8.5www.88ququ.com

www.88ququ.com  时间:2021-03-21  阅读:()
Quetal.
AnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16http://www.
ann-clinmicrob.
com/content/9/1/16OpenAccessRESEARCH2010Quetal;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAt-tributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
ResearchAntibioticsusceptibilityofcoagulase-negativestaphylococciisolatedfromverylowbirthweightbabies:comprehensivecomparisonsofbacteriaatdifferentstagesofbiofilmformationYueQu1,AndrewJDaley2,TaghridSIstivan1,SuzanneMGarland2,3,4andMargaretADeighton*1AbstractBackground:Coagulase-negativestaphylococciaremajorcausesofbloodstreaminfectionsinverylowbirthweightbabiescaredforinNeonatalIntensiveCareUnits.
Thevirulenceofthesebacteriaismainlyduetotheirabilitytoformbiofilmsonindwellingmedicaldevices.
Biofilm-relatedinfectionsoftenfailtorespondtoantibioticchemotherapyguidedbyconventionalantibioticsusceptibilitytests.
Methods:Coagulase-negativestaphylococcalbloodcultureisolatesweregrownindifferentphasesrelevanttobiofilmformation:planktoniccellsatmid-logphase,planktoniccellsatstationaryphase,adherentmonolayersandmaturebiofilmsandtheirsusceptibilitiestoconventionalantibioticswereassessed.
Theeffectsofoxacillin,gentamicin,andvancomycinonpreformedbiofilms,atthehighestachievableserumconcentrationswereexamined.
Epifluorescencemicroscopyandconfocallaserscanningmicroscopyincombinationwithbacterialviabilitystainingandpolysaccharidestainingwereusedtoconfirmthestimulatoryeffectsofantibioticsonbiofilms.
Results:Mostcoagulase-negativestaphylococcalclinicalisolateswereresistanttopenicillinG(100%),gentamicin(83.
3%)andoxacillin(91.
7%)andsusceptibletovancomycin(100%),ciprofloxacin(100%),andrifampicin(79.
2%).
Bacteriagrownasadherentmonolayersshowedsimilarsusceptibilitiestotheirplanktoniccounterpartsatmid-logphase.
Isolatesinabiofilmgrowthmodeweremoreresistanttoantibioticsthanbothplanktonicculturesatmid-logphaseandadherentmonolayers;howevertheywereequallyresistantorlessresistantthanplanktoniccellsatstationaryphase.
Moreover,forsomecell-wallactiveantibiotics,concentrationshigherthanconventionalMICswererequiredtopreventtheestablishmentofplanktonicculturesfrombiofilms.
Finally,thebiofilm-growthoftwoS.
capitisisolatescouldbeenhancedbyoxacillinatthehighestachievableserumconcentration.
Conclusion:Weconcludethattheresistanceofcoagulase-negativestaphylococcitomultipleantibioticsinitiallyremainsimilarwhenthebacteriashiftfromaplanktonicgrowthmodeintoanearlyattachedmode,thenincreasesignificantlyastheadherentmodefurtherdevelops.
Furthermore,preformedbiofilmsofsomeCoNSareenhancedbyoxacillininadose-dependentmanner.
BackgroundCoagulase-negativestaphylococci(CoNS),predomi-nantlyStaphylococcusepidermidis,arethemostcommoncausativeagentsofneonatalsepsis[1-3],aconditionwhichhasbeenrelatedtosignificantmorbidityandmor-talityinneonatalintensivecareunits(NICUs)[2].
Thepresenceofacentralvenouscatheterinverylowbirthweight(VLBW)babies(48h),thechoiceiseitherflucloxacillinorvancomycinwithgentamicin.
Ciprofloxacinandrifampicinwerealsoeval-uatedinthisstudyastheefficacyoftheseantibioticsonCoNSbiofilmshasbeenreportedbyotherinvitrostud-ies.
PenicillinGwaspurchasedfromCSLBiotherapies,Parkville,AustraliaandallotherswereobtainedfromSigma-Aldrich,CastleHill,Australia.
