approachstealthy
stealthy 时间:2021-01-12 阅读:(
)
ISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4988DEFENDINGSTEALTHYMODEATTACKBYLIVEDETECTIONANDADOPTABLELEARNINGTECHNIQUEMr.
N.
Aravindhu,G.
Vaishnavi,D.
MaheswariSenoirAssistantProfessor,CSE,ChristcollegeofEngineering&Technology,Puducherry,IndiaStudent,CSE,ChristcollegeofEngineering&Technology,Puducherry,IndiaStudent,CSE,ChristcollegeofEngineering&Technology,Puducherry,IndiaABSTRACT:Thisworkemployeescompletestoppingofthebotnetattackmadebybotmaster.
TheattackismadebypassingthecodewordcommentsbyDNSbasedstealthymodecommandandcontrolchannelfromonesystemtoanothersystemtohijacktheserver.
Usuallywecanabletoidentifytheattackonlyaftertheattackhasbeenmadebythebotmaster.
ButbyusingBotnetTrackingTool(BTT)wecankeeptrackofthecodewordbeingused.
TheattackispreventedbymakinguseoftheBotnetTrackingTool(BTT).
Wecontinuouslymonitortheattackmadebythebotmasterandthebots.
Theattackisconcurrentlycheckedinthedatabaseforthepre-definedcodewordandiftheattackhasbeenfounditwouldbestoppedfromfurtherattack.
Ifsupposethenewcodewordisfoundduringtheattackthatcodewordwouldbestoredinthedatabasefutureuseandthenisolatesthem.
Itdoesnotallowuntilaproperauthorizationismadeandclarifiesthemnotasbotmaster.
Keywords:Networksecurity,codewords,DNSsecurity,botnetdetection,botnettrackingtool(BTT),commandandcontrol.
1.
INTRODUCTIONNetworksecuritystartswithauthentication,usuallywithausernameandapassword.
Thisrequiresonedetailauthenticationtheusernameandthepassword—thisisalsocalledasone-factorauthentication.
Withthetwo-factorauthentication-theuserhasused(e.
g.
asecuritytokenordongle,anATMcardoramobilephone);andwith3-factorauthenticationtheuseralsousedfingerprintorretinalscan.
Whenitisauthenticating,afirewallenforcesaccesspoliciessuchastheserviceswhichareallowsthenetworkuserstoaccessthenetwork.
Theeffectivenessofpreventingtheunauthorizedaccess,thiscomponentmayfailtocheckpotentiallyharmfulcontentsuchascomputerwormsorTrojansbeingtransmittedoverthenetwork.
Anti-virussoftwareoranintrusionpreventionsystem(IPS)helpdetectandinhibittheactionofsuchmalware.
Ananomaly-basedintrusiondetectionsystemmayalsomonitorthenetworkandtrafficfornetworkmaybeloggedforauditpurposesandforlaterhigh-levelanalysis.
Communicationbetweentwohostsusinganetworkmaybeencryptedtomaintainprivacy[1].
Ageneralconceptincludingasspecialcasesuchattributesasreliability,availability,safety,integrity,maintainability,etcSecuritybringsinconcernsforconfidentiality,inadditiontoavailabilityandintegrityBasicdefinitionsaregivenfirstTheyarethencommentedupon,andsupplementedbyadditionaldefinitions,whichaddressthethreatstodependabilityandsecurity(faults,errors,failures),theirattributes,andthemeansfortheirachievement(faultprevention,faulttolerance,faultremoval,faultforecasting)Theaimistoexplicateasetofgeneralconcepts,ofrelevanceacrossawiderangeofsituationsand,therefore,helpingcommunicationandcooperationamonganumberofscientificandtechnicalcommunities,includingonesthatareconcentratingonparticulartypesofsystem,ofsystemfailures,orofcausesofsystemfailures[3].
Thetermbotisshortforrobot.
Criminalsdistributemalicioussoftware(alsoknownasmalware)thatcanturnyourcomputerintoabot(alsoknownasazombie).
Whenthisoccurs,yourcomputercanperformautomatedtasksovertheInternet,withoutyouknowingit.
Criminalstypicallyusebotstoinfectlargenumbersofcomputers.
Thesecomputersformanetwork,orabotnet.
Criminalsusebotnetstosendoutspamemailmessages,spreadISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4989viruses,attackcomputersandservers,andcommitotherkindsofcrimeandfraud.
Ifyourcomputerbecomespartofabotnet,yourcomputermightslowdownandyoumightinadvertentlybehelpingcriminals.
