激光全息镭射全息模压机原理

激光全息  时间:2021-05-29  阅读:()

激光全息防伪标识看得到吗?

激光防伪技术包括激光全息图像防伪标识、加密激光全息图像防伪标识和激光光刻防伪技术三方面。

一、第一代激光防伪技术 第一代激光防伪技术是激光模压全息图像防伪标识。

  全息照像是由美国科学家伯格( M ? J? Buerger)在利用X射线拍摄晶体的原子结构照片时发现的,并与伽柏( D? Gaber)一起建立了全息照像理论:利用双光束干涉原理,令物光和另一个与物光相干的光束(参考光束)产生干涉图样即可把位相“合并”上去,从而用感光底片能同时记录下位相和振幅,就可以获得全息图像。

但是,全息照像是根据干涉法原理拍摄的,须用高密度(分辨率)感光底片记录。

由于普通光源单色性不好,相干性差,因而全息技术发展缓慢,很难拍出像样的全息图。

直到60 年代初激光出现之后,其高亮度、高单色性和高相干度的特性,迅速推动了全息技术的发展,许多种类的全息图被制作出来,全息理论得到很好的验证,但由于拍摄和再现时的特殊要求,从诞生之日起,就几乎一直被局限在实验室里。

  70年代末期,人们发现全息图片具有包括三维信息的表面结构(即纵横交错的干涉条纹),这种结构是可以转移到高密度感光底片等材料上去的。

1980年,美国科学家利用压印全息技术,将全息表面结构转移到聚酯薄膜上,从而成功地印制出世界上第一张模压全息图片,这种激光全息图片又称彩虹全息图片,它是通过激光制版,将影象制作在塑料薄膜上,产生五光十色的衍射效果,并使图片具有二维、三维空间感,在普通光线下,隐藏的图像、信息会重现。

当光线从某一特定角度照射时,又会出现新的图像。

这种模压全息图片可以像印刷一样大批量快速复制,成本较低,且可以与各类印刷品相结合使用。

至此,全息摄影向社会应用迈出了决定性的一步。

  由于当时这种模压全息图片的制作技术是非常先进的技术,只有少数人掌握,于是就被用作防伪标识。

其防伪的原理是: 1. 在激光全息图片拍摄的整个过程中,如果有一项条件不同(如拍摄彩虹全息的条件),则全息标识的效果就会有差异。

2. 这种全息图像的全息信息用普通照相无法拍摄,因而全息图案难以被复制。

激光模压全息防伪技术传入我国是在80年代末90年代初,特别是1990年至1994年期间,全国各地引进生产线上百条,占当时世界生产厂家的一半多。

二、改进的激光全息图像防伪标识   由于第一代激光全息防伪标识已经基本失去了防伪功能,人们不得不开始对其进行改进。

改进的方法主要有三种:第一种是采用计算机技术改进全息图像,第二种是研制成了透明激光全息图像防伪标识,第三种是反射激光全息图像防伪标识。

1. 应用计算机图像处理技术的改进:   计算机图像处理技术改进激光全息图像经过了两个阶段的发展,第一个阶段是计算机合成全息技术,这种技术是将一系列普通二维图像经光学成像后,按照全息图像的原理进行一系列的处理,并记录在一张全息记录材料上形成计算机象素全息图像,观察这种象素全息图像时,可在不同的视角看到不同的三维图像,其图形和彩色都具有异常灵活多变的动态效应,并且不受再现光线方向的限制。

第二阶段是计算机控制直接曝光技术,与普通全息成像不同,这种技术不需要拍摄对象,所需图形完全由计算机生成,通过计算机控制两相干光束以像素为单位逐点生成全部图案,对不同点可改变双光束之间的夹角,从而制成具有特殊效果的三维全息图. 2. 透明激光全息图像防伪技术:   普通的激光全息图像是用镀铝的聚酯膜经过模压(也可以先用聚酯薄膜经过模压再镀铝)而成,镀铝的作用是增加反射光的强度使再现图像更加明亮,照明光和观察方向都在观察者这一侧,这样的激光彩虹模压全息图是不透明的。

