Neurocomputing65–66(2005)203–209ModellingavisualdiscriminationtaskB.
Gaillard,J.
FengDepartmentofInformatics,UniversityofSussex,COGS,Falmer,BrightonBN19QH,UKAvailableonline18December2004AbstractWestudytheperformanceofaspikingnetworkmodelbasedonintegrate-and-reneuronswhenperformingabenchmarkdiscriminationtask.
Thetaskconsistsofdeterminingthedirectionofmovingdotsinanoisycontext.
Byvaryingthesynapticparametersoftheintegrate-and-reneurons,weillustratethecounter-intuitiveimportanceofthesecond-orderstatistics(inputnoise)inimprovingthediscriminationaccuracyofthemodel.
Surprisingly,wefoundthatmeasuringtheringrate(FR)ofapopulationofneuronsconsiderablyenhancesthediscriminationaccuracyaswell,incomparisonwiththeringrateofasingleneuron.
r2004ElsevierB.
V.
Allrightsreserved.
Keywords:Discrimination;Firingrate;Inputnoise;Population1.
IntroductionDiscriminatingbetweeninputsisafundamentaltaskforthevisualsystem.
Inmostcases,theaccuracyofthediscriminationisdirectlylinkedtothereactiontime:thisisexpressedastheFittslaw.
Experimentswithrandomdotsstimuliareclassicalwaystostudyit,NewsomeandShadlen[5]haveexperimentedonthisdiscriminationprocessinMacaquemonkeys.
Specically,theyhavestudiedneuronsfromthelateralintraparietal(LIP)areaofthecortex,whosebehaviorARTICLEINPRESSwww.
elsevier.
com/locate/neucom0925-2312/$-seefrontmatterr2004ElsevierB.
V.
Allrightsreserved.
doi:10.
1016/j.
neucom.
2004.
10.
008Correspondingauthor.
E-mailaddresses:bg22@sussex.
ac.
uk(B.
Gaillard),jianfeng@sussex.
ac.
uk(J.
Feng).
dependsbothontheinputcategoryandonthedecisionofthemonkey.
So,thoseneuronsaretypicalofsensorimotordecisionprocesses,neithercompletelydeterminedbythestimulinorcompletelyindependentfromit.
Recently,interestingrelationsbetweenreactiontime(RT)anddiscriminationaccuracyhavebeenshown.
Weimplementedaneuralnetworkmodelforthisdiscriminationtaskusingintegrate-and-re(IF)neurons,sothatwecouldmodelthetimecourseofspikegeneration.
Evenifthemodeltakessimplisticassumptions,thissimplicityrenderstheobviousphenomenonitexhibits.
Wemeasuredtheringrate(FR)bothfromasingleandfromapopulationofneurons,whichenabledustomodeladiscriminationtaskwithinabiologicallyrealistictimescale.
Wecomparedthediscriminativeaccuracyofthepopulationmodeltotheperformanceofthesingleneuron,relativelytothenumberofemittedspikesandtotheprocessingtime.
Inourmodel,theroleofinhibitoryinputsandinputnoisecanaccountfortheFittslaw.
2.
ThediscriminationtaskWehaveimplementedadetailedmodeloftheLIPneuronsthattakepartinthedecisionofthemonkeyduringthetwochoicesdiscriminationtasksetupbyNewsomeetal.
inforexample[5,6].
Inthissetofexperiments,themonkeyshadtowatchadisplayofdots,acertainpercentageofthemmovingconsistentlyinonedirectionoritsopposite,andtherestofthedotsappearingatrandomplacesonthescreenasaperturbingnoise.
Thentheyhadtosignifythedirectionbyaneyemovement.
Thedifcultyofthetaskwascontrolledbymodifyingthepercentageofcoherentlymovingdots.
Weassumethatthediscriminatingneuronsreceivesynapticinputscomposedofanactualsignalperturbedbynoise.
Ifapercentagencofdotsmovescoherentlyinonedirection,thesamepercentageofsynapsesreceivescoherentinput.