2.
RELATEDWORK2.
1FINDINGMALICIOUSDOMAINSUSINGPASSIVEDNSANALYSISInthispaper,weintroduceEXPOSURE,asystemthatemployslarge-scale,passiveDNSanalysistechniquestodetectdomainsthatareinvolvedinmaliciousactivity.
Weuse15featuresthatweextractfromtheDNStrafficthatallowustocharacterizedifferentpropertiesofDNSnamesandthewaysthattheyarequeried.
Ourexperimentswithalarge,real-worlddatasetconsistingof100billionDNSrequests,andareal-lifedeploymentfortwoweeksinanISPshowthatourapproachisscalableandthatweareabletoautomaticallyidentifyunknownmaliciousdomainsthataremisusedinavarietyofmaliciousactivity(suchasforbotnetcommandandcontrol,spamming,andphishing)[4].
2.
2DETECTIONOFDNSANOMALIESUSINGFLOWDATAANALYSISThispaperdescribesalgorithmsusedtomonitoranddetectcertaintypesofattackstotheDNSinfrastructureusingflowdata.
Ourmethodologyisbasedonalgorithmsthatdonotrelyonknownsignatureattackvectors.
Theeffectivenessofoursolutionisillustratedwithrealandsimulatedtrafficexamples.
Inoneexample,wewereabletodetectatunnelingattackwellbeforetheappearanceofpublicreportsofit[5].
3.
EXISTINGSYSTEMInitiallyanattackbythebotmasterismadeandtheaftertheattacktheyhaveidentifiedthatanattackhasbeenmade.
Theyhavecheckedexperimentalevaluationmakesuseofatwo-month-long4.
6-GBcampusnetworkdatasetand1milliondomainnamesobtainedfromalexa.
com.
TheyhaveconcludedthattheDNS-basedstealthycommandand-controlchannel(inparticular,thecodewordmode)canbeverypowerfulforattackers,showingtheneedforfurtherresearchbydefendersinthisdirection.
ThestatisticalanalysisofDNSpayloadasacountermeasurehaspracticallimitationsinhibitingitslargescaledeployment.
inthisdirection.
ThestatisticalanalysisofDNSpayloadasacountermeasurehaspracticallimitationsinhibitingitslargescaledeployment.
Theyhavebeenabletoidentifyitonlyaftertheattackhasbeenmade.
.
Botnetcommand-and-control(C&C)channelusedbybotsandbotmastertocommunicatewitheachother,e.
g.
,forbotstoreceiveattackcommandsandmodifyfrombotmaster,astolendata.
AC&Cchannelforabotnetneedstobereliableone.
ManybotmasterusedtheInternetRelayChatprotocol(IRC)orHTTPserverstosendinformation.
Botnetoperatorscontinuouslyexplorenewstealthycommunicationmechanismstoevadedetection.
HTTP-basedcommandandcontrolisdifficulttodistinguishthelegitimatewebtraffic.
WedonotallowbotstosubmitDNSqueriestoeradicatedetection.
WeonlyallowbotstoeitherpiggybacktheirquerieswithlegitimateDNSqueriesfromtthehost,orfollowaquerydistribution.
OurimplementationusesthePythonModularDNSServer(pymds)andadesignedplug-intorespondtoDNSrequests.
PyMDSimplementsthefullDNSprotocolwhileallowingtheusertoimplementaprogrammaticanddynamicbackendtocreatetheDNSrecordsreturned.
Insteadofreturningrecordsfromastaticfile,PyMDSallowedforthedecodingofcodewordsandthegenerationofappropriateresponses.
Toevaluatethepiggybackquerystrategy,ourdatasetisatwo-month-longnetworktraceobtainedfromauniversityandcollectedwiththeIPAudittool.
Astaticapproachistohaveabotmastercreateanorderedlistofdomainnamesandpackthelistinmalwarecodeforbottolookup,whichissametotheuseofaone-timepasswordpadforauthentication.
Botnetshavebeentousesubdirectoriesfordirectcommunication,However,foraDNS-tunneling-basedchannel,subdirectoryapproachdoesnotapply,asthebotmasterdoesnotrunawebserverandtheISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4990communicationisbasedsolelyondomainnamesystems.
Consideringthatbotnetsoftenusethird-leveldomainsinsteadofsubdirectories,Dagonproposedtousetheratiobetweensecond-leveldomains(SLDs)andthird-leveldomains(3LDs)toidentifybotnettraffic.
