemsanddrugdeliverydevices.
5.
7.
ElectrochemicalInelectrochemicalmicropumps,theelectrochemicalgen-erationofgasbubblesbytheelectrolysisofwater,providesthedrivingforcetodispenseliquids.
Thuselectrochemicalmicropumputilizesthebubbleforcethatisgeneratedbyelec-trochemicalreactionduringelectrolysis.
Thestructureofthemicropumpiscomposedofelectrodesforsupplyingelectric-ity,uidchannels,chamberforelectrolysis(bubblegeneration)andinletandoutletreservoirs.
AschematicillustrationofelectrochemicalactuationisshowninFig.
20.
Thedesignandconstructionoftheelectrochemicalmicropumpisrel-ativelysimpleanditcanbeeasilyintegratedwithothermicrouidicsystems.
Thelimitationoftheelectrochemicalmicropumpisthatthegeneratedbubblemightcollapseandbecomewaterleadingtounsteadyandunreliablereleaseofdrug.
Bohmetal.
[106]reportedanelectrochemicallyactuatedmicropumpforclosedloopcontrolledmicrodosingsystem.
Electrochemicalgenerationofgasbubblesbyelectrolysisofwaterprovidedthedrivingforcetodispensetheuid.
Thedos-ingsystemcomprisedofamicromachinedchannelandreservoirstructuremadeofsiliconandpyrexcoveronwhichasetofplat-inumelectrodeswerepatterned.
Theelectrodeswereusedforelectrochemicalgasgeneration.
Therateofbubblegenerationwasabout0.
0012l/min.
936A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942Fig.
20.
Schematicillustrationofelectrochemicalactuation.
SuzukiandYoneyama[107]proposedareversibleelectro-chemicalnanosyringepump.
Themicropumpwasfabricatedbymicromachining.
Thinlmthreeelectrodesystemforactuationandsensingwasformedonaglasssubstrate.
Microchannelandreservoirforelectrolytewereformedonthesiliconsubstrate.
Themicropumpoperatedatconstantpotentialusinghydrogenbubbleastheworkingmedium.
Pumpingratewascontrolledbysettingtheappliedpotentialoftheworkingelectrodetoanappro-priatevalue.
Themicropumpcouldbeusedtopumpexternalsolutionintoandoutofthesystemaswellaspumpinginternalsolutionoutofthesystemasrequiredindrugdeliverysystems.
Yoshimietal.
[108]developedamethodofchemicalstim-ulationofneuronsusinganeurotransmittercontaininganelectrochemicalmicropump.
Theelectrochemicalmicropumpwaspoweredbythebubblegeneratedduringwaterelectrolysis.
Themicropumpconsistedofaglassnozzlewith10mdiame-tertip.
Twoplatinumelectrodesforelectrolysiswereembeddedinthepumpbodywhichwaslledwithneurotransmittersolu-tion.
Apotentialdifferenceof3Vwasappliedtotheelectrodestodirectthesolutiontoowtowardstheneurons.
Themicrop-umpwascapableofrapidadministrationofneurotransmitterstoneurons.
Themicropumpdesigncouldbeminiaturizedtocreate"synapses"inarticialsensoryorgans.
KabataandSuzuki[109]developedamicropumpbasedonelectrochemicalprincipleformicroinsulininjectionsystem.
Majorcomponentsofthemicropumpwereathinlmtwo-electrodesysteminaclosedcompartment,asiliconerubberdiaphragmtoseparateanelectrolytesolutionfromaninsulinsolution,andareservoirforinsulin.
Amicroneedlewasattachedtotheoutlet.
Thehydrogenbubblesaregeneratedontheworkingelectrode.
Thisresultedindeformationofthediaphragm,andtheinsulinsolutionwaspumpedoutthroughthemicroneedle.
5.
8.
EvaporationtypeThepumpingprincipleofanevaporation-basedmicropumpissimilartothexylemtransportsystemintrees.
Thedesignprincipleofthemicropumpinvolvescontrolledevaporationofaliquidthroughamembraneintoagasspacecontainingasorptionagent.
AschematicillustrationofthemicropumpisshowninFig.
21.
Effenhauseretal.
[110]reportedanevaporation-baseddis-posablemicropumpconceptthathaspotentialapplicationsincontinuouspatientmonitoringsystems.
Thevapourpressureinthegaschamberwaskeptbelowsaturationandduringthisphase,uidevaporationfromthemembranewasreplacedbycapillaryforceswhichinducedowfromthereservoir.
Evaporatedliq-uidwascontinuouslyreplacedbyowofliquidthroughthemicrouidicsystemsuchasmicrodialysiscatheter.
Theaverageowrateof0.
35l/minwasachieved.
Lowfabricationcost,nomovingpartsandlackofexternalenergysourcewereimpor-tantfeaturesofthistypeofmicropump.
Themaindrawbackofthepumpwasthatitworkedonlyinsuctionmode.
Suchtypeofmicropumpscanbeusedforcontinuousglucosemonitoringwhereadialysissolutionispumpedinaconstantfashionatsmallowratesthroughamicrouidicsystemsuchasmicrodialysiscatheter.
Namasivayametal.
[111]investigatedtranspiration-basedmicropumpfordeliveringcontinuousultralowowrates.
Thepumpingconceptwasbasedonthecommonlyobservedphe-nomenonoftranspirationinplantleaves.
Whentheliquidwasheatedatthemeniscus,thevapourpressureincreasedresultinginenhancedevaporation.
Asthevapourdiffusedout,afreshliquidsupplywasdrawnintothechannelfromareservoirforsteadystateoperation.
Thecapillaryforceaidedimbibitionpro-cess(absorptionoradsorptionofliquid)continueduntilthereservoirwasdepletedafterwhichthemeniscusbegantodrawback.
Fig.
21.
Schematicillustrationofevaporationbasedmicropump.
A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–9429376.
DiscussionThefabricatedstructureofmostofthemechanicalandnon-mechanicalmicropumpsreportedaboveiscomposedofglass,siliconorplastic.