EstablishmentofadherentmonolayersBacterialculturesofadherentmonolayerswereestab-lishedfollowingthemethodofMiyakeetal.
(1992),whichinvolvedtheadditionof50μLvolumesofbacterialTable1:Bacterialisolatesandgrowthmediausedforbiofilmformation.
IsolateSpeciesStatusGrowthmediumforbiofilmformationaTSBTSB+1%glucoseTSB+4%NaClicaAicaCicaD1S.
warneriInvasive+---2S.
haemolyticusInvasive----3S.
epidermidisInvasive++++4S.
epidermidisInvasive+---5S.
epidermidisInvasive++++6S.
capitisInvasive+++-7S.
epidermidisInvasive++++8aS.
capitisInvasive+++-8bS.
capitisInvasive+++-9S.
capitisInvasive+++-10S.
epidermidisInvasive+---11S.
epidermidisInvasive++++12S.
epidermidisContaminantw---13S.
epidermidisContaminant++++15S.
capitisContaminantw++-16S.
capitisContaminant+++-17S.
capitisContaminant+++-18S.
capitisContaminant+++-19S.
epidermidisContaminant----20S.
epidermidisContaminant++++21S.
epidermidisContaminant++++22S.
capitisContaminantw+++23S.
epidermidisContaminant++++24S.
epidermidisContaminant++++RP62AS.
epidermidisReference+SP2S.
hominisReference-aSelectionofgrowthmediumwasbasedontheproductionofthehighestbiofilmdensityforeachisolate.
Theamountofbiofilmwasindicatedas:"+",strong(OD600≥0.
24);"w",weak(0.
12≤OD6002*log2inMICorMBCforoxacillin,vancomycin,ciprofloxacinandrifampicin,andanincreaseof>3*log2forMICorMBCforpenicillinandgentamicin,wereconsideredsignificant[38].
Experi-mentstargetingtheeffectsofantibioticsonpreformedbiofilmswererepeatedatleastthreetimesintriplicate.
Onewayanalysisofvariance(ANOVA)orthenon-para-metricMann-Whitneytestwasusedfortwo-setcompar-isonsandap-valueof10241024>102432≤132Biofilm(0.
9-1.
9)*109>1024e>102464>102464>102416>1024d0.
25>10240.
0040.
015Isolate3LogPlanktonic(2.
9-8.
3)*1058160.
250.
250.
250.
25240.
120.
250.
0080.
015Monolayer(5.
0-11.
0)*10532640.
250.
50.
120.
5280.
250.
50.
0020.
004StatPlanktonic(0.
6-2.
2)*109>102432>1024>10241024256Biofilm(0.
3-1.
3)*109>1024>102416160.
25216160.
2520.
54Isolate8aLogPlanktonic(2.
6-5.
5)*105128128323288120.
250.
250.
0080.
03Monolayer(6.
4-11.
1)*105>128>12832646464180.
120.
50.
0040.
015StatPlanktonic(4.
4-4.
9)*108>1024>1024>1024>102410242Biofilm(0.
6-1.
8)*1081024>1024256>1024256>10248>10240.
12>10240.
0044Isolate9LogPlanktonic(3.
1-5.
2)*10532643232816120.
250.
250.
0150.
03Monolayer(4.
6-10.
8)*105>128>12832>1281632280.
250.
50.
0040.
015StatPlanktonic(0.
7-0.
8)*109>1024>1024>1024>1024>1024256Biofilm(1.
1-1.
7)*109>1024>102464>1024>128>10248>10240.
25>10240.
0084Isolate11LogPlanktonic(2.
7-8.
5)*1058864>1283264110.
060.
12>128>128Monolayer(3.
2-17.
8)*1053264>128>1283264120.
060.
12>128>128StatPlanktonic(0.
8-1.
6)*109>1024>1024>1024>10245121024Biofilm(0.
2-0.
6)*109>1024>1024256>1024256>10248>10240.
251664>1024αBiofilm-positiveisolates(OD600>0.