DNS-basedstealthymessagingsystemsthatrequiresdeeppacketinspectionandstatisticalanalysis.
Deeppacketinspectionexaminespacketpayloadbeyondthepacketheader.
Specifically,wequantitativelyanalyzetheprobabilitydistributionsof(bot's)DNS-packetcontent.
.
.
3.
1DRAWBACKSINEXISTINGSYSTEMAbletoidentifyabotmasteronlyafteranattackhasbeenmade.
Itcannotpreventorpredictanattacksotheycan'tprotectit.
DidnotcheckitinLive.
BotMastercannotbecaughtredhanded.
4.
PROPOSEDSYSTEMItusesstochasticimplementationofmarkovschainlinkanalysisalgorithmtocorrelatewithhistoryindatabase.
Thismethodisusedtostorethenewattackwhichisdetectedlivelyduringprocessintothedatabase.
AdiscreteMarkovchainmodelcanbedefinedbythetuple.
Scorrespondstothestatespace,Aisamatrixrepresentingtransitionprobabilitiesfromonestatetoanother.
λistheinitialprobabilitydistributionofthestatesinS.
ThefundamentalpropertyofMarkovmodelisthedependencyonthepreviousstate.
Ifthevectors[t]denotestheprobabilityvectorforallthestatesattime't',then:Ifthereare'n'statesinourMarkovchain,thenthematrixoftransitionprobabilitiesAisofsizenxn.
Markovchainscanbeappliedtoweblinksequencemodeling.
Inthisformulation,aMarkovstatecancorrespondtoanyofthefollowing:URI/URLHTTPrequestAction(suchasadatabaseupdate,orsendingemail)ThematrixAcanbeestimatedusingmanymethods.
Withoutlossofgenerality,themaximumlikelihoodprincipleisappliedinthispapertoestimateAandλ.
EachofthematrixA[s,s']canbeestimatedasfollows:C(s,s')isthecountofthenumberoftimess'followssinthetrainingdata.
AlthoughMarkovchainshavebeentraditionallyusedtocharacterizeasymptoticpropertiesofrandomvariables,weutilizethetransitionmatrixtoestimateshort-termlinkpredictions.
AnelementofthematrixA,sayA[s,s']canbeinterpretedastheprobabilityoftransitioningfromstatestos'inonestep.
SimilarlyanelementofA*Awilldenotetheprobabilityoftransitioningfromonestatetoanotherintwosteps,andsoon.
Giventhe"linkhistory"oftheuserL(t-k),L(t-k+1).
.
.
.
L(t-1),wecanrepresenteachlinkasavectorwithaprobability1atthatstateforthattime(denotedbyi(t-k),i(t-k+1).
.
.
i(t-1)).
TheMarkovChainmodelsestimationoftheprobabilityofbeinginastateattime't'isshowninequation4.
TheMarkovianassumptioncanbevariedinavarietyofways.
Inourproblemoflinkprediction,wehavetheuser'shistoryavailable;however,aprobabilityISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4991distributioncanbecreatedaboutwhichofthepreviouslinksare"goodpredictors"ofthenextlink.
ThereforeweproposevaianctsoftheMarkovprocesstoaccommodateweightingofmorethanonehistorystate.
Inthefollowingequations,wecanseetheateachofthepreviouslinksareusedtopredictthefuturelinksandcombinedinavarietyofways.
ItisworthnotingthatratherthancomputeA*Aandhigherpowersofthetransitionmatrix,theseaybedirectlyestimatedusingthetrainingdata.
Inpractice,thestateprobablilityvectors(t)canbenormalizedandthresholdedinordertoselectalistof"probablelinks/stated"thatheuserwillchoose.
4.
1BOTNETTRACKINGTOOLBotnettrackingtoolisimpliedtodetectthebotnetattacklivelyinthenetwork.
Thistoolisusedtoreviewtheprocesswhichisgoingon.
Inthisthedetectionofanyattackwillbedetected.
Itusesmachineadoptablelearningtechniqueforpreventionofforthcomingattacks.
Thismethodisusedtosaycompletelyabouttheattackwhichischeckedwiththedatabasethatitisanattackornot.
Ifitisanattackthenitwillbestoppedfromfurtherprocess.
Ifitisfoundthatitisnotanattackthenitallowsittodotheprocess.
Someofthemostsuccessfuldeeplearningmethodsinvolveartificialneuralnetworks.
DeepLearningNeuralNetworksdatebackatleasttothe1980NeocognitronbyKunihikoFukushima.