HoweverinviewoftheincreaseduseofMEMS-basedmicropumpsinimplantabledrugdeliverysystemsandemphasisonloweringthemanufacturingcosts,sil-iconisnowbeingreplacedwithpolymerbasedmaterialssuchaspolydimethylsiloxane(PDMS)andpolymethylmethacrylate(PMMA),etc.
Theuseofpolymerbasedmaterialsisrapidlygrowingbecauseoftheirgoodbiocompatibility,excellentphys-icalandmechanicalproperties,lowcostandsimpleandfastfabrication.
Variousfactorsotherthanpressureandowratearerele-vanttotheselectionofmechanicalmicropump.
Themagnitudeofappliedvoltagerequiredforthesemicropumpsisoneoftheimportantfactorswhichcanbecompareddirectlyandwhichvarieswidely.
Voltageisanimportantparameterofmicropumpasitdeterminestheelectronicsandothercomponentstooper-atethemicropump.
InFig.
22,graphicalrepresentationofowratesandoperatingvoltagesforreportedmechanicalmicrop-umpsisshown.
Thevaluesofowrateandvoltageareplottedonalogscaletofacilitatecomparison.
Electrostatic,piezo-electricandthermopneumaticmicropumpsproducehigherowratesattheexpenseofhigh-appliedvoltagevalues.
MicropumpswithconductingpolymerlmactuatorssuchasICPFappeartobethemostpromisingmechanicalmicropumpswhichpro-videadequateowratesatverylowappliedvoltage.
Bimetallicmicropumpsalsorequirelessvoltageandprovidehigherowrates.
Aswithmechanicalmicropumps,performanceofnon-mechanicalmicropumpsisalsodependentonvariousotherfactorsinadditiontopressureandowrate.
InFig.
23,graphicalrepresentationofowratesandoperatingvoltagesforreportednon-mechanicalmicropumpsisshown.
Thevaluesofowrateandvoltageareplottedonalogscaletofacilitatecomparison.
Electroosmoticmicropumpsrequirehighoperatingvoltagesandproducelowowrates.
Electroosmoticmicropumpsaregen-erallyusedinmicroanalysissystemswherelowowratesarerequired.
MHDandEHDmicropumpsproducehighowratesattheexpenseofhighoperatingvoltages.
Electrowettingandelec-trochemicaltypeofmicropumparethemostpromisingoneswhichexhibithighowrateatlowappliedvoltage.
Workinguidpropertiesalsoinuencetheowratesandmustbetakenintoaccountinchoosingnon-mechanicalmicropumps.
Elec-troosmoticandmagnetohydrodynamicmicropumpscanhandlemanyworkinguidswhicharewidelyusedinchemicalandbiologicalanalysis.
Electrochemicalmicropumpscanalsohan-dleavarietyofsolutionssuchasinsulinandneurotransmittersolutionindrugdeliveryapplication.
Flowrate,pressuregeneratedandsizeofthemicropumpsareimportantparametersofmicropumps.
Anotherimportantparameteristheratioofmicropumpowratetoitssizewhichisreferredtoasselfpumpingfrequency[8].
Tocomparemechanicalandnon-mechanicalmicropumps,self-pumpingfre-quencywascalculatedformicropumpswhereboththesizeandowrateswereavailableinadditiontopressure.
InFig.
24,comparisonofmechanicalandnon-mechanicalmicropumpsintermsofsize,self-pumpingfrequencyandowratesispresented.
PressurevaluesofthemicropumpsareplottedinFig.
25.
Sizeofthemicropumpisanimportantparameterasitinu-encestheparticularapplicationofamicropump.
Thedifferentmanufacturingprocessesandoperationalnatureofmechani-Fig.
22.
Comparisonofvoltagevs.
owrateformechanicalmicropumps.
938A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942Fig.
23.
Comparisonofvoltagevs.
owratefornon-mechanicalmicropumps.
calandnon-mechanicalmicropumpsgenerallydictatewhichmicropumpissuitableforaparticularapplication.
Electroos-moticpumpreportedbyZengetal.
[91]whichissmallerinsizeascomparedtoelectroosmoticmicropumpreportedbyChenandSantiago[92],performsbetterintermsofpressuregenerationasshowninFigs.
24and25,respectively.
ThereforeelectroosmoticpumpreportedbyZengetal.
[91]isintendedforapplicationswherecompactnessintermsofsizeisrequiredalongwithhigh-pressuregeneration.
ThermopneumaticmicropumpssuchastheonereportedbyVanDePoletal.
[52]tendtoproducelowowratesandlowpressuresrelativetotheirsize.
Howevertheirperformancemustbemeasuredagainstlowcostmanufactur-ingassociatedwiththesemicropumps.
PiezoelectricmicropumpreportedbyStemmeandStemme[20]performsbetterintermsofowrateachievedwithrelativelybetterself-pumpingfrequencyandsmallersizeascomparedtothepiezoelectricmicropumpreportedbyVanLinteletal.
[34].
AmongallmicropumpscomparedinFig.
24,piezoelectricmicropumpreportedbySch-abmuelleretal.
[36]exhibitsthehighestself-pumpingfrequencyandadequateowratewithrespecttoitssmallsize.
Bimetal-licmicropumpssuchastheonereportedbyZouetal.
[63]exhibithigherself-pumpingfrequencyandhighowrateatrel-Fig.
24.
Comparisonofmechanicalandnon-micropumpsintermsofsize,owrateandselfpumpingfrequency.
A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942939Fig.
25.
Comparisonofmechanicalandnon-micropumpsintermsofsizeandpressure.
ativelysmallersizeofthemicropump.
Similarly,electrostaticmicropumpreportedbyR.
Zengerleetal.
[28]exhibitshighself-pumpingfrequencyatasmallsizeofthemicropump.
There-forefurtherresearchonbimetallicandelectrostaticallyactuatedmicropumpsissuggestedtofurtherimprovetheperformanceofmechanicalmicropumps.
Non-mechanicalElectroosmotic[91]andmechanicalelectrostatic[27–28]andpiezoelectricmicrop-umps[39]ofcomparablesizesshowcomparableperformanceintermsofowrates.