Furthermore,weassumethatthespiketrainsarrivingtothosesynapsesarecorrelated.
Therestofthesynapsesreceiverandomlydistributedinputs.
ThesynapticinputsaremodelledasPoissonprocesses.
IthasbeenshownthatthemotiondetectorsofareaMTandMSTthatareinvolvedinthedecisionprocessofthemonkey[1]areconstitutedofcolumnsofneurons,andamodelhasbeenproposedforthisorganization[7].
So,itisprobablethattheneuronsencodingforthesamedirectionareclosetoeachotherandthusresynchronously.
TheoutputsofthediscriminatingneuronsarespiketrainswhoseFRsarerelatedtotheinputofthemovement,sothatwecancrudelymodelthatthisFRbeingbiggerorsmallerthanacriteriameansacommandfortheeyetomoverespectivelyupordown.
SincethereisavariationintheoutputFR,thiscommandcanbeerroneous,e.
g.
theFRisbiggerthanthecriteriumwhenthemovementisdownwards.
Thismimicsanerrormadebythemonkey,andfollowsthebehavioroftherealLIPneuronsthatsuggestthat''thedecisionmightbeembodiedindirecttransforma-tionsbetweentherelevantsensoryandmotorsystems''[5].
Ofcourse,theclearerthestimulus,themorewidelyseparatedtheefferentspiketrains,andthusthelesserrorsthemodelmakes.
ARTICLEINPRESSB.
Gaillard,J.
Feng/Neurocomputing65–66(2005)203–2092043.
ModeldescriptionThediscriminatingneuronmodelusedhereistheclassicalIFmodel[4,9].
WesimplisticallyassumedthateachsynapsereceivesaPoissonprocesswhoserateisproportionallylinkedtothedirectionofonemovingdotonthescreen,butindependentonthevelocity.
So,forncdotsthatmovecoherently,thencsynapsesthatreceivecoherentinputsarecorrelatedbyaconstantc,andreectthecorrelationofactivityofdifferentsynapsesasstudiedin[3,11].
Usingthediffusionapproximationasin[8,9],wereachthesimpliedfollowingdescriptionofthedynamicsofourdiscriminatingneuron,withVasthemembranepotential:dVVdtgmdtNsdtp;wheremXNcellsj11rlj;ands2XNcellsj11rljXnci1Xncj1;jaic1rliljp:Theratiobetweeninhibitoryinputsandexcitatoryinputs:risvariable.
Thenumberofincomingsynapses(correspondingtothenumberofdotsintheexperiments):Ncell100:ljisthedirectionofthejthdot.
Thetimedecayparameterg20ms:Thetimestepfortheintegrationdt0:01ms:Thecorrelationcoefcientbetweencoherentmotionc0:1:Thenumberofcoherentinputsncisvariable.
Coherentinputsaredotsthatmoveconsistentlyinonedirection.
Thus,thecoherenceisdenedasnc=Ncell:TherestingmembranepotentialVrest0mV:ThethresholdmembranepotentialVthreshold20mV:Nisanormallydistributedrandomvariable,NdtpistheBrownianmotion.
Insteadofusingonlyoneneuron,wecanmeasuretheFRofawholepopulation.
Onaverage,generating100spikeswith100neuronsonlyrequiresthetimeforoneneurontogenerateonespike;increasingthepopulationenablesustogenerateasmanyspikesaswewantinaveryshorttime.
ThisrehabilitatestheFRmeasure,inavisualsystemthatonlyhastimefor''onespikeperneuron''asarguedin[8].
Alltheneuronsofthepopulation,modelledasabove,receiveindependentinputswiththesamerates.
3.
1.
IncreasingtheinputnoiseWecaninterprettheequationofthedynamicsofthemembranepotentialoftheIFmodel(3)asaleakymembrane(Vdt=g)thatreceivesaninputmmdt;perturbedbyastochasticnoise(sNdtp).
Sincethisstochasticperturbationisproportionalto1randthemeanisproportionalto1r;thestochasticeffectARTICLEINPRESSB.
Gaillard,J.
