sourcescaleup

scaleup  时间:2021-03-28  阅读:()
Scale-upDesignofUltrasoundIrradiatorforAdvancedOxidationProcess(AOP)UsingCOMSOLSimulationZongsuWei*11TheOhioStateUniversity,Columbus,OH,USA*Correspondingauthor:HI470,2070NeilAvenue,Columbus,OH,43210,USA;Phone:(614)906-8511;Fax:(614)292-3780;E-mail:wei.
187@osu.
eduAbstract:Inthispaper,COMSOLMultiphysicswasusedasatooltodesignandcharacterizeanultrasoundirradiatorwithamulti-steppedconfiguration,whichaimstoovercomedisadvantagesoftypicalirradiatorsandtoenhancecontaminantremovalinlarge-scalewatertreatments.
Inthesimulation,threedifferentphysicswerecoupledtogetherforeachcomponentofthedesignedultrasonicsystem:piezoelectricmaterialmodelfortransducer,linearelasticmaterialmodelforirradiator,andpressureacousticsmodelforreactor.
TheCOMSOLadequatelysimulatedtheacousticwavegenerationinthepiezoelectrictransducerandpropagationthroughtheirradiator.
Thesimulatedacousticpressurelevelshowsthemulti-steppedirradiatorsuccessfullyintroducedmultiplehighpressureregionsandthusmorereactivezones.
Acousticsimulationsinthewatertanksuggestedthedesignedirradiatorhasagreatcapacityforlarge-scaleAOPs.
ThesecompatiblesimulationresultstoexperimentalmeasurementsindicateCOMSOLisareliabletoolinthedesignandcharacterizationofascaled-upultrasoundirradiator.
Keywords:Ultrasound,Irradiator,Piezoelectric,Cavitation,AdvancedOxidationProcess(AOP)1.
IntroductionUltrasoundhasbeenconsideredapromisinggreentechnologyfortheadvancedoxidationprocess(AOP)sinceitaddsnochemicalstothetreatedwater.
Ithasbeenshowntoeffectivelydestroyvariousorganicandinorganiccontaminantsinwater[1].
Ultrasoundinducescavitationbubblesintheaqueoussolution,andcollapseofthosebubblesgenerateslocalized"hotspots"wheretemperatureandpressureareashighas5000Kand1000atm,respectively[2].
Inthisextremecondition,thermolysisandOH(fromwatermoleculedissociationbyheat)oxidationaretwomechanismsforthecontaminantdegradation[1,2].
AlthoughultrasoundtechnologyshowsgreatpotentialintheAOP,thecommonly-usedultrasoundirradiator(e.
g.
,horntypeinFigure1a)generatesalocalizedcavitationandnon-uniformcavitationfieldintreatmentreactors.
Theinhomogeneoustreatmentmakesitverychallengingtoscale-uptheAOPwiththetypicalirradiator[3].
Therefore,anovelconfigurationdesignofultrasoundirradiatorisnecessarytoenhanceandmaximizethecavitation-inducedchemicaleffectsforlarge-scaleAOP.
Inthedesignprocess,computationalsimulationwascommonlyusedasreferences.
Whenexpectingefficiencyandeconomicsinthedesignofanexpensivelarge-scalesystemforAOP,thecomputationaltoolseemsmoreattractivesinceitcaneasilyinvestigatedifferentreactorgeometries,irradiatorconfigurations,andultrasoundfrequenciestooptimizethedesign.
Ofthosecomputationaltools,COMSOLMultiphysicshavebeenappliedtosimulateacousticfieldandsonochemistryinreactors[4-6],whichprovidedcompatibleresultstolaboratorymeasurements.
Thedesignandcharacterizationbecomemuchsimpleandstraightforwardwiththeaidofcomputationalsimulations.
Inthisstudy,COMSOLsimulationwascarriedouttoassistanultrasoundirradiatordesignandcharacterization.
Amulti-steppedconfiguration(Figure1b)wasintroducedtobringmoreenergy-emittingsurfaceandlargecavitationvolume.
This"proof-of-concept"studywithCOMSOLsimulationstartedwiththesimplestscenario,inwhichitwasassumedthatmaterialsassignedincludingwaterandstainlesssteelwerelinearmedia.