7.
ConclusionThepioneeringworkonmicropumpsstartedin1975.
Howeverresearchanddevelopmentonmicropumpsusingmicrofabricationtechnologystartedin1980sandshiftedtowardsMEMSareaaround1990.
Sincethen,MEMStech-nologieshavebeenappliedtotheneedsofbiomedicalindustry,resultingindevelopmentofvariouscategoriesofmicropumpconcepts,fabricationtechnologies,devicesandapplications.
Micropumpsforvariousbiomedicalapplicationssuchastransdermalinsulindelivery,articialsphincterpros-thesis,antithrombogenicmicropumpsforbloodtransportation,micropumpforinjectionofglucosefordiabetespatientsandadministrationofneurotransmitterstoneuronsandmicrop-umpsforchemicalandbiologicalsensinghavebeenreported.
BiocompatibilityofMEMS-basedmicropumpsisbecomingincreasinglyimportantanduseofbiocompatiblepolymerbasedmaterialssuchaspolydimethylsiloxane(PDMS)andpoly-methylmethacrylate(PMMA),etc.
isgrowing.
Piezoelectricallyactuatedmechanicaldisplacementmicropumpshavebeenthefocusofparticularattentionandhavebeenwidelyusedindrugdeliveryandpointofcaretesting(POCT)systems.
Theappliedvoltageisakeyconstraintfactorfordrugdeliverydrivingpower.
Inotherwords,themicropumpshavetobelimitedbylowappliedvoltagebecauseoftheircriticalappli-cationindrugdeliverysystems.
Electrostaticandpiezoelectricmicropumpsrequirehighdrivingvoltage.
MicropumpswithconductingpolymerlmactuatorssuchasICPFappeartobethemostpromisingmechanicalmicropumpswhichprovideade-quateowratesatverylowappliedvoltages.
Howevertheirperformancemustbeweighedagainstcomplexanddifcultbatchfabrication.
Amongnon-mechanicalmicropumps,elec-trowettingandelectrochemicaltypeofmicropumparesuitableforlowvoltageandhighowrateapplications.
Electroosmoticmicropumpsrequirehighoperatingvoltagesandexhibitlowowrates.
Suchtypesofmicropumpsaresuitableforapplica-tionsinmicro-analysissystems.
Basedontheextensiveliteraturereview,theauthorsconcludethatoverallcommercializationofMEMSmicropumpsindrugdeliveryandbiomedicalappli-cationisstillinitsbeginning.
Alotoftechnicalinformationisavailableforanumberofmicropumpconcepts.
Howevermanyofthenovelmicropumpsreportedinliteraturefordrugdeliveryandotherbiomedicalapplicationsstillneedtobeincor-poratedintopracticaldevices.
Tondamicropumpsuitableforaparticularapplicationisachallengeandthiswillcontinuetomotivateresearcherstoworkondevelopingmicropumpsandincorporatingtheminpracticaldrugdeliveryandbiomedicalsystems.
AcknowledgementsTheauthorswouldliketothankandacknowledgeNationalElectronicsandComputerTechnologyCenter,Thailandforpro-vidingthegrantundertheMEMSproject.
References[1]R.
S.
Shawgo,A.
C.
RichdsGrayson,L.
Yawen,etal.
,BioMEMSfordrugdelivery,Curr.
Opin.
Solid-StateMater.
Sci.
6(2002)329–334.
940A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942[2]S.
L.
Tao,T.
A.
Desai,Microfabricateddrugdeliverysystems:fromparti-clestopores,Adv.
DrugDeliveryRev.
55(2003)315–328.
[3]X.
Z.
Zhang,R.
X.
Zhou,J.
Z.
Cui,etal.
,Microcontrolledrelease,Int.
J.
Pharmaceut.
235(2002)43–50.
[4]D.
L.
Polla,BioMEMSapplicationsinmedicine,in:InternationalSympo-siumonMicromechatronicsandHumanScience,vol.
0-7803-7190-9/01,2001,pp.
13–15.
[5]S.
RShawgo,C.
Amy,R.
Grayson,Li.
Yawen,J.
MichaelCima,BioMEMSfordrugdelivery,Curr.
Opin.
Solid-StateMater.
Sci.
6(2002)329–334.
[6]C.
Amy,R.
Grayson,R.
ScheidtShawgo,Y.
Li,M.
J.
Cima,Elec-tronicMEMSfortriggereddelivery,Adv.
DrugDeliveryRev.
56(2004)173–184.
[7]M.
Staples,K.
Daniel,M.
J.
Cima,R.
Langer,Applicationofmicroandnanoelectromechanicaldevicestodrugdelivery,Pharm.
Res.
23(5)(2006)847–863.
[8]D.
J.
Laser,J.
G.
Santiago,Areviewofmicropumps,J.
Micromech.
Micro-eng.
14(2004)35–64.
[9]P.
Woias,Micropumps-past,progressandfutureprospects,Sens.
Actua-torsB:Chem.
105(2005)28–38.
[10]N.
C.
Tsai,C.
Y.
Sue,ReviewofMEMSbaseddrugdeliveryanddosingsystems,Sens.
ActuatorsA:Phys.
134(2007)555–564.
[11]F.
Tay,MicrouidicsandBioMEMSApplications,1sted.
,Springer,KluwerAcademicPublishers,Boston,2002,pp.
3–24,ISBN:1402072376.
[12]L.
J.
ThomasJr.
,S.
P.
Bessman,Micropumppoweredbypiezoelectricdiskbenders,USpatient3,963,380,USA,1975.
[13]J.
G.
Smits,Piezoelectricalmicropump,EuropeanpatentEP0134614,Netherlands,1984.
[14]J.
G.
Smits,Piezoelectricmicropumpwiththreevalvesworkingperistalti-cally,Sens.
ActuatorsA:Phys.
21(1–3)(1990)203–206.
[15]K.
Kamper,P.
Dopper,J.
Ehrfeld,W.
SOberbeck,Aself-llinglowcostmembranemicropump,in:Proceedingsofthe11thAnnualInternationalWorkshoponMicroelectromechanicalSystems,Heidelberg,Germany,1998.
