数列和函数极限部分习题课1.
数列极限部分几个常用的数列极限结论:(1)01lim=∞→nn;(2);(3)1||,0lim=∞→aann;(4)ennn=+∞→)11(lim;(5)01,01=∞∞=;(6)1lim=∞→nnn.
求解数列极限的几种方法:(1)使用上述几种极限结论.
例:001001111lim11lim222=++=++=++∞→∞→nnnnnnn一般地,>∞==+++∞→kknnknnnaaaaaaaLLL2注:关于求和形式的数列极限问题,有四种方法求解:1)求出和的表达式,利用运算规则求;2)使用两边夹原则计算,此时注意放缩的不等式约束应当使得和式两边的极限相等(一般都是放缩分母,而保持分子);3)将和式整体看成一个由递推关系表达的数列,写出递推关系,利用下面的单调有界必有极限准则处理;4)化为积分计算,此方法超出现在的内容.
(5)使用单调有界必有极限准则.
该原则具体的讲是单调递增有上界、单调递减有下界的数列必有极限.
利用该准则时有三个方面的问题需要考察:1)单调性;2)有界性;3)计算极限.
设递推关系为,其他形式的递推关系可以用类似的方法.
)(1nnxfx=+1)单调性的判别.
判别的方法通常有下面几种:i)比较nnxx+1与0的大小,又有两个方法,一是利用nnnnxxfxx=+)(1的性质;二是利用得到关系)()(11+=nnnnxfxfxxnnxx+1的变化规律.
ii)比较与1的大小(这种方法通常是对正数列使用),也有两种方法,一是利用nnxx/1+nnnnxxfxx/)(/1=+;二是利用)(/)(/11+=nnnnxfxfxx.
2)有界性的判别.
i)利用递推关系函数的性质直接判断;ii)数学归纳法说明,先猜测上界或者下界,再证明.
注意:有的时候需要先证明有界性,并利用其上界或者下界证明单调性.
f3)极限值的计算.
在递推关系两边同时取极限,可以得到关于极限值的方程,求解该方程再利用极限的性质确定极限值.
)(xfx=需要说明的是:并非所有用递推关系给出的数列都可以用上面的方法证明,如果说可以按照中学所学的数列通项的求解方法计算数列的一般项,则不需要使用单调有界准则.
反之,有些数列虽然已经给出一般项公式,但是无法直接计算,此时可以对具体的数列使用单调有界准则计算.
例:1),(2111>=+=+axxaxxnnn.
(1)有界性.
02211>=≥+axaxxnnn,(2)单调性.
0)(21)(211=≤=+aaxxaxxnnnn,单调递减.
(另法:30,1)1(2121>≤+=+nnnnxxaxx)(3)计算极限.
设,则递推关系式两边取极限得到xxnn=∞→lim)(21xaxx+=,得到ax±=,而,因此0≥xax=.
例:设2,3,341212===++xxxxxnnn,证明存在并求其值.
nnx∞→lim例:P88,62.
函数极限部分求解极限的方法:(强烈建议在计算极限时,先进行下面的第一步)(1)直接将ax=代入,如果能够直接算出数值,则该数就是极限,这里可以使用)(xf01,01=∞∞=规则.
例:413333lim223=+=+→xxx;∞=+→xxx1lim0如果不能算出数值,那么必定属于下面几种形式中的一种:00,0,1,,0,,00∞∞∞∞∞∞∞七种未定形式和无穷小量乘有界量.
(2)约去公因式如果被求极限函数是个分式函数,那么可以通过约去公因式化简函数.
例:6131lim)3)(3(3lim93lim3323=+=+=→→→xxxxxxxxx(3)分子有理化和分母有理化例:2311lim)1)(1()1)(1(lim)1)(1)(1()1)(1)(1(lim11lim332133213323332131=+++=+++=++++++=→→→→xxxxxxxxxxxxxxxxxxxxxx(4)变量代换.
使用变量代换的目的是将被求极限函数化简或变形为易求极限的函数.
但要注意的是变量代换将原来的自变量变成了新的变量,因此变量的变化趋势也应当作相应的变化.
例:11lim0+→xxx.
该极限可以使用分母有理化求解,现在使用变量代换的方法.
作变量代换1+=xu,4相应的变化趋势变为,将原来关于0→x1→ux的极限问题变为关于u的极限问题.
2)1(lim11lim11lim1210=+==+→→→uuuxxuux.
(5)使用两个基本极限1sinlim0=→xxx,exxx=+→10)1(lim,exxx=+1∞→)1(lim.
例:2112coslimsinlim2cossin2lim2sinlim0000====→→→→xxxxxxxxxxxx也可以这样做:)2(212sinlim222sinlim22sinlim000xuuuxxxxuxx=====→→→其中令例:xxxarctanlim0→,令xuarctan=,即uxtan=,变为.
0→x0→u1cossinlimtanlimarctanlim000===→→→uuuuuxxuux.
使用第二个基本极限的方法和前面关于数列的类似极限的方法相同.
例:eexxxxxxxxxxxxxxxxxxxxxxx==+=+=+=→→→→→11lim1110111010100])111[(lim)111(lim)11(lim)11(lim一般地,对于形如的极限,如果)()(limxgaxxf→∞==→→)(lim,1)(limxgxfaxax,可以用下面的步骤完成)(]1)([lim)(]1)([1)(1)()(})]1)((1{[lim)]1)((1[lim)(limxgxfxgxfxfaxxgaxxgaxaxexfxfxf→→→→=+=+=其中a可以是有限数,也可以是无限数.
(6)利用左右极限计算或者判断函数的极限:)(limxfax→存在的充要条件为左右极限都存在且相等)(lim)(limxfxfaxax→+→=.