Inaddition,anotherassumptionwasmadethatacousticwavesweretime-harmonicsincesinusoidalalternatingcurrent(AC)wasthepowersource.
Figure1.
Configurationsofatypicalirradiator(a)andthedesignedirradiator(b).
2.
MethodologyThesimulationwasestablishedto2Dsymmetricdimensionduetothesymmetricconfigurationofthescaled-upultrasoundsystemwithapiezoelectrictransducer,anewlydesignedirradiator(20kHz,2638mmindiameter,and28.
0cminlength)andawatertank(610mm*610mm*450mmindimensionand167.
5Linvolume).
Theultrasonicsysteminvolvesdifferentphysicalphenomena[3,7,8].
Thepiezoelectricmaterialinthetransducerconvertselectricalenergytomechanicalvibrationwhichpassesthroughtheultrasoundirradiatorandisintensifiedattheendoftheirradiator.
Theirradiatoremitsthoseamplifiedmechanicalwaves(ultrasoundwaves)towater,andthosewavesthenpropagateinthewatertankradially.
Therefore,threedifferentmodelswereselectedtosimulatetheultrasonicsystem:piezoelectricmaterialmodelfortransducer,linearelasticmaterialmodelforirradiator,andpressureacousticsmodelforwater.
Eachmodelisgovernedbyitsownequations.
2.
1PiezoelectricMaterialModelThepiezoelectriceffectisaphenomenonthatanappliedstressonpiezoelectricmaterialsinduceselectricpolarizationoranappliedelectricfieldinducesdimensionchangeforpiezoelectricmaterials[3,8-10].
Inthetransducer,thesyntheticceramicsofPZT(leadzirconatetitanate)providesanelectricalfieldandamechanicalfieldatthesametime.
TheelectromechanicalbehaviorsoftheisotropicPZTcanbeexpressedbytwolinearizedconstitutiveequations[7,9-11]:{{whereTisstressvector(6*1matrix),Sisstrainvector(6*1matrix),Eiselectricfieldintensityvector(3*1matrix),Diselectricfluxdensityvector(3*1matrix),cEiselasticcoefficients(6*6matrix)atconstantelectricfieldstrength,eTisdielectricpermittivitymatrix(6*3),eisdielectricpermittivity(3*6matrix),εSisdielectricmatrix(3*3)atconstantmechanicalstrain,sEiselasticcompliance(6*6matrix)inaconstantelectricfield,dTispiezoelectricstrainconstantmatrix(6*3),dispiezoelectricstrainconstant(3*6matrix),εTisdielectricmatrix(3*3)atconstantmechanicalstress.
2.
2LinearElasticMaterialModelTheparticledisplacementsgeneratedinthepiezoelectrictransduceraretransmittedtotheirradiatorsincetheyareconnectedtoeachother[7,8].
BothPZTandstainlesssteelareisotropicandelasticmaterials.
Therefore,theirlinearelasticbehaviorisgovernedbytheNewton'sSecondLaw[11,12]:whereuisparticledisplacement,σisstress,FVisforcepervolume,andeiφindicatestheAC.
2.
3PressureAcousticsModelThepressureacousticsmodelhasbeenusedtosimulatetheultrasoundpropagationinthewater.
Theacousticwaveequationisgivenasfollows[7,8,10-12]:Table1:InitialinputforthreedomainsLiquiddomainMaterialWaterρ1000kg/m3cS1418m/sIrradiatordomainMaterial1000kg/m3ρ7850kg/m3E(Young'smodulus)205E09Paν(Poisson'sratio)0.
28TransducerdomainMaterialPZT-5Hρ7500kg/m3cE(6*6matrix)[]eT(6*3matrix)[]εS(3*3matrix)[]sE(6*6matrix)[]dT(6*3matrix)[]εT(3*3matrix)[](())wherep(Pa)isacousticpressure,ρ(kg/m3)isdensityofwater,andc(m/s)isspeedofultrasoundpropagationinthewater.
Thedipolesourceq(N/m3)andthemonopolesourceQ(1/s2)arebothoptional.
Thecombinationρc2iscalledtheadiabaticbulkmodulus(Pa).