[16]H.
Q.
Li,etal.
,AhighfrequencyhighowratepiezoelectricallydrivenMEMSmicropump,in:ProceedingsoftheSolidStateSensorandActu-atorWorkshop,HiltonHead,SC,2000.
[17]K.
Sato,M.
Shikida,AnelectrostaticallyactuatedgasvalvewithanS-shapedlmelement,J.
Micromech.
Microeng.
4(1994)205–209.
[18]J.
Fahrenberg,etal.
,Amicrovalvesystemfabricatedbythermoplasticmolding,J.
Micromech.
Microeng.
5(1995)169–171.
[19]M.
Esashi,S.
Shoji,A.
Nakano,Normallyclosedmicrovalveandmicrop-umpfabricatedonasiliconwafer,Sens.
Actuators20(1989)163–169.
[20]E.
Stemme,G.
Stemme,Avalvelessdiffuser/nozzle–baseduidpump,Sens.
ActuatorsA:Phys.
39(2)(1993)159–167.
[21]G.
Lins,L.
Skogberg,AnInvestigationofInsulinPumpTherapyandEvaluationofUsingaMicropumpinaFutureInsulinPump,M.
S.
thesis,KTH,Stockholm,Sweden,2001.
[22]C.
Amy,etal.
,ABioMEMSreview:MEMStechnologyforphysiolog-icallyintegrateddevices,in:ProceedingsoftheIEEE921,2004,pp.
6–21.
[23]J.
M.
Anderson,J.
J.
Langone,Issuesandperspectivesonthebiocom-patibilityandimmunotoxicityevaluationofimplantedcontrolledreleasesystems,J.
ControlRelease57(2)(1999)107–113.
[24]J.
M.
Anderson,Inammation,WoundHealingandtheForeignBodyResponseBiomaterialsScience:AnIntroductiontoMaterialsinMedicine,AcademicPressInc.
,SanDiego,CA,1996(Chapter4(4.
2)).
[25]F.
M.
White,FluidMechanics,Internationalstudented.
,McGrawHillInc.
,1979,pp.
161–162.
[26]E.
Meng,MEMSTechnologyandDeviceforaMicrouidDosingSystem,PhDthesis,CaliforniaInstituteofTechnology,2003.
[27]J.
W.
Judy,T.
Tamagawa,D.
L.
Polla,Surfacemicromachinedmicropump,Proc.
MEMS91(1991)182–186.
[28]R.
Zengerle,M.
Richter,H.
Sandmaier,Amicromembranepumpwithelectrostaticactuation,in:ProceedingsofIEEE,MicroelectromechanicalSystem,1992,pp.
19–24.
[29]R.
Zengerle,J.
Ulrich,S.
Kluge,M.
Richter,A.
Richter,Abidirectionalsiliconmicropump,Sens.
ActuatorsA50(1995)81–86.
[30]C.
Cabuz,W.
R.
Herb,E.
I.
Cabuz,S.
T.
Lu,Thedualdiaphragmpump,in:ProceedingsoftheIEEEMEMS,2001,pp.
519–522.
[31]M.
M.
Teymoori,A.
A.
Sani,Designandsimulationofanovelelectrostaticmicromachinedpumpfordrugdeliveryapplications,Sens.
ActuatorsA:Phys.
117(2005)222–229.
[32]T.
Bourouinay,B.
Alain,J.
P.
Grandchamp,Designandsimulationofanelectrostaticmicropumpfordrugdeliveryapplications,J.
Micromech.
Microeng.
7(1997)186–188.
[33]A.
Machauf,Y.
Nemirovsky,U.
Dinnar,Amembranemicropumpelec-trostaticallyactuatedacrosstheworkinguid,J.
Micromech.
Microeng.
15(2005)2309–2316.
[34]H.
T.
G.
VanLintel,F.
C.
M.
vanDePol,S.
Bouwstra,Apiezoelectricmicropumpbasedonmicromachiningofsilicon,Sens.
Actuators.
15(2)(1988)153–167.
[35]M.
Koch,N.
Harris,A.
G.
R.
Evans,N.
M.
White,A.
Brunnschweiler,Anovelmicromachinedpumpbasedonthicklmpiezoelectricactuation,Sens.
ActuatorsA:Phys.
70(1998)98–103.
[36]C.
G.
J.
Schabmueller,M.
Koch,M.
E.
Mokhtari,A.
G.
R.
Evans,A.
Brunnschweiler,H.
Sehr,Self-aligninggas/liquidmicropump,J.
Micromech.
Microeng.
12(2002)420–424.
[37]K.
Junwu,Y.
Zhigang,P.
Taijiang,C.
Guangming,W.
Boda,Designandtestofahighperformancepiezoelectricmicropumpfordrugdelivery,Sens.
ActuatorsA:Phys.
121(2005)156–161.
[38]S.
W.
Lee,W.
Y.
Sim,S.
S.
Yang,Fabricationandinvitrotestofamicrosy-ringe,Sens.
ActuatorsA:Phys.
83(2000)17–23.
[39]G.
H.
Feng,E.
S.
Kim,Piezoelectricallyactuateddome-shapeddiaphragmmicropump,J.
Microelectromech.
Syst.
14(2005)192–199.
[40]A.
Geipel,A.
Doll,F.
Goldschmidtboing,P.
Jantscheff,N.
Esser,U.
Mass-ing,P.
Woias,Pressureindependentmicropumpwithpiezoelectricvalvesforlowowdrugdeliverysystems,MEMS2006,Istanbul,Turkey,22–26January,2006.
[41]B.
Ma,L.
Sheng,Z.
Gan,G.
Liu,X.
Cai,H.
Zhang,Z.
Yang,APZTinsulinpumpintegratedwithasiliconmicroneedlearrayfortransdermaldrugdelivery,in:Proceedingsofthe56thElectronicComponentsandTechnologyConference,2006,pp.
677–681.
[42]A.
Doll,M.
Heinrichs,F.
Goldschmidtboeing,H.
J.
Schrag,U.