Itisinspiredbythe1959biologicalmodelproposedbyNobellaureateDavidH.
Hubel&TorstenWiesel,whofoundtwotypesofcellsinthevisualprimarycortex:simplecellsandcomplexcells.
Manyartificialneuralnetworkscanbeviewedascascadingmodelsofcelltypesinspiredbythesebiologicalobservations.
Withtheadventoftheback-propagationalgorithm,manyresearcherstriedtotrainsuperviseddeepartificialneuralnetworksfromscratch,initiallywithlittlesuccess.
SeppHochreiter'sdiplomathesisof1991formallyidentifiedthereasonforthisfailureinthe"vanishinggradientproblem,"whichnotonlyaffectmany-layeredfeedforwardnetworks,butalsorecurrentneuralnetworks.
Thelatteraretrainedbyunfoldingtheintoverydeepfeedforwardnetworks,whereanewlayeriscreatedforeachtimestepofaninputsequenceprocessedbythenetwork.
Aserrorspropagatefromlayertolayer,theyshrinkexponentiallywiththenumberoflayers.
Toovercomethisproblem,severalmethodswereproposed.
OneisJurgenSchmidhuber'smulti-levelhierarchyofnetworks(1992)pre-trainedonelevelatatimethroughunsupervisedlearning,fine-tunedthroughbackpropagation.
Hereeachlevellearnsacompressedrepresentationoftheobservationsthatisfedtothenextlevel.
Anothermethodisthelongshorttermmemory(LSTM)networkof1997byHochreiter&Schmidhuber.
In2009,deepmultidimensionalLSTMnetworksdemonstratedthepowerofdeeplearningwithmanynonlinearlayers,bywinningthreeICDAR2009competitionsinconnectedhandwritingrecognition,withoutanypriorknowledgeaboutthethreedifferentlanguagestobelearned.
Whathasattractedthemostinterestinneuralnetworksisthepossibilityoflearning.
Givenaspecifictasktosolve,andaclassoffunctionsF,learningmeansusingasetofobservationstofindwhichsolvesthetaskinsomeoptimalsense.
TheentailsdefiningacostfunctionC:F->IRsuchthat,fortheoptimalsolution,-i.
e.
,noISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4992solutionhasacostlessthanthecostoftheoptimalsolution(seeMathematicaloptimization).
ThecostfunctionCisanimportantconceptinlearning,asitisameasureofhowfarawayaparticularsolutionisfromanoptimalsolutiontotheproblemtobesolved.
Learningalgorithmsearchthroughthesolutionspacetofindafunctionthathasthecost.
smallestpossible.
4.
2ADVANTAGESOFPROPOSEDSYSTEMAbletoidentifybotmasterbeforeanattackismade.
CanbeinLiveNetwork.
Trackingtoolcanidentifiesthewholechainofnetworkinvolvedinattack.
Toolcreatedwhichwillisolatethebotmasterandwouldnotbeallowedtobeexecutedatanytime.
5.
CONCLUSIONBotnettrackingtoolexperimentedbygivingattackingcodewordedmessagesthroughthebotsnetworksothatserverwilllivelydetectthestatusofthesystemsthatareincommunicationandthosesystemsalsowillbeundersurveillance.
Databasehistorywillbecomparedwiththecodedmessagessoastopreventanyattackingkeywordssenttoanysecureddatabase.
Itdynamicallyupdatesthecurrentattacktakesplacebylearningthenewtechniqueapplied.
5.
ACKNOWLEDGMENTSOurthankstotheexpertswhohavecontributedtowardsdevelopmentofthetemplate.
REFERENCES[1]http://en.
wikipedia.
org/wiki/Network_securityDing,W.
andMarchionini,G.
1997AStudyonVideoBrowsingStrategies.
TechnicalReport.
UniversityofMarylandatCollegePark.
[2]http://dl.
acm.
org/citation.
cfmid=1026492Tavel,P.
2007ModelingandSimulationDesign.
AKPetersLtd.
[3]http://65.
54.
113.
26/Publication/1436760Forman,G.
2003.
Anextensiveempiricalstudyoffeatureselectionmetricsfortextclassification.
J.
Mach.
Learn.
Res.
3(Mar.
2003),1289-1305.
[4]L.
Bilge,E.
Kirda,C.
Kruegel,andM.
Balduzzi,"Exposure:FindingMaliciousDomainsUsingPassiveDNSAnalysis,"Proc.
18thAnn.
NetworkandDistributedSystemSecuritySymp.
(NDSS),Feb.