Sinceultrasoundislongitudinalwaves[13],thereisnopolarization(q=0andQ=0)[14].
Waterisassumedasanidealliquid(ρ=constantandη=0).
Therefore,thewaveequationfortheacousticpressurecanbesimplifiedto[7]:Thisequationdescribestheacousticpressureatanygivenpoint(x,y,z)andtimet.
2.
4BoundaryConditionandInitialInputThesettingofboundaryconditionsreferstoCOMSOLModelingGuideandprevioussimulationstudies[7,8,12,15-17].
Astructure-acousticboundarywassettotheinterfacebetweenirradiatorandwater[8,12].
Sinceultrasoundwavesarelongitudinalwaves,thehornsidewassetassoundhardboundaryatwhichthenormalcomponentoftheaccelerationiszero(thereisnoparticlemovementsinthedirectionperpendiculartohornaxis)[7]:(())Displacementsattheinterfacebetweenwaterandwallofthetankwasalsoconsideredaszero(u=0orP=0)assumingthetankmaterialwithalargeacousticimpedancesufficientlyabsorbedthosecomingacousticwaves.
Theparticledisplacementattheinterfaceoftransducerandirradiatorwassettobeequal[15-17].
Boundaryconditionsforsurfacescontactingairweresettofree(P=0)[12].
TheInitialvalueofelectricpotentialwassetto110V,anddefaulttemperaturewas293.
15K.
Theliquid,transducer,andirradiatordomainswereassignedtolinearwatermedia,piezoelectricmaterial(PZT-5H),andstainlesssteelmaterial(AISI4340),respectively.
TheinputinformationofthosethreematerialsissummarizedinTable1.
3.
ResultsandDiscussionFirst,inordertoevaluateandcomparetheperformanceofourirradiator,theacousticpressurelevelwascalculatedinCOMSOLforbothtypical(Figure2)anddesignedirradiators(Figure3).
Thetypicalirradiatoronlydeliversonehighacousticpressureareabelowitstip,whereasourmulti-steppeddesignbringsmultiplehighacousticpressureregionsaroundthe"edges".
Figure2.
Scatteredsoundpressurelevelsurroundingthetypicalirradiator(UnitforcolorlabelisdB).
Figure3.
Scatteredsoundpressurelevelsurroundingthedesignedirradiator(UnitforcolorlabelisdB).
Figure4.
Deformationoftransducerandirradiator(Unitforcolorlabelisμm).
Thesimulationresultsareconsistentwithlaboratoryhydrophonemeasurementsandsonochemiluminescenceimaging[18].
Sinceahighacousticpressureistheprerequisiteforcavitationresponsibleforcontaminantoxidation,thesimulationresultsinFigure3demonstratethatthedesignedirradiatorintroducedmoreenergy-emittingsurfacesandthereforemultiplereactivezones.
Fortheothertwodomainsbesideswater,theparticledisplacement(u)forthepiezoelectrictransducerandstainlesssteelirradiatoris1.
24μmatmaximumundertheappliedelectricalandmechanicalfield,showninFigure4.
Next,theacousticpressuredistributioninthewatertankwassimulatedtoevaluatethelarge-scaleapplicationwithdesignedirradiator,asshowninFigure5(2D)andFigure6(3D).
Inthesimulatedacousticfield,theredoryellowcoloralongirradiatorneckandbelowitstipalsoindicatesahighacousticpressureinthoseregions.
Atfurtherregions,ultrasoundwavespropagateinthewaterformingrippleshapes.
Acousticattenuationisalsoobservedbycolorchangingfromredtoyellow,thentolightyellow.
Themappingofacousticpressureinthewatertankindicatesthedesignedultrasoundirradiatorwithalargeradiationradius(>20cm)showsagreatcapacityforlarge-scaleAOP.
4.
ConclusionThecomputedresultshaveshowedthattheultrasoundirradiatordesignwithamulti-steppedFigure5.
Simulationofacousticpressuredistributioninwatertankin2D(UnitforcolorlabelisPa).
Figure6.
Simulationofacousticpressuredistributioninwatertankin3D(UnitforcolorlabelisPa).
configurationimprovedcavitationeffectsascomparedtotypicalirradiatorsgeneratinglocalizedcavitation.