24).
bMICsforCoNSatstationaryphasearenotprovidedasthevaluescouldnotbedeterminedbystandardmethods.
cValuesunderlinedindicateasignificantincreaseintheMICsorMBCsbetweenlog-planktonicandadherentmonolayermodesofgrowth.
dValuesinitalicindicateasignificantchangeintheMBCsbetweenstationary-planktonicandbiofilmmodesofgrowth.
eValuesinboldindicateasignificantincreaseinMICsorMBCsbetweenlog-planktonic/adherentmonolayerandbiofilmmodesofgrowthQuetal.
AnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16http://www.
ann-clinmicrob.
com/content/9/1/16Page8of12adherentmonolayers,however,itisalsolikelythatthedifferencewasduetothedifferentkineticsofbiofilmfor-mationbetweenP.
aeruginosaandStaphylococcusspp.
[19].
ConventionalMICshavebeenusedtoguidethetreat-mentofbiofilm-relatedinfectionsatthefebrilestage,basedontheassumptionthatbiofilm-releasedcellsaresimilarintheirsusceptibilitiestocellsintheplanktonicphase[23].
Reporteddifferencesbetweentheconven-tionalMICsandbiofilmMICswereattributedtolackofstandardizationofinitialinoculaandtothepresenceofsmallcolonyvariants[23].
However,inourstudy,wefoundthatMICsofcellwallactiveantibioticswerefre-quentlyhigherforbiofilmgrownbacteriathanplanktoniccultures.
ThisisconsistentwithrecentstudiesbyMoskowitzetal.
(2004)andMelchioretal.
(2006),whoreportedthatbiofilmMICsofβ-lactamantibiotics,butnototherantibiotics,weremuchhigherthantheconven-tionalMICsforP.
aeruginosaandS.
aureusrespectively[21,24].
Theseresultsarenotsurprisinggiventhatcellwallactiveantibioticsmainlyaffectrapidlygrowingbac-teria.
Biofilm-releasedcellsarelikelytobelessactivethandividingplanktoniccellsatmid-logphase,probablybecausetheyhaverecentlyundergoneaswitchfromabiofilmmodeofgrowthtoafree-livingmode,similartocellsatlag-phasegrowth,andrequireachangeingeneexpressiontoadapttothenewenvironment.
TheMBCsofpenicillinG,gentamicin,oxacillin,andvancomycinforCoNSgrowninabiofilmmodeweregen-erally>1024μg/ml,whichiswellbeyondthehighestachievableserumconcentrations.
Althoughsomeoftheseantibioticsatthehighestachievableserumconcen-trationswereeffectiveagainstbacteriagrownplanktoni-callytomid-logphase,theywereinadequatetokillTable3:Antibioticsusceptibilityoffourbiofilm-negativeisolatesagrownindifferentmodes.
IsolateandmodeofgrowthInitialbacterialdensity(CFU/ml)Penicillin(μg/ml)Gentamicin(μg/ml)Oxacillin(μg/ml)Vancomycin(μg/ml)Ciprofloxacin(μg/ml)Rifampicin(μg/ml)MICMBCMICMBCMICMBCMICMBCMICMBCMICMBCSP2LogPlanktonic(1.
2-4.
1)*1050.
50.
5880.
060.
06120.
120.
120.
0080.
03Monolayer(2.
6-4.
7)*10528c16160.
120.
120.
510.
120.
120.
0040.
008StatPlanktonic(3.
5-9.
5)*107b>10241024d2420.
008Biofilm(1.
0-3.
2)*107128>1024e8320.
122240.
1220.
0020.
008Isolate15LogPlanktonic(2.
2-5.
5)*10512812832641632440.
250.
250.
0150.
03Monolayer(5.
2-16.
4)*105>128>12832641664480.
120.
250.
0040.
008StatPlanktonic(3.
7-7.
9)*108>1024>1024>1024>1024>102464Biofilm(0.
7-0.
9)*108>1024>1024256>1024256>102416>10240.
255120.
0040.
008Isolate19LogPlanktonic(2.
9-7.