该规则使用的场合一般有两个:一是对分段函数的极限(含有绝对值的函数也是看作分段函数),二是求无穷远点的极限.
对于分段函数在分段点处的极限,由于分段函数在分段点左右的函数表达式不一样,因此需要考虑左右极限,左极限就是求分段函数在分段点左边的表达式在该点的极限(左极限中的函数已经限定ax).
当左右极限都存在而且相等时,分段函数在分段点的极限才存在.
对于无穷远点的极限是指5)(limxfx→∞存在的充要条件为)(lim)(limxfxfxx+∞→∞→=.
几个正无穷和负无穷点处极限不相等的例子.
2arctanlim,2arctanlim,0lim,limππ===+∞=∞→+∞→∞→+∞→xxeexxxxxx例:xxxx+∞→21lim.
2111limlim))((lim1lim22222=++=++=+++++=++∞→+∞→+∞→+∞→xxxxxxxxxxxxxxxxxxxxx0)111(limlim))((lim1lim22222=++=++=+++++=+∞→∞→∞→∞→xxxxxxxxxxxxxxxxxxxxx从而xxxx+∞→21lim不存在.
其中注意的是∞→x时,应当有0例:设<≥+=0sin01)(xxxxxxf注意到1sinlim)(lim00==→→xxxfxx,1)1(lim)(lim00=+=+→+→xxfxx,因此.
1)(lim0=→xfx例:xxx||lim0→.
1lim||lim,1lim||lim0000====→→+→+→xxxxxxxxxxxx,从而xxx||lim0→不存在.
例:xxe10lim→.
+→0x时,+∞→x1,从而+∞→xe1;→0x时,∞→x1,从而01→xe.
所以xxe10lim→不存在.
(7)使用等价无穷小替换.
若1)()(lim,0)(lim)(lim===→→→xgxfxgxfaxaxax,则称和为当)(xf)(xgax→时的等价无穷6小,记为.
注意在使用等价无穷小替换时,替换的部分一定要是乘或除因子,对于加和减因子则不能使用等价无穷小替换.
需要记住的几个等价无穷小替换)(),(~)(axxgxf→(1);(2);(3))0(,~sin→xxx)0(,~tan→xxx)0(,~arctan→xxx(4);(5);)0(,~arcsin→xxx)0(,~1→xxex(6);(7))0(,ln~1→xaxax)0(,~)1ln(→+xxx;(8))0(,21~cos12→xxx;(9))0(,21~11→+xxx;(10))0(,1~11→+xxnxn;(11))0(,~1)1(→+xxxαα例:30tansinlimxxxx→错误解法,使用和;得到)0(,~sin→xxx)0(,~tan→xxx0limtansinlim3030==→→xxxxxxxx.
错误原因为所使用的两个等价无穷小都是加减因子,不能使用等价无穷小.
要使用等价无穷小必须将加减因子变形为乘除因子.
3030)1(costanlimtansinlimxxxxxxxx=→→,这样就可以使用等价无穷小和)0(,~tan→xxx)0(,21~cos12→xxx得到21)21(lim)1(costanlimtansinlim3203030===→→→xxxxxxxxxxxx.
例:61312131lim21lim11lim11lim]11[]11[lim11lim003003030===++=++=++→→→→→→xxxxxxxxxxxxxxxxxxxx7
racknerd发表了2021年美国独立日的促销费用便宜的vps,两种便宜的美国vps位于洛杉矶multacom室,访问了1Gbps的带宽,采用了solusvm管理,硬盘是SSDraid10...近两年来,racknerd的声誉不断积累,服务器的稳定性和售后服务。官方网站:https://www.racknerd.com多种加密数字货币、信用卡、PayPal、支付宝、银联、webmoney,可以付...
官方网站:点击访问华纳云活动官网活动方案:一、香港云服务器此次推出八种配置的香港云服务器,满足不同行业不同业务规模的客户需求,同时每种配置的云服务都有不同的带宽选择,灵活性更高,可用性更强,性价比更优质。配置带宽月付6折季付5.5折半年付5折年付4.5折2年付4折3年付3折购买1H1G2M/99180324576648直达购买5M/17331556710081134直达购买2H2G2M892444...
在之前的一些文章中有提到HostYun商家的信息,这个商家源头是比较老的,这两年有更换新的品牌域名。在陆续的有新增机房,价格上还是走的低价格路线,所以平时的折扣力度已经是比较低的。在前面我也有介绍到提供九折优惠,这个品牌商家就是走的低价量大为主。中秋节即将到,商家也有推出稍微更低的88折。全场88折优惠码:moon88这里,整理部分HostYun商家的套餐。所有的价格目前都是原价,我们需要用折扣码...
极限兵神为你推荐
网易网盘关闭入口网易网盘 怎么没有了sonicchat国外军人的左胸上有彩色的阁子是什么意思西部妈妈网我爸妈在云南做非法集资了,钱肯定交了很多,我不恨她们。他们叫我明天去看,让我用心的看,,说是什么...18comic.funAnime Comic Fun是什么意思啊 我不懂英文罗伦佐娜罗拉芳娜 (西班牙小姐)谁可以简单的介绍以下丑福晋大福晋比正福晋大么www.55125.cn如何登录www.jbjy.cnjavmoo.com0904-javbo.net_avop210hhb主人公叫什么,好喜欢,有知道的吗www.niuav.com给我个看电影的网站lcoc.topeagle solder stop mask top是什么层
联通vps 漂亮qq空间 kvmla ix主机 免费ftp空间 sub-process 2017年黑色星期五 太原联通测速平台 刀片服务器是什么 卡巴斯基是免费的吗 服务器防火墙 主机返佣 服务器托管价格 优惠服务器 cc加速器 alertpay 俄勒冈州 火山互联 华为云服务器宕机 装修瓦工招聘 更多