T.
Hopt,P.
Woias,Ahighperformancebidirectionalmicropumpforanovelarticialsphinctersystem,Sens.
ActuatorsA130/131(2006)445–453.
[43]H.
J.
Schrag,GermanPatentDE10,023,634,2003.
[44]H.
J.
Schrag,F.
F.
Padilla,F.
Goldschmidtboing,A.
Doll,P.
Woias,U.
T.
Hopt,GermanArticialSphincterSystem,GASS,rstreportofanovelandhighlyintegratedsphincterprosthesisforthetherapyofmajorfecalincontinence,Biomed.
Technol.
49(2004)274–278.
[45]Y.
C.
Hsu,S.
J.
Lin,C.
C.
Hou,Developmentofperistalticantithrombo-genicmicropumpsforinvitroandexvivobloodtransportationtests,MicrosystemTechnologies,Springer-Verlag14(2008)31–41.
[46]T.
Suzuki,Y.
Teramura,H.
Hata,K.
Inokuma,I.
Kanno,H.
Iwata,H.
Kotera,Developmentofamicrobiochipintegratedtravellingwavemicropumpsandsurfaceplasmonresonanceimagingsen-sors,MicrosystemTechnologies,Springer-Verlag13(2007)1391–1396.
[47]R.
Linnemann,C.
Woias,J.
ASenfft,R.
Linnemann,DitterichAselfprimingandbubbletolerantsiliconmicropumpforliquidsandgases,in:ProceedingsoftheMEMS,98,Heidelberg,Germany,1998,pp.
532–537.
[48]C.
J.
Morris,F.
K.
Forster,Optimizationofacircularpiezoelectricbimorphforamicropumpdriver,J.
Micromech.
Microeng.
10(2000)459–465.
[49]O.
C.
Jeong,S.
S.
Yang,Fabricationandtestofathermopneumaticmicrop-umpwithacorrugatedp+diaphragm,Sens.
ActuatorsA:Phys.
83(2000)249–255.
[50]S.
Zimmermann,J.
A.
Frank,D.
Liepmann,A.
P.
Pisano,Aplanarmicrop-umputilizingthermopneumaticactuationandin-planeapvalves,in:Proceedingsofthe17thIEEEInternationalConferenceonMicroElectroMechanicalSystems(MEMS):MEMS2004TechnicalDigest,Maas-tricht,2004,pp.
462–465.
A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942941[51]W.
K.
Schomburg,J.
Vollmer,B.
Bustgens,J.
Fahrenberg,H.
Hein,W.
Menz,MicrouidiccomponentsinLIGAtechnique,J.
Micromech.
Microeng.
4(1994)186–191.
[52]F.
C.
M.
VanDePol,H.
T.
G.
VanLintel,M.
Elwenspoek,J.
H.
J.
Fluitman,Athermopneumaticmicropumpbasedonmicroengineeringtechniques,Sens.
ActuatorsA:Phys.
21(1990)198–202.
[53]M.
J.
Zdelblick,J.
B.
Angell,Amicrominiatureelectrictouidicvalve,in:Proceedingsofthe4thInternationalConferenceSolidStateSensorsandActuators(Transducer'87),Tokyo,Japan,1987,p.
827.
[54]S.
R.
Hwang,W.
Y.
Sim,D.
H.
Jeon,G.
Y.
Kim,S.
S.
Yang,J.
J.
Pak,Fab-ricationandtestofasubmicroliterlevelthermopneumaticmicropumpfortransdermaldrugdelivery,in:Proceedingsofthe3rdAnnualInterna-tionalIEEEEMBSSpecialTopicConferenceonMicrotechnologiesinMedicineandBiology,Kahuku,Oahu,Hawaii,2005.
[55]J.
H.
Kim,K.
H.
Na,C.
J.
Kang,Y.
S.
Kima,AdisposablethermopneumaticactuatedmicropumpstackedwithPDMSlayersandITOcoatedglass,Sens.
ActuatorsA:Phys.
120(2005)365–369.
[56]O.
C.
Jeong,S.
W.
Park,S.
S.
Yang,J.
J.
Pak,FabricationofaperistalticPDMSmicropump,Sens.
ActuatorsA:Phys.
123/124(2005)453–458.
[57]W.
L.
Benard,H.
Kahn,A.
H.
Heuer,M.
A.
Huff,Atitanium–nickelshapememoryalloyactuatedmicropump,in:InternationalConferenceonSolidStateSensorsandActuators,vol.
1,1997,pp.
361–364.
[58]W.
L.
Benard,H.
Kahn,A.
H.
Heuer,M.
A.
Huff,Thinlmshapememoryalloyactuatedmicropumps,J.
MEMS7(1998)245–251.
[59]D.
Xu,L.
Wang,G.
Ding,Y.
Zhou,A.
Yu,B.
Cai,CharacteristicsandfabricationofNiTi/Sidiaphragmmicropump,Sens.
ActuatorsA:Phys.
93(2001)87–92.
[60]G.
Shuxiang,T.
Fukuda,SMAactuatorbasednoveltypeofmicropumpforbiomedicalapplication,in:IEEEInternationalConference,vol.
2,2004,pp.
1616–1621.
[61]C.
Zhan,T.
Lo,L.
P.
Liu,Asiliconmembranemicropumpwithintegratedbimetallicactuator,ChineseJ.
Electron.
5(1996)29–35.
[62]Y.
Yang,Z.
Zhou,X.
Ye,X.
Jiang,BimetallicThermallyActuatedMicrop-ump,vol.
59,AmericanSocietyofMechanicalEngineers,DynamicSystemsandControlDivision(Publication)DSC,1996,pp.
351–354.
[63]J.
XZou,Y.
ZYe,Y.
Zhou,Y.
Yang,Anovelthermallyactuatedsili-conmicropump,in:Proceedingsofthe1997InternationalSymposiumonMicromechatronicsandHumanScience,October,1997,pp.
231–234.
[64]J.
Pang,Q.
Zou,Z.
Tan,X.
Qian,L.
Liu,Z.