Feng/Neurocomputing65–66(2005)203–209205ofthesynapseincreaseswithr,theratiobetweeninhibitoryandexcitatoryinputs.
Asexplainedin[3],anincreaseinthecoefcientofvariabilityintheinputwillincreasethecoefcientofvariabilityoftheefferentspiketrainoftheneuron.
Thus,intuitively,itshouldbemoredifculttodiscriminatebetweentwoinputsfromtheirefferentFR.
However,Fengandhiscolleagues[2]haveformallyproventhatthisisnotthecasewhenthecoherentinputs(thoseuponwhichwediscriminate)arecorrelated.
Moreprecisely,heobtainedthefollowingconclusion:whenthecorrelationispositive,theaccuracyofthediscriminationincreaseswithr.
Weuseacorrelationcoefcientof0.
1,forsynapsesthatreceivethecoherentinput.
Ithasbeenshown[11]thatinareaV5ofthevisualcortexofthemonkeys,thelevelofcorrelationis0.
1andalthoughbeingweak,hasasignicantimpactontheglobalbehavior.
Thetheoreticallycounter-intuitiveresultsthatthelargerthecoefcientofvariation(CV)oftheinput,thebetterthediscriminationwhichisconrmedbythefollowingsimulationresults.
4.
Simulationresults4.
1.
Aperformancecriterium:totalprobabilityofmisclassication(TPM)Foreachsetofparametervalues,weperform100discriminationtrials,foreachdirection,andmeasuretheFReachtime.
TheFRisthenumberofemittedspikesdividedbythetimewindow.
TheexperimenterusestheFRasdecisiveevidence:iftheFRislargerthana'discriminationboundary',thanthemovementisclassiedupward,iftheFRissmaller,thenthemovementisclassieddownward.
ThisdiscriminationboundarydependsontheFRvalues,thusitisoptimalforeachsetofparametervalues.
4.
2.
Discriminationwitha100spikesExtensivesimulationsovertherangeofr,andovertherangeofinputcoherence(percentageofcoherentlymovingdots),producedthefollowingresults,summarizedinFig.
1:Obviously,theTPMdecreaseswhenthecoherenceincreases:themoreseparatedtheinputsare,theeasierthediscriminationtaskis.
TheTPMdecreaseswhenrincreases.
Thisdecreaseisnotmonotonic.
Forthesingleneuron,thebetterperformanceachievedbyincreasingtheinputnoiseoccursonlyforr40:7:Thepopulationperformsmuchbetter,foralmostoneorderofmagnitude,thanthesingleneuron,anditsTPMdecreasessteadilywithr.
Thebetterperformanceofthepopulationcanbeexplainedasfollows.
Inthepopulationapproach,weusetherst100spikesofa100neuronstomeasuretheFR,whichmeansthatweuseonaverageonespikeperneuron.
Longinterspikeintervals(ISI)areunlikelytobeproduced,becausetherewillbehundredspikesproducedARTICLEINPRESSB.
Gaillard,J.
Feng/Neurocomputing65–66(2005)203–209206beforeaspikefollowingalongISIwilleveroccurs.
TheselongerISIsincreasesignicantlythevariabilityoftheefferentFR,thusincreasingtheTPM.
Thisisthereasonforthebetterperformanceofthepopulation.
4.
3.
TimerelatedperformanceFormostbiologicalsystems,theabsoluteperformancemusttakeintoaccountnotonlytheaccuracyatrealizingthetask,butalsothetimespenttoachieveit.
Thetimetogeneratespikesvariesalotwhenrincreases.
Infact,whenr1;theonlypostsynapticinputisnoise,andtheFRisverylow.
WeseeinFig.
2thatgeneratingaARTICLEINPRESS00.
20.
40.
60.
8100.
020.
040.
060.
080.
10.
120.
140.
160.
18RatioTPMSingleNeuron100Neurons5101520253000.
10.
20.
30.
40.
50.
60.
7CoherenceTPM100Neurons,r=0.
98SingleNeuron,r=0.
6SingleNeuron,r=0.
98100Neurons,r=0.