4)*105>128>128646428220.
250.
250.
0080.
015Monolayer(3.
2-14.
6)*105>128>12864>12828280.
120.
250.
0020.
008StatPlanktonic(0.
7-1.
5)*109>1024>1024>1024>102410242Biofilm(0.
1-0.
2)*1091024>102464>102464>10244>10240.
2540.
0080.
06Isolate22LogPlanktonic(2.
8-5.
6)*105>128>1286464816440.
120.
250.
0150.
03Monolayer(4.
8-16.
3)*105>128>12832>1283232280.
120.
250.
0040.
008StatPlanktonic(0.
5-0.
7)*109>1024>1024>1024>1024>1024256Biofilm0.
2*1091024>1024>128>1024>128>102416>10240.
2510.
0080.
03aBiofilm-negativeisolatesincludedbiofilm-weakproducer(0.
24>OD600≥0.
12)andbiofilm-negativeproducer(OD6002003,88:F89-93.
3.
CheungGY,OttoM:UnderstandingthesignificanceofStaphylococcusepidermidisbacteremiainbabiesandchildren.
CurrOpinInfectDis2010,23:208-216.
4.
Johnson-RobbinsLA,el-MohandesAE,SimmensSJ,KeiserJF:Staphylococcusepidermidissepsisintheintensivecarenursery:acharacterizationofriskassociationsininfants<1,000g.
BiolNeonate1996,69:249-256.
5.
MaasA,FlamentP,PardouA,DeplanoA,DramaixM,StruelensMJ:Centralvenouscatheter-relatedbacteraemiaincriticallyillneonates:riskfactorsandimpactofapreventionprogramme.
JHospInfect1998,40:211-224.
6.
vonEiffC,PetersG,HeilmannC:Pathogenesisofinfectionsduetocoagulase-negativestaphylococci.
LancetInfectDis2002,2:677-685.
7.
KlingenbergC,AaragE,RonnestadA,SollidJE,AbrahamsenTG,KjeldsenG,FlaegstadT:Coagulase-negativestaphylococcalsepsisinneonates.
Associationbetweenantibioticresistance,biofilmformationandthehostinflammatoryresponse.
PediatrInfectDisJ2005,24:817-822.
8.
OttoM:Staphylococcalbiofilms.
CurrTopMicrobiolImmunol2008,322:207-228.
9.
QinZ,OuY,YangL,ZhuY,Tolker-NielsenT,MolinS,QuD:Roleofautolysin-mediatedDNAreleaseinbiofilmformationofStaphylococcusepidermidis.
Microbiology2007,153:2083-2092.
10.
SutherlandIW:Thebiofilmmatrix--animmobilizedbutdynamicmicrobialenvironment.
TrendsMicrobiol2001,9:222-227.
11.
CostertonJW,StewartPS,GreenbergEP:Bacterialbiofilms:acommoncauseofpersistentinfections.
Science1999,284:1318-1322.
12.
Hall-StoodleyL,CostertonJW,StoodleyP:Bacterialbiofilms:fromthenaturalenvironmenttoinfectiousdiseases.
NatRevMicrobiol2004,2:95-108.
13.
MonzonM,OteizaC,LeivaJ,LamataM,AmorenaB:BiofilmtestingofStaphylococcusepidermidisclinicalisolates:lowperformanceofvancomycininrelationtootherantibiotics.
DiagnMicrobiolInfectDis2002,44:319-324.
14.
NishimuraS,TsurumotoT,YonekuraA,AdachiK,ShindoH:AntimicrobialsusceptibilityofStaphylococcusaureusandStaphylococcusepidermidisbiofilmsisolatedfrominfectedtotalhiparthroplastycases.
JOrthopSci2006,11:46-50.
15.
AndersonGG,O'TooleGA:Innateandinducedresistancemechanismsofbacterialbiofilms.
CurrTopMicrobiolImmunol2008,322:85-105.
16.
StewartPS:Mechanismsofantibioticresistanceinbacterialbiofilms.
IntJMedMicrobiol2002,292:107-113.