TheCOMSOLprovidingcompatibleresultstoexperimentaldataseemstobeareliableandconvenienttoolforsuchscale-updesignofultrasoundirradiatorforAOP.
Thissimulationworkappliedtheidealconditionforallphysicalmodels.
Forexample,thesimulationresultsmayoverestimatetheparticledisplacementsforbothpiezoelectricmaterialandstainlesssteelirradiatorsinceitisassumedthereisnoenergylossforpiezoelectriceffectsandtransmittingofmechanicalenergyfromtransducertoirradiator.
Theacousticpressuredistributioninthetankissymmetricandlinearlydecreasingfromcentertoedgesduetothelinearityofwatermedia.
Actually,thehydrophonemeasurementsinthelaboratoryillustrateasymmetricanddiscretedistributionofacousticpressureduetotheacousticcavitation,wavecollision,andwatermovementbyultrasoundirradiation.
Therefore,waterviscosity,heatproduction,cavitationbubble,andmodelmodification[8,10,19]willbeaddedonebyonetocurrentsimulationtoobtainmorereliabledatainthefuturestudy.
Eventhoughthissimplestsimulationisnotanaccuratereflectionoftherealsystem,itisaworthystartingplatformandvaluablereferenceforfuturesimulationdesignwhichcanrepresenttherealsystemsetup.
5.
References1.
Weavers,L.
K.
,F.
H.
Ling,andM.
R.
Hoffmann,Aromaticcompounddegradationinwaterusingacombinationofsonolysisandozonolysis,EnvironmentalScience&Technology,32(18),2727-2733(1998).
2.
Suslick,K.
S.
,Thechemicaleffectsofultrasound,ScientificAmerican,0,80-86(1989).
3.
Mason,J.
M.
andA.
Tiehm,Advancesinsonochemistry,Vol.
6,Connecticut:JaiPress(2001).
4.
Csoka,L.
,S.
N.
Katekhaye,andP.
R.
Gogate,Comparisonofcavitationalactivityindifferentconfigurationsofsonochemicalreactorsusingmodelreactionsupportedwiththeoreticalsimulations,ChemicalEngineeringJournal,178,384-390(2011).
5.
Klima,J.
,A.
Frias-Ferrer,J.
Gonzalez-Garcia,J.
Ludvik,V.
Saez,andJ.
Iniesta,Optimisationof20kHzsonoreactorgeometryonthebasisofnumericalsimulationoflocalultrasonicintensityandqualitativecomparisonwithexperimentalresults,UltrasonicsSonochemistry,14(1),19-28(2007).
6.
Trujillo,F.
J.
andK.
Knoerzer,Acomputationalmodelingapproachofthejet-likeacousticstreamingandheatgenerationinducedbylowfrequencyhighpowerultrasonichornreactors,UltrasonicsSonochemistry,18(6),1263-1273(2011).
7.
Xie,Y.
,Modelanalysisandexperimentofsonochemicalcell,MasterThesis,NationalChengKungUniversity(2008).
8.
Yao,M.
,Analysisandexperimentofresonantsonochemicalcell,MasterThesis,NationalChengKungUniversity(2009).
9.
Ikeda,T.
,Fundamentalsofpiezoelectricity,Oxford,UK:OxfordUniversityPress(1996).
10.
Nygren,M.
W.
,Finiteelementmodelingofpiezoelectricultrasonictransducers,inDepartmentofElectronicsandTelecommunications,MasterThesis,NorwegianUniversityofScienceandTechnology(2011).
11.
COMSOL,COMSOLMultiphysicsuser'sguide,version4.
2(2012).
12.
COMSOL,COMSOLMultiphycismodelingguide,version4.
2(2012).
13.
Kinsler,L.
E.
,A.
R.
Frey,A.
B.
Coppens,andJ.
V.
Sanders,Fundamentalsofacoustics,fourthedition,NewYork,NY:JohnWiley&Sons(2000).
14.
Mason,T.
J.
andJ.
P.
Lorimer,Appliedsonochemistry:Theuseofpowerultrasoundinchemistryandprocessing,VerlagGmbH,Weinheim:Wiley-VCH(2002).
15.
Fu,Z.
Q.
,X.
J.