Li,Thestudyofsinglechipintegratedmicrouidicsystem,in:Proceedingsof5thInternationalConferenceonSolidStateandIntegratedCircuitTechnology,October,1998,pp.
895–898.
[65]S.
Guo,T.
Fukuda,K.
Asaka,Anewtypeofshlikeunderwatermicro-robot,in:ProceedingsoftheIEEE/ASMETransactionsonMechatronics,vol.
8,no.
1,2003.
[66]S.
Guo,T.
Fukuda,K.
Kosuge,F.
Arai,M.
Negoro,Microcathetersys-temwithactiveguidewire,in:ProceedingsoftheIEEEinternationalConferenceonRoboticsandAutomation,1995,pp.
79–84.
[67]S.
Tadokoro,S.
Yamagami,M.
Ozawa,Softmicromanipulationdevicewithmultipledegreesoffreedomconsistingofhighpolymergelactuators,in:ProceedingsoftheIEEEInternationalConferenceonMicroelectrome-chanicalSystems,1999,pp.
37–42.
[68]S.
Guo,T.
Nakamura,T.
Fukuda,K.
Oguro,DesignandexperimentsofmicropumpusingICPFactuator,in:ProceedingsoftheSeventhInter-nationalIEEESymposiumonMicroMachineandHumanScience,vol.
0-7803-3596-1/96,1996,pp.
235–240.
[69]S.
Guo,T.
Fukuda,DevelopmentofthemicropumpusingICPFactua-tor,in:ProceedingsofIEEEInternationalConferenceonRoboticsandAutomation,vol.
1,1997,pp.
266–271.
[70]S.
Guo,K.
Sugimoto,T.
Fukuda,K.
Oguro,Newtypeofcapsulemedi-calmicropump,in:IEEE/ASMEInternationalConferenceonAdvancedIntelligentMechatronics(AIM),1999,pp.
55–60.
[71]S.
Guo,K.
Asaka,Polymerbasednewtypeofmicropumpforbiomedicalapplications,in:ProceedingsoftheIEEEConferenceonRobotics&AutomationTaipei,Taiwan,2003,pp.
1830–1835.
[72]S.
Guo,N.
Kato,T.
Fukuda,K.
Oguro,AshmicrorobotusingICPFActuator,in:Proceedingsofthe5thInternationalWorkshoponAdvancedMotionControl,AMC'98,Coimbra,Portugal,1998,pp.
592–597.
[73]S.
Guo,K.
Wakubayashi,N.
Kato,T.
Fukuda,T.
Nakamura,K.
Oguro,AnarticialshrobotusingICPFactuator,in:InternationalIEEESympo-siumonMicromechatronicsandHumanScience,vol.
0-7803-4171-6/97,1997.
[74]S.
Bohm,W.
Olthuis,P.
Bergveld,Aplasticmicropumpconstructedwithconventionaltechniquesandmaterials,Sens.
ActuatorsA:Phys.
77(1999)223–228.
[75]Q.
Gong,Z.
Zhou,Y.
Yang,X.
Wang,Design,optimizationandsimula-tiononmicroelectromagneticpump,Sens.
ActuatorsA:Phys.
83(2000)200–207.
[76]C.
Yamahata,C.
Lotto,E.
AlAssaf,M.
A.
M.
Gijs,APMMAvalve-lessmicropumpusingelectromagneticactuation,MicrouidNanouid1(2005)197–207.
[77]C.
Yamahata,M.
Chastellain,V.
K.
Parashar,A.
Petri,H.
Hofmann,M.
A.
M.
Gijs,PlasticMicropumpwithferrouidicactuation,J.
Micro-electromech.
Syst.
14(2005)96–102.
[78]T.
Pan,S.
J.
McDonald,E.
M.
Kai1,B.
Ziaie1,AmagneticallydrivenPDMSmicropumpwithballcheckvalves,J.
Micromech.
Microeng.
15(2005)1021–1026.
[79]W.
Y.
Sim,H.
J.
Yoon,O.
C.
Jeong,S.
S.
Yang,Aphasechangetypeofmicropumpwithaluminumapvalves,J.
Micromech.
Microeng.
13(2003)286–294.
[80]R.
Boden,M.
Lehto,U.
Simu,G.
Thornell,K.
Hjort,J.
A.
Schweitz,Apolymericparafnmicropumpwithactivevalvesforhighpressuremicrouidics,in:Proceedingsofthe13thInternationalConferenceonSolidStateSensors,ActuatorsandMicrosystems,Seoul,Korea,2005,pp.
201–204.
[81]J.
Jang,S.
S.
Lee,TheoreticalandexperimentalstudyofMHD(magne-tohydrodynamic)micropump,Sens.
ActuatorsA:Phys.
80(2000)84–89.
[82]L.
Huang,W.
Wang,M.
C.
Murphy,K.
Lian,Z.
G.
Ling,LIGAfabrica-tionandtestofaDCtypemagnetohydrodynamic(MHD)micropump,Microsyst.
Technol.
6(2000)235–240.
[83]K.
H.
Heng,W.
Wang,M.
C.
Murphy,K.
Lian,UV-LIGAmicrofabricationandtestofanAC-typemicropumpbasedonthemagnetohydrodynamic(MHD)principle,ProceedingsoftheSPIE-MicrouidicDev.
Syst.
III4177,2000,pp.
174–184.
[84]J.
C.
T.
Eijel,C.
Dalton,C.
J.
Hayden,J.
P.
H.
Burt,A.
Manz,AcircularACmagnetohydrodynamicmicropumpforchromatographicapplications,Sens.
ActuatorsB:Chem.
92(2003)215–221.
[85]A.
V.
Lemoff,A.
P.
Lee,AnACmagnetohydrodynamicmicropump,Sens.
ActuatorsB:Chem.
63(2000)178–185.
[86]A.
Richter,H.
Sandmaier,Anelectrohydrodynamicmicropump,in:ProceedingsofIEEE,MicroelectromechanicalSystems,1990,pp.
99–104.
[87]G.
Fuhr,R.
Hagedorn,T.
Muller,W.
Benecke,B.