2011.
[5]A.
Karasaridis,K.
S.
Meier-Hellstern,andD.
A.
Hoeflin,"DetectionofDNSAnomaliesUsingFlowDataAnalysis,"Proc.
IEEEGlobeCom,2006.
[6]C.
J.
Dietrich,C.
Rossow,F.
C.
Freiling,H.
Bos,M.
vanSteen,andN.
Pohlmann,"OnBotnetsthatUseDNSforCommandandControl,"Proc.
EuropeanConf.
ComputerNetworkDefense,Sept.
2011.
[7]E.
Kartaltepe,J.
Morales,S.
Xu,andR.
Sandhu,"SocialNetwork-BasedBotnetCommand-and-Control:EmergingThreatsandCountermeasures,"Proc.
EighthInt'lConf.
AppliedCryptographyandNetworkSecurity(ACNS).
[8]S.
Yadav,A.
K.
K.
Reddy,A.
N.
Reddy,andS.
Ranjan,"DetectingAlgorithmicallyGeneratedMaliciousDomainNames,"Proc.
10thAnn.
Conf.
InternetMeasurement(IMC'10).
[9]P.
Butler,K.
Xu,andD.
Yao,"QuantitativelyAnalyzingStealthyCommunicationChannels,"Proc.
NinthInt'lConf.
AppliedCryptographyandNetworkSecurity(ACNS'11).
[10]G.
Ollmann,"BotnetCommunicationTopologies:UnderstandingtheIntricaciesofBotnetCommand-andControl,"https://www.
damballa.
com/downloads/r_pubs/WP_BotnetCommunications_Primer.
pdf,2013.
[11]S.
Yadav,A.
K.
K.
Reddy,A.
N.
Reddy,andS.
Ranjan,"DetectingAlgorithmicallyGeneratedMaliciousDomainNames,"Proc.
10thAnn.
Conf.
InternetMeasurement(IMC'10),pp.
48-61,2010.
[12]http://www.
microsoft.
com/security/resources/botnet-whatis.
aspx
目前舍利云服务器的主要特色是适合seo和建站,性价比方面非常不错,舍利云的产品以BGP线路速度优质稳定而著称,对于产品的线路和带宽有着极其严格的讲究,这主要表现在其对母鸡的超售有严格的管控,与此同时舍利云也尽心尽力为用户提供完美服务。目前,香港cn2云服务器,5M/10M带宽,价格低至30元/月,可试用1天;;美国cera云服务器,原生ip,低至28元/月起。一、香港CN2云服务器香港CN2精品线...
云如故是一家成立于2018年的国内企业IDC服务商,由山东云如故网络科技有限公司运营,IDC ICP ISP CDN VPN IRCS等证件齐全!合法运营销售,主要从事自营高防独立服务器、物理机、VPS、云服务器,虚拟主机等产品销售,适合高防稳定等需求的用户,可用于建站、游戏、商城、steam、APP、小程序、软件、资料存储等等各种个人及企业级用途。机房可封UDP 海外 支持策略定制 双层硬件(傲...
ftech怎么样?ftech是一家越南本土的主机商,成立于2011年,比较低调,国内知道的人比较少。FTECH.VN以极低的成本提供高质量服务的领先提供商之一。主营虚拟主机、VPS、独立服务器、域名等传统的IDC业务,数据中心分布在河内和胡志明市。其中,VPS提供1G的共享带宽,且不限流量,还可以安装Windows server2003/2008的系统。Ftech支持信用卡、Paypal等付款,但...
stealthy为你推荐
企业虚拟主机企业虚拟主机和个人虚拟主机选择有差别吗?域名空间代理免费空间代理,免费域名代理,哪里有?vps主机vps主机用途有哪些?国外主机空间2个国外主机空间,都放了BLOG,看看哪个更快?虚拟空间哪个好虚拟内存设在哪个盘最好网站空间购买国内网站空间购买哪里的比较实惠啊?网站空间商哪有好一点的网站空间商?欢迎友友们给我推荐下,深圳网站空间求免费稳定空间网站?手机网站空间手机登陆qq空间网址是什么?便宜虚拟主机哪里有国内便宜虚拟主机
哈尔滨服务器租用 vps是什么 t楼 韩国网名大全 godaddy域名证书 炎黄盛世 789电视 刀片式服务器 hkt 香港新世界中心 厦门电信 上海电信测速网站 lick 注册阿里云邮箱 实惠 徐州电信 域名转入 免备案cdn加速 锐速 fatcow 更多