6Fig.
1.
ComparisonoftheTPMofonesingleneuronandofapopulation,forvariousrandcoherences,using100spikes.
Leftpanel,coherence15%:Thetimewindowneededtocollectthese100spikesvariesalotwithparametervalues,especiallyitincreasesdramaticallywithr.
WewillevaluatetheeffectoftimeinFig.
2.
0.
60.
70.
80.
91020004000600080001000012000RATIOTimeto100spikes(ms)1neuron100neurons0.
50.
60.
70.
80.
910100200300400500600RATIOTimetoTPM=0.
1(ms)y=5.
3e+005*x5-1.
9e+006*x4+2.
7e+006*x3-1.
9e+006*x2+6.
6e+005*x-9.
1e+0040200400600800100000.
050.
10.
150.
20.
250.
30.
350.
4Time(ms)TPMr=0.
98cubicinterpolationR=0linearinterpolationFig.
2.
Coherence15%.
Left:timetogetahundredspikesversusr,withapopulationofahundredneuronsandwithasingleneuron.
Middle:Illustrationofthenumericalestimationofthetimetoreachanacceptablediscriminationperformance(TPM0:1).
Right:comparisonoftheevolutionoftheTPMforlongtimewindows,reachingtoonesecond,withr0:98andr0:Whenwewaitforonesecond,theTPMforr0:98is0.
03andtheTPMforr0is0.
09.
B.
Gaillard,J.
Feng/Neurocomputing65–66(2005)203–209207numberofspikessufcienttoreliablymeasureanFRincreasesdramaticallytheprocessingtime.
Thepopulationapproachpartlysolvesthisproblem,but,inordertoputtheTPMinperspective,wehavetomeasuretheevolutionofthequantityoferrorswiththesizeofthetimewindowduringwhichwecollectthespikes.
Thosetimeconsiderationsunderminetheadvantagegainedwithincreasingtheinputnoise;asweseeinFig.
2,itismuchquickertoachieveanacceptableperformancewithexclusivelyexcitatoryinputs.
However,theperformanceofthesystemcanbemuchbetter,overalongtimewindow,withbalancedexcitatoryandinhibitoryinputs(r'1).
5.
ConclusionsWehaveshownthatmeasuringtheFRofapopulationofneuronsenablesustoovercomethetimescaleimpossibilitiesoftenassociatedwiththeFRapproach.
Althoughaugmentingr,i.
e.
theinputnoise,increasestheperfor-manceperspike,itincreasesthereactiontimedramatically.
Theprobabilityofmisclassicationdecreasesmuchquickerforsmallerratios.
However,wehaveseenthatonlyratiosclosetoonecanreachacertainlevelofperformanceunreachablebytheFRofapopulationwithexclusivelyexcitatorysynapses.
ThoseverygoodperformancesareachievedatthecostofaverylongRT.
ThisphenomenonofincreasedaccuracywithalongerprocessingtimeinlivingorganismsisknownastheFittslaw.
Furthermore,thefactthatinhibitoryinputsplayacentralroleinadiscriminationtaskisinagreementwithbiologicaldataasreportedin[10,6].
References[1]K.
H.
Britten,W.
T.
Newsome,M.
N.
Shadlen,S.
Celebrini,J.
A.
Movshon,ArelationshipbetweenbehavioralchoiceandthevisualresponsesofneuronsinmacaqueMT,VisualNeurosci.
13(1996)87–100.
[2]Y.
Deng,P.
Williams,F.
Liu,J.
Feng,Neuronaldiscriminationcapacity,J.
Phys.
A:Math.
General36(2003)12379–12398.
[3]J.
Feng,Istheintegrate-and-remodelgoodenough—areview,NeuralNetworks14(2001)955–975.
[4]W.
Gerstner,W.
Kistler,SpikingNeuronModels,SingleNeurons,Populations,Plasticity,CambridgeUniversityPress,Cambridge,2002.
[5]M.
Shadlen,W.
T.
Newsome,Neuralbasisofaperceptualdecisionintheparietalcortex(arealip)oftherhesusmonkey,J.