Wagner,Pumpingofwatersolutionsinmicrofabricatedelectrohydrodynamicsystems,in:ProceedingsofIEEEMEMS'92,1992,pp.
25–30.
[88]J.
Darabi,M.
Rada,M.
Ohadi,J.
Lawler,Design,fabrication,andtestingofanelectrohydrodynamiciondragmicropump,J.
Microelectromech.
Syst.
11(2002)684–690.
[89]M.
Badran,M.
Moussa,Onthedesignofanelectrohydrodynamiciondragmicropump,Proceedingsofthe2004InternationalConferenceonMEMS,NANOandSmartSystems(ICMENS'04),vol.
0-7695-2189-4/04,IEEE,2004.
[90]J.
Darabi,C.
Rhodes,CFDmodellingofaniondragmicropump,Sens.
ActuatorsA127(2006)94–103.
[91]S.
Zeng,C.
H.
Chen,J.
C.
Mikkelsen,J.
G.
Santiago,Fabricationandchar-acterizationofelectroosmoticmicropumps,Sens.
ActuatorsB:Chem.
79(2001)107–114.
[92]C.
H.
Chen,J.
G.
Santiago,Aplanarelectroosmoticmicropump,J.
MEMS11(2002)672–683.
[93]L.
Chen,H.
Wang,J.
Ma,C.
Wang,Y.
Guan,Fabricationandcharacter-izationofamulti-stageelectroosmoticpumpforliquiddelivery,Sens.
ActuatorsB:Chem.
104(2005)117–123.
942A.
Nisaretal.
/SensorsandActuatorsB130(2008)917–942[94]Y.
Takemori,S.
Horiike,T.
Nishimoto,H.
Nakanishi,T.
Yoshida,Highpressureelectroosmoticpumppackedwithuniformsilicananosphers,in:Proceedingsofthe13thInternationalConferenceonSolidStateSensors,ActuatorsandMicrosystems,Seoul,Korea,June5–9,2005,vol.
0-7803-8952-2/05/IEEE,2005.
[95]P.
Wang,Z.
Chen,H.
C.
Chang,Anewelectroosmoticpumpbasedonsilicamonoliths,Sens.
ActuatorsB:Chem.
113(2006)500–509.
[96]K.
S.
Yun,I.
J.
Cho,J.
U.
Bu,C.
J.
Kim,E.
Yoon,Asurfacetensiondrivenmicropumpforlowvoltageandlowpoweroperations,J.
MEMSl.
11(2002)454–461.
[97]J.
H.
Tsai,L.
Lin,Athermalbubbleactuatedmicronozzle-diffuserpump,microelectromechanicalsystems,in:Proceedingsofthe14thIEEEInter-nationalConference,2001,pp.
409–412.
[98]X.
Geng,H.
Yuan,H.
N.
Oguz,A.
Prosperetti,Bubble-basedmicropumpforelectricallyconductingliquids,J.
Micromech.
Microeng.
11(2001)270–276.
[99]J.
D.
Zahn,A.
Deshmukh,A.
P.
Pisano,D.
Liepmann,Continuouson-chipmicropumpingformicroneedleenhanceddrugdelivery,Biomed.
Microdev.
6(2004)183–190.
[100]Z.
Yin,A.
Prosperetti,Amicrouidicblinkingbubblepump,J.
Micromech.
Microeng15(2005)643–651.
[101]J.
Y.
Jung,H.
Y.
Kwak,Fabricationandtestingofbubblepoweredmicrop-umpsusingembeddedmicroheater,MicrouidNanouid3(2007)161–169.
[102]R.
M.
Moroney,etal.
,MicrotransportinducedbyultrasonicLambwaves,Appl.
Phys.
Lett.
59(1991)774–776.
[103]P.
Luginbuhl,etal.
,MicrofabricatedlambwavedevicebasedonPZTSol–gelthinlmformechanicaltransportofsolidparticlesandliquids,J.
Microelectromech.
Syst.
6(4)(1997)337–345.
[104]N.
T.
Nguyen,A.
H.
Meng,J.
Black,R.
M.
White,Integratedowsensorforinsitumeasurementandcontrolofacousticstreaminginexuralplatewavemicropumps,Sens.
ActuatorsA:Phys.
79(2000)115–121.
[105]A.
H.
Meng,N.
T.
Nguyen,R.
M.
White,Focusedowmicropumpusingultrasonicexuralplatewaves,Biomed.
Microdev.
2(2000)169–174.
[106]S.
Bohm,B.
Timmer,W.
Olthuis,P.
Bergveld,Aclosedloopcontrolledelectrochemicallyactuatedmicrodosingsystem,J.
Micromech.
Micro-eng.
10(2000)498–504.
[107]H.
Suzuki,R.
Yoneyama,Areversibleelectrochemicalnanosyringepumpandsomeconsiderationstorealizelowpowerconsumption,Sens.
Actu-atorsB:Chem.
86(2002)242–250.
[108]Y.
Yoshimi,K.
Shinoda,M.
Mishima,K.
Nakao,K.
Munekane,Devel-opmentofanarticialsynapseusinganelectrochemicalmicropump,J.
Artif.
Organs7(2004)210–215.
[109]A.
Kabata,H.
Suzuki,Microsystemforinjectionofinsulinandmoni-toringofglucoseconcentration,in:Proceedingsofthe5thInternationalconferenceonSensors,Sensors2005,2005,pp.
171–174.
[110]C.
S.
Effenhauser,H.
Harttig,P.
Kramer,Anevaporation-baseddisposablemicropumpconceptforcontinuousmonitoringapplications,Biomed.
Microdev.
4(1)(2002)27–33.
[111]V.
Namasivayam,R.
G.
Larson,D.
T.
Burke,M.
A.
Burns,Transpiration-basedmicropumpfordeliveringcontinuousultralowowrates,J.
Micromech.
Microeng.
13(2003)261–271.
BiographiesA.
NisariscurrentlyPhDcandidateinthedepartmentofdesignandmanufac-turingengineeringattheSchoolofEngineeringandTechnology,AsianInstituteofTechnology,AIT,Bangkok,Thailand.