17.
SpoeringAL,LewisK:BiofilmsandplanktoniccellsofPseudomonasaeruginosahavesimilarresistancetokillingbyantimicrobials.
JBacteriol2001,183:6746-6751.
18.
CercaN,MartinsS,CercaF,JeffersonKK,PierGB,OliveiraR,AzeredoJ:Comparativeassessmentofantibioticsusceptibilityofcoagulase-negativestaphylococciinbiofilmversusplanktoniccultureasassessedbybacterialenumerationorrapidXTTcolorimetry.
JAntimicrobChemother2005,56:331-336.
19.
AaronSD,FerrisW,RamotarK,VandemheenK,ChanF,SaginurR:Singleandcombinationantibioticsusceptibilitiesofplanktonic,adherent,andbiofilm-grownPseudomonasaeruginosaisolatesculturedfromsputaofadultswithcysticfibrosis.
JClinMicrobiol2002,40:4172-4179.
20.
CeriH,OlsonME,StremickC,ReadRR,MorckD,BuretA:TheCalgaryBiofilmDevice:newtechnologyforrapiddeterminationofantibioticsusceptibilitiesofbacterialbiofilms.
JClinMicrobiol1999,37:1771-1776.
21.
MelchiorMB,Fink-GremmelsJ,GaastraW:ComparativeassessmentoftheantimicrobialsusceptibilityofStaphylococcusaureusisolatesfrombovinemastitisinbiofilmversusplanktonicculture.
JVetMedBInfectDisVetPublicHealth2006,53:326-332.
22.
MizunagaS,KamiyamaT,FukudaY,TakahataM,MitsuyamaJ:InfluenceofinoculumsizeofStaphylococcusaureusandPseudomonasaeruginosaoninvitroactivitiesandinvivoefficacyoffluoroquinolonesandcarbapenems.
JAntimicrobChemother2005,56:91-96.
Received:5February2010Accepted:27May2010Published:27May2010Thisarticleisavailablefrom:http://www.
ann-clinmicrob.
com/content/9/1/162010Quetal;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
AnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16Quetal.
AnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16http://www.
ann-clinmicrob.
com/content/9/1/16Page12of1223.
CeriH,OlsonM,MorckD,StoreyD,ReadR,BuretA,OlsonB:TheMBECAssaySystem:multipleequivalentbiofilmsforantibioticandbiocidesusceptibilitytesting.
MethodsEnzymol2001,337:377-385.
24.
MoskowitzSM,FosterJM,EmersonJ,BurnsJL:ClinicallyfeasiblebiofilmsusceptibilityassayforisolatesofPseudomonasaeruginosafrompatientswithcysticfibrosis.
JClinMicrobiol2004,42:1915-1922.
25.
KumonH:Managementofbiofilminfectionsintheurinarytract.
WorldJSurg2000,24:1193-1196.
26.
LewisK:Persistercellsandtheriddleofbiofilmsurvival.
Biochemistry(Mosc)2005,70:267-274.
27.
LewisK:Multidrugtoleranceofbiofilmsandpersistercells.
CurrtTopMicrobiolImmunol2008,322:107-131.
28.
PettitRK,WeberCA,KeanMJ,HoffmannH,PettitGR,TanR,FranksKS,HortonML:MicroplateAlamarblueassayforStaphylococcusepidermidisbiofilmsusceptibilitytesting.
AntimicrobAgentsChemother2005,49:2612-2617.
29.
QuY,IstivanTS,DaleyAJ,RouchDA,DeightonMA:Comparisonofvariousantimicrobialagentsascatheterlocksolutions:preferenceforethanolineradicationofcoagulase-negativestaphylococcalbiofilms.
JMedMicrobiol2009,58:442-450.
30.
CercaN,MartinsS,SillankorvaS,JeffersonKK,PierGB,OliveiraR,AzeredoJ:EffectsofgrowthinthepresenceofsubinhibitoryconcentrationsofdicloxacillinonStaphylococcusepidermidisandStaphylococcushaemolyticusbiofilms.