Neurophysiol.
86(2001)1835–1916.
[6]M.
Shadlen,J.
I.
Gold,Theneurophysiologyofdecisionmakingasawindowoncognition,in:M.
S.
Gazzaniga(Ed.
),TheCognitiveNeuroscience,thirded.
,MITPress,Cambridge,MA,2004.
[7]E.
P.
Simoncelli,D.
J.
Heeger,AmodelofneuronalresponsesinvisualareaMT,VisualRes.
38(1998)743–761.
[8]S.
Thorpe,R.
Vanrullen,Isitabird,isitaplaneUltra-rapidvisualcategorizationofnaturalandartifactualcategories,Perception(2000)539–550.
ARTICLEINPRESSB.
Gaillard,J.
Feng/Neurocomputing65–66(2005)203–209208[9]H.
C.
Tuckwell,IntroductiontoTheoreticalNeurobiology(2),CambridgeUniversityPress,Cambridge,1988.
[10]X.
J.
Wang,Probabilisticdecisionmakingbyslowreverberationincorticalcircuits,Neuron36(2002)955–968.
[11]E.
Zohary,M.
Shadlen,W.
Newsome,Correlatedneuronaldischargeanditsimplicationsforpsychologicalperformance,Nature370(1994)140–143.
ARTICLEINPRESSB.
Gaillard,J.
Feng/Neurocomputing65–66(2005)203–209209
HostMem近日发布了最新的优惠消息,全场云服务器产品一律75折优惠,美国洛杉矶QuadraNet机房,基于KVM虚拟架构,2核心2G内存240G SSD固态硬盘100Mbps带宽4TB流量,27美元/年,线路方面电信CN2 GT,联通CU移动CM,有需要美国大硬盘VPS云服务器的朋友可以关注一下。HostMem怎么样?HostMem服务器好不好?HostMem值不值得购买?HostMem是一家...
国庆钜惠 最低5折起 限量促销CYUN专注海外精品服务器资源,主营香港CN2 GIA、美国CERA、美国高防服务器资源,实体公司,ISP/IDC资质齐全,客服配备齐全。本次针对国庆推出非常给力的促销活动,旗下所有平台同享,新老客户同享,限时限量,售完截止。活动截止时间:2021年10月9日官网地址:www.cyun.net参与机型:香港CN2 GIA云服务器、香港双程CN2云服...
Krypt这两天发布了ION平台9月份优惠信息,提供一款特选套餐年付120美元(原价$162/年),开设在洛杉矶或者圣何塞机房,支持Windows或者Linux操作系统。ion.kryptcloud.com是Krypt机房上线的云主机平台,主要提供基于KVM架构云主机产品,相对于KT主站云服务器要便宜很多,产品可选洛杉矶、圣何塞或者新加坡等地机房。洛杉矶机房CPU:2 cores内存:2GB硬盘:...
66smsm.com为你推荐
mathplayer比较word,TeX,MathML中的数学公式处理方式的异同点,尽量详细哦,分数不是问题,谢谢哈,会加分的。李子柒年入1.6亿宋朝鼎盛时期 政府财政收入有将近1亿贯铜钱,那么GDP是多少呢?比肩工场比肩是什么意思,行比肩大运的主要意象冯媛甑尸城女主角叫什么名字javmoo.comjavbus上不去.怎么办javbibibibi直播是真的吗www.se222se.com原来的www站到底222eee怎么了莫非不是不能222eee在收视com了,/?求解www.15job.com广州天河区的南方人才市场www.1diaocha.com请问网络上可以做兼职赚钱吗?现在骗子比较多,不敢盲目相信。请大家推荐下xvideos..comxvideos 怎么下载
贝锐花生壳域名 locvps hawkhost优惠码 ion blackfriday pw域名 idc测评网 ixwebhosting 申请个人网站 柚子舍官网 网站卫士 免费全能主机 服务器论坛 免费网络空间 globalsign comodo 瓦工工资 suspended翻译 企业私有云存储 个人web服务器 更多