HisPhDresearchdealswithdesignandfabricationofMEMSbasedmicrouidicdeviceforbiomedicalapplica-tions.
PreviouslyhehasdonehismasterofscienceinadvancedmanufacturingtechnologyfromUniversityofManchester,UnitedKingdomin2002.
Hispostgraduateresearchworkhasbeenpublishedinreferredjournalsandconferenceproceedings.
Hisresearchinterestsareniteelementmodellingofmaterials,micro/nanoelectromechancialsystemsandmicrouidics.
Dr.
NitinAfzulpurkariscurrentlyanassociateprofessorandthecoordinatoroftheMechatronicsandtheMicroelectronicsProgram,AsianInstituteofTechnol-ogy,Thailand.
HeobtainedPhDfromUniversityofCanterbury,NewZealandinmechanicalengineeringwithspecializationinRobotics.
HehaspreviouslyworkedinIndia,NewZealand,JapanandHongKong.
Hehasauthoredoversev-entyveresearchpapersintheeldofRobotics,MechatronicsandMEMS.
Hiscurrentresearchinterestsarecomputervision,MEMSandmechatronicsystems.
HeisamemberofIEEE.
Prof.
BanchongMahaisavariyaiscurrentlyprofessorofOrthopaedicSurgery,DepartmentofOrthopaedicSurgery,FacultyofMedicine,SirirajHospital,MahidolUniversity,Bangkok,Thailand.
HeisalsodeputydeanforAcademicaffairs,FacultyofGraduateStudies,MahidolUniversity,Bangkok,Thailand.
HeobtainedhismedicaldegreefromFacultyofMedicine,SirirajHospital,MahidolUniversityin1979.
HewasobservingFellowatAOTraumaCenteratKarlsruhe,Tubingenin1990.
HewasalsoavisitingFellowinDepartmentofTrauma,Uni-versityofInnsbruck,Austriain2002.
PreviouslyhehasservedasChairman,subcommitteeresearchmethodology,RoyalCollegeofOrthopaedicSurgeonofThailand.
Heiscouncilmember,RoyalCollegeofOrthopaedicSurgeonofThailand.
HeisalsoeditoroftheJournalofThaiOrthopaedicSurgeon.
Dr.
AdisornTuantranontiscurrentlyLabdirectorofNanoelectronicsandMEMSLaboratory,NationalElectronicsandComputerTechnologyCenter(NECTEC),underNationalScienceandTechnologyDevelopmentAgency(NSTDA),Thailand.
HeisamemberofthefoundingcommitteeofNationalNanotechnologyCenter(NANOTEC),ThailandandChairmanofThailand'sNanoelectronicsSeminarandTrainingCommittee.
HehasalsoservedasanadjunctseniorresearchscientistandlectureratAsianInstituteofTechnology(AIT),Bangkok,Thailand.
HeobtainedPhDin2001fromUniversityofCol-oradoatBoulder,Colorado,USA,inelectricalengineeringwithspecializationinOpticalMEMSandLaserandOpticsSystem.
HiscurrentresearchinterestsareopticalMEMS,MicrouidicLab-on-a-chipandoptoelectronicspackaging.
Hehasover100paperspublishedinrefereedjournalsandconferenceproceedings.
HereceivedThailandYoungTechnologistAwardin2004.

什么是BGP国际线路及BGP线路有哪些优势

我们在选择虚拟主机和云服务器的时候,是不是经常有看到有的线路是BGP线路,比如前几天有看到服务商有国际BGP线路和国内BGP线路。这个BGP线路和其他服务线路有什么不同呢?所谓的BGP线路机房,就是在不同的运营商之间通过技术手段时间各个网络的兼容速度最佳,但是IP地址还是一个。正常情况下,我们看到的某个服务商提供的IP地址,在电信和联通移动速度是不同的,有的电信速度不错,有的是移动速度好。但是如果...

轻云互联-618钜惠秒杀,香港CN2大宽带KVM架构云服务器月付22元,美国圣何塞精品云月付19元爆款!海量产品好货超值促销进行中!

官方网站:点击访问青云互联活动官网优惠码:终身88折扣优惠码:WN789-2021香港测试IP:154.196.254美国测试IP:243.164.1活动方案:用户购买任意全区域云服务器月付以上享受免费更换IP服务;限美国区域云服务器凡是购买均可以提交工单定制天机防火墙高防御保护端口以及保护模式;香港区域购买季度、半年付、年付周期均可免费申请额外1IP;使用优惠码购买后续费周期终身同活动价,价格不...

易探云2核2G5M仅330元/年起,国内挂机宝云服务器,独立ip

易探云怎么样?易探云是国内一家云计算服务商家,致力香港服务器、国内外服务器租用及托管等互联网业务,目前主要地区为运作香港BGP、香港CN2、广东、北京、深圳等地区。目前,易探云推出深圳或北京地区的适合挂机和建站的云服务器,国内挂机宝云服务器(可选深圳或北京地区),独立ip;2核2G5M挂机云服务器仅330元/年起!点击进入:易探云官方网站地址易探云国内挂机宝云服务器推荐:1、国内入门型挂机云服务器...

4400av.com为你推荐
网罗设计计算机网络设计主要干什么杨紫别祝我生日快乐祝我生日快乐的歌词中老铁路老挝磨丁经济特区的前景如何?嘉兴商标注册我想注册个商标怎么注册啊?罗伦佐娜米开朗琪罗简介百花百游迎得春来非自足,百花千卉共芬芳什么意思同ip域名什么是同主机域名www.mfav.org手机登录WWW.brcbc.org 能注册么888300.com请问GXG客服电话号码是多少?汴京清谈汴京残梦怎么样
域名抢注工具 NetSpeeder 国外php空间 eq2 html空间 三拼域名 中国智能物流骨干网 789电视网 服务器是干什么的 河南移动m值兑换 ftp免费空间 万网空间购买 web服务器搭建 免费的asp空间 服务器维护 空间申请 乐视会员免费领取 聚惠网 中美互联网论坛 magento主机 更多