ApplEnvironMicrobiol2005,71:8677-8622.
31.
RachidS,OhlsenK,WitteW,HackerJ,ZiebuhrW:Effectofsubinhibitoryantibioticconcentrationsonpolysaccharideintercellularadhesinexpressioninbiofilm-formingStaphylococcusepidermidis.
AntimicrobAgentsChemother2000,44:3357-3363.
32.
RuppME,HamerKE:Effectofsubinhibitoryconcentrationsofvancomycin,cefazolin,ofloxacin,L-ofloxacinandD-ofloxacinonadherencetointravascularcathetersandbiofilmformationbyStaphylococcusepidermidis.
JAntimicrobChemother1998,41:155-161.
33.
BradfordR,AbdulMananR,DaleyAJ,PearceC,RamalingamA,D'MelloD,MuellerY,UahwatanasakulW,QuY,GrandoD,GarlandS,DeightonM:Coagulase-negativestaphylococciinvery-low-birth-weightinfants:inabilityofgeneticmarkerstodistinguishinvasivestrainsfrombloodculturecontaminants.
EurJClinMicrobiolInfectDis2006,25:283-290.
34.
MiyakeY,FujiwaraS,UsuiT,SuginakaH:Simplemethodformeasuringtheantibioticconcentrationrequiredtokilladherentbacteria.
Chemotherapy1992,38:286-290.
35.
DeightonMA,CapstickJ,DomalewskiE,vanNguyenT:MethodsforstudyingbiofilmsproducedbyStaphylococcusepidermidis.
MethodsEnzymol2001,336:177-195.
36.
Villain-GuillotP,GualtieriM,BastideL,LeonettiJP:InvitroactivitiesofdifferentinhibitorsofbacterialtranscriptionagainstStaphylococcusepidermidisbiofilm.
AntimicrobAgentsChemother2007,51:3117-3121.
37.
GualtieriM,BastideL,Villain-GuillotP,Michaux-CharachonS,LatoucheJ,LeonettiJP:InvitroactivityofanewantibacterialrhodaninederivativeagainstStaphylococcusepidermidisbiofilms.
JAntimicrobChemother2006,58:778-783.
38.
ClinicalandLaboratoryStandardsInstitute(CLSI):Methodsfordilutionantimicrobialsusceptibilitytestsforbacteriathatgrowaerobically.
CLSIdocumentM7-A7,approvedstandard.
7thedition.
Wayne,PA;CLSI;2004.
39.
MurrayPR,BaronEJ,JorgensenJH,LandryML,PfallerMA,(ed):ManualofClinicalMicrobiology.
Washington,D.
C.
:ASMPress;2007.
40.
VillariP,SarnataroC,IacuzioL:MolecularepidemiologyofStaphylococcusepidermidisinaneonatalintensivecareunitoverathree-yearperiod.
JClinMicrobiol2008,38:1740-1746.
41.
LabthavikulP,PetersenPJ,BradfordPA:InvitroactivityoftigecyclineagainstStaphylococcusepidermidisgrowinginanadherent-cellbiofilmmodel.
AntimicrobAgentsChemother2003,47:3967-3969.
42.
DonlanRM:Biofilms:microbiallifeonsurfaces.
EmergInfectDis2002,8:881-890.
43.
ChristensenGD,SimpsonWA,YoungerJJ,BaddourLM,BarrettFF,MeltonDM,BeacheyEH:Adherenceofcoagulase-negativestaphylococcitoplastictissuecultureplates:aquantitativemodelfortheadherenceofstaphylococcitomedicaldevices.
JClinMicrobiol1985,22:996-1006.
44.
OttoM:Virulencefactorsofthecoagulase-negativestaphylococci.
FrontBiosci2004,9:841-863.
45.
EdmistonCEJr,GoheenMP,SeabrookGR,JohnsonCP,LewisBD,BrownKR,TowneJB:Impactofselectiveantimicrobialagentsonstaphylococcaladherencetobiomedicaldevices.
AmJSurg2006,192:344-354.
46.