Xian,S.
Y.
Lin,C.
H.
Wang,W.
X.
Hu,andG.
Z.
Li,Investigationsofthebarbellultrasonictransduceroperatedinthefull-wavevibrationalmode,Ultrasonics,52(5),578-586(2012).
16.
Lin,Z.
,Theoryanddesignofultrasonichorn,Beijing:SciencePress(1987).
17.
Peshkovsky,S.
L.
andA.
S.
Peshkovsky,Matchingatransducertowateratcavitation:Acoustichorndesignprinciples,UltrasonicsSonochemistry,14,313-322(2007).
18.
Wei,Z.
,R.
Xiao,M.
Cai,andL.
K.
Weavers,Designingandcharacterizingamulti-steppedultrasonichornforenhancedacousticcavitation,UltrasonicsSonochemistry(tobesubmitted).
19.
Vogler,E.
T.
andC.
V.
Chrysikopoulos,Experimentalinvestigationofacousticallyenhancedsolutetransportinporousmedia,GeophysicalResearchLetters,29(15),1-4(2002).

ZJI-全场八折优惠,香港服务器 600元起,还有日本/美国/韩国服务器

月付/年付优惠码:zji  下物理服务器/VDS/虚拟主机空间订单八折终身优惠(长期有效)一、ZJI官网点击直达ZJI官方网站二、特惠香港日本服务器香港大埔:http://hkdb.speedtest.zji.net/香港葵湾:http://hkkw.speedtest.zji.net/日本大阪:http://jpsk.speedtest.zji.net/日本大阪一型 ...

Friendhosting全场VDS主机45折,虚拟主机4折,老用户续费9折

Friendhosting发布了今年黑色星期五促销活动,针对全场VDS主机提供45折优惠码,虚拟主机4折,老用户续费可获9折加送1个月使用时长,优惠后VDS最低仅€14.53/年起,商家支持PayPal、信用卡、支付宝等付款方式。这是一家成立于2009年的老牌保加利亚主机商,提供的产品包括虚拟主机、VPS/VDS和独立服务器租用等,数据中心可选美国、保加利亚、乌克兰、荷兰、拉脱维亚、捷克、瑞士和波...

€4.99/月Contabo云服务器,美国高性价比VPS/4核8G内存200G SSD存储

Contabo是一家运营了20多年的欧洲老牌主机商,之前主要是运营德国数据中心,Contabo在今年4月份增设新加坡数据中心,近期同时新增了美国纽约和西雅图数据中心。全球布局基本完成,目前可选的数据中心包括:德国本土、美国东部(纽约)、美国西部(西雅图)、美国中部(圣路易斯)和亚洲的新加坡数据中心。Contabo的之前国外主机测评网站有多次介绍,他们家的特点就是性价比高,而且这个高不是一般的高,是...

scaleup为你推荐
李子柒年入1.6亿将55g铁片放入硫酸铜溶液中片刻,取出洗净,干燥后,称重为56.6g,问生成铜多少g??求解题步骤及答案刘祚天DJ是什么职业?蒋存祺蒋存祺的主要事迹ip在线查询我要用eclipse做个ip在线查询功能,用QQwry数据库,可是我不知道怎么把这个数据库放到我的程序里面去,高手帮忙指点下,小弟在这谢谢了www.mywife.ccMywife-No 00357 MANAMI SAITO种子下载地址有么?求好心人给yinrentangweichentang产品功效好不好?www.1diaocha.com请问网络上可以做兼职赚钱吗?现在骗子比较多,不敢盲目相信。请大家推荐下www.diediao.com谁知道台湾的拼音怎么拼啊?有具体的对照表最好!梦遗姐我姐姐很漂亮,她24了,我才15,晚上我和他睡在一起,我经常挨遗精,咋办?关键词分析关键词分析的考虑思路是怎样的,哪个数据是最重要的
联通vps 域名备案流程 老域名全部失效请记好新域名 樊云 精品网 监控宝 美国php主机 php免费空间 华为4核 空间出租 129邮箱 支付宝扫码领红包 如何注册阿里云邮箱 google台湾 韩国代理ip 帽子云排名 电信网络测速器 国外网页代理 hdroad 亿库 更多