WuJA,KusumaC,MondJJ,Kokai-KunJF:LysostaphindisruptsStaphylococcusaureusandStaphylococcusepidermidisbiofilmsonartificialsurfaces.
AntimicrobAgentsChemother2003,47:3407-3414.
47.
MoretroT,HermansenL,HolckAL,SidhuMS,RudiK,LangsrudS:Biofilmformationandthepresenceoftheintercellularadhesionlocusicaamongstaphylococcifromfoodandfoodprocessingenvironments.
ApplEnvironMicrobiol2003,69:5648-5655.
48.
GollerCC,RomeoT:Environmentalinfluencesonbiofilmdevelopment.
CurrTopMicrobiolImmunol2008,322:37-66.
doi:10.
1186/1476-0711-9-16Citethisarticleas:Quetal.
,Antibioticsusceptibilityofcoagulase-negativestaphylococciisolatedfromverylowbirthweightbabies:comprehensivecomparisonsofbacteriaatdifferentstagesofbiofilmformationAnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16

Hostodo商家提供两年大流量美国VPS主机 可选拉斯维加斯和迈阿密

Hostodo商家算是一个比较小众且运营比较久的服务商,而且还是率先硬盘更换成NVMe阵列的,目前有提供拉斯维加斯和迈阿密两个机房。看到商家这两年的促销套餐方案变化还是比较大的,每个月一般有这么两次的促销方案推送,可见商家也在想着提高一些客户量。毕竟即便再老的服务商,你不走出来让大家知道,迟早会落寞。目前,Hostodo有提供两款大流量的VPS主机促销,机房可选拉斯维加斯和迈阿密两个数据中心,且都...

Sharktech($49/月),10G端口 32GB内存,鲨鱼机房新用户赠送$50

Sharktech 鲨鱼机房商家我们是不是算比较熟悉的,因为有很多的服务商渠道的高防服务器都是拿他们家的机器然后部署高防VPS主机的,不过这几年Sharktech商家有自己直接销售云服务器产品,比如看到有新增公有云主机有促销活动,一般有人可能买回去自己搭建虚拟主机拆分销售的,有的也是自用的。有看到不少网友在分享到鲨鱼机房商家促销活动期间,有赠送开通公有云主机$50,可以购买最低配置的,$49/月的...

ZJI(月付450元),香港华为云线路服务器、E3服务器起

ZJI发布了9月份促销信息,针对香港华为云线路物理服务器华为一型提供立减300元优惠码,优惠后香港华为一型月付仅450元起。ZJI是原来Wordpress圈知名主机商家:维翔主机,成立于2011年,2018年9月更名为ZJI,提供中国香港、台湾、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册等业务,商家所选数据中心均为国内访问质量高的机房和线路,比如香港阿里云、华为...

www.88ququ.com为你推荐
小度商城小度怎么下载app?小度商城小度智能音箱1s上面的黄圈不熄灭怎么回事,第一天还能熄灭地陷裂口山崩地裂的意思陈嘉垣陈浩民、马德钟强吻女星陈嘉桓,求大家一个说法。rawtools相机中的RAW是什么意思?罗伦佐娜手上鸡皮肤怎么办,维洛娜毛周角化修复液www.javmoo.comjavimdb是什么网站为什么打不开www.kaspersky.com.cn卡巴斯基杀毒软件有免费的吗?稳定版的怎么找?本冈一郎只想问本冈一郎的效果真的和说的一样吗?大概多长时间可以管用呢?用过的进!彪言彪语寻找一个电影和里面的一首歌,国产的,根据真实故事改编的校园爱情电影,里面的男主角是个屌丝但很会弹钢
shopex虚拟主机 中文域名注册 个人域名备案流程 fastdomain 42u机柜尺寸 英语简历模板word 双12活动 丹弗 上海联通宽带测速 中国电信测速器 免费的asp空间 国内域名 lamp什么意思 免费个人网页 阿里云个人邮箱 免费主页空间 博客域名 石家庄服务器 phpwind论坛 pptpvpn 更多