透明激光全息图像的改进之处实际上就是取消了镀铝层,全息图像直接模压在透明的聚酯薄膜上。

1996年,我国公安部又决定将透明激光彩虹模压全息图应用在居民身份证上,身份证被透明膜整个覆盖和封住,当在光线下观察其正面时,不但能看清证件,还能看到透明膜上再现出来的二维三维彩虹全息图像(长城及中国的中英文字样) 3. 反射激光全息图像防伪技术:   反射全息图是将入射激光射到透明的全息乳胶介质上,一部分光作为参考光,另一部分透过介质照亮物体,再由物体散射回到介质作为物光,物光和参考光相互干涉,在介质内部生成多层干涉条纹面,介质底片经处理后在介质内部生成多层半透明反射面(例如6微米厚的乳胶层里可以有20多个反射面 )。

全息图的再现过程,则是用白光点光源照射全息图,介质内部生成的多层半透明反射面将光反射回来,迎着反射光看,可以看到原物的虚像,因而称为反射全息图. 技术评论:   激光防伪技术的这些改进并没有也不太可能延长激光全息图像防伪技术的生命周期,因为这些改进只是不同程度地增加了图像的制造难度,没有能改进掉哪怕是一条激光全息图像防伪的先天不足,原有的问题依然存在。

三、加密全息图像防伪技术   加密的全息图像是采用诸如随机位相编码图像加密、莫尔编码图像加密、激光散斑图像加密这类光学图像编码加密技术,对防伪图像进行加密,得到不可见的或变成一些散斑的加密图像。

其中随机位相编码加密的图像是隐形的,只有使用专门的光电解码机才能够显示出原来的图像,不适合一般商品,目前主要用于各种证卡的防伪。

莫尔编码加密和激光散斑加密的图像只有与解码光栅或解码散斑叠合,才能够显示出原来的图像,可用于一般商品防伪。

  加密图像防伪的原理是加密后的图像不可见或是一片噪光,而且如没有密钥很难破译,所以具有一定的防伪功能。

技术评论:   其实,这些技术本是一种图像加密技术,用于防伪实在是勉为其难。

首先是随机位相编码加密的图像,虽然需要专门的仪器才能显示出来,但是在造假呈现高技术化、国际化的今天,拥有何难?破译何难?至于莫尔编码加密和激光散斑加密的图像就更容易仿造了,因为消费者随所购买的商品一起得到的不仅是含有加密图像的防伪标识,还有用于验证真伪的解码光栅或解码散斑,这样以来,图像的加密在防伪中根本就未起到任何作用,这种防伪标识的防伪完全依靠加密图像的制造技术的掌握难度,而掌握这种技术却并不是十分困难的事情

四、激光光刻防伪技术   激光光刻防伪技术又称激光编码技术,也称激光 “烧字”技术。

由于激光编码机造价昂贵,应用不够广泛,只在大批量生产或其他印刷方法不能实现的场合使用。

正因为如此,才使它在防伪包装方面发挥了作用。

激光编码封口技术是一种较好的容器防伪技术。

在产品被充填完毕并封口加盖后,在盖与容器接缝处进行激光印字,使字形的上半部分印在盖上,下半部分印在容器上。

此技术的防伪作用在于:

1. 包装容器不能复用。

新盖与旧容器相配字迹很难对齐。

2. 激光器价格昂贵, 且在生产线上编码印字。

一般制假者难于投巨资购买此设备 3. 厂家可任意更换印字模板,不同日期用不同模板,更换细节仅少数人知晓, 外人较难破解。

  从防伪效果看,激光编码技术甚至比激光全息图像技术还好。

激光全息标识是由印刷厂印制, 使用标识的厂家不能确保该母版不从印刷环节外流或非法复制。

对于制假者来说,激光全息标识可直接分批购得,无须设备投资,也不需掌握该技术。

而使用激光编码技术防伪,制假者遇到的第一难题就是昂贵的设备投资。

激光编码机价格贵,且必须在线使用,加上字形模板的更换变型的隐秘性,使那些分散的中小型工厂难以制假。

由于这些原因,用激光编码技术的包装寿命要长于用激光全息标识的包装的寿命。

技术评论: 激光光刻防伪虽然防伪效果优于一些防伪标识,但也存在如下缺点: 1.由于激光编码机造价昂贵,中小企业难以采用。

2.依靠高投资壁垒防止造假,一旦造假者拥有了这种装备,其防伪作用立即失效

总技术评论:

激光全息防伪技术是近年来在国内外受到普遍关注的一项现代化激光应用技术成果,它以深奥的全息成像原理及色彩斑斓的闪光效果而受到消费者的青睐与喜爱。

激光全息防伪标识可广泛应用于轻工、医药、食品、化妆品、电子行业的名优商标、有价证券、机要证卡及豪华工艺品等与一般印刷商标相比,它具独特的优势与魅力。

本技术适合与其它防伪结合使用,如激光全息综合防伪、激光电码复合式、激光油墨复合式、包装激光复合式等等。

标一公司广泛采用的是激光光刻标识和激光电码复合式标识

什么叫“全息”技术

全息技术第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被 全息技术摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。

记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。

再现的图像立体感强,具有真实的视觉效应。

全息图的每一部分都记录了物体上各点的光信息,故原则上它的每一部分都能再现原物的整个图像,通过多次曝光还可以在同一张底片上记录多个不同的图像,而且能互不干扰地分别显示出来。

求一篇有关信息光学论文,比如激光全息技术研究进展什么的

引言    光全息学是在现代激光的发现之后才迅速发展起来的,本文将就光全息学的一些主要的研究课题进行探讨,并针对一些应用课题进行研究。

现代光全息学的起源,发展和人物,新型应用,本文将告诉你.   利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,这样记录下来的干涉条纹图样称为“全息图”,而当用光波照射全息图时,由于衍射原理能重现出原始物光波,从而形成与原物体逼真的三维象,这个波前记录和重现过程称为“全息术”或“全息照相” 光束   全息照相由盖伯于1948年提出的,而当时没有足够强的相干辐射源全息研究处于萌芽时期。

当时的全息照相采用汞灯为光源,且是同轴全息图,它的+/-1级衍射波是分不开的,即存在所谓的“孪生像”问题,不能获得很好的全息像。

这是第一代全息图。

  1960年激光的出现,1962年美国科学家利思和乌帕特尼克斯将通信理论中的射频概念推广到空域中,提出离轴全息术,他用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光,第一代全息图的两大难题因此得以解决,产生了激光记录,激光再现的第二代全息图。

  当代光全息学发展主要课题有:   1. 球面透镜光学系统   2. 光源和光学技术   3. 平面全息图分析   4. 体积全息图衍射   5. 脉冲激光全息学   6. 非线性记录,散斑和底片颗粒噪声   7. 信息储存   8. 彩色全息学   9. 合成全息图   10. 计算机产生全息图   11. 复制,电视传输和非相干光全息图   而伴随光全息学的发展也产生一些光全息技术应用,比如高分辨率成像,漫射介质成像,空间滤波,特征识别,信息储存与编码,精密干涉测量,振动分析,等高线测量,三维图象显示等方面的用途。

  本论文将就当代光全息学的研究与应用两大课题进行学术研究   一. 当代光全息学研究    球面透镜不仅能形成光振幅分布的影象,而且易形成该分布的傅立叶变换图形。

因此,用一个简单透镜可使物光在全息平面上成为某原始图形的傅立叶变换。

存储在全息图中的变换所具有的特性,在光学图形识别中有重要的应用。

透镜,作为形成影象的器件,可以在全息术中用来构成像面全息图。

一个透镜可以形成:a.傅立叶变换和b.输入复振幅分布的影象    由于利用激光光源来制作全息图片,使得全息学开始成为一门实用的学科。

对形成全息图所用光源提出的要求取决于由于物体和必要的光学部件的安排所决定的参数。

  从单一光源取得物波和参考波有如下图所示两种普通方法:   A. 分波前法   B. 分振幅法   在光源与全息图之间(通过物表面或参考镜的反射)传播的光线的最大光程差必须小于相干长度。

激光的相干性与激光器的振荡模式有关,就全息术而论,它要求在任一个横模振荡的激光器的空间相干的辐射,由于高介模的振荡较不稳定,并有以两个或者多个模式同时振荡的倾向,因此最好的振荡模式是最底阶的模式。

  激光束的输出功率必须分成物体照明波和参考波。

若物体要求从不止一个角度(以消除阴影),就需要将激光束分成好几束,一般采用分振幅法,因分振幅法能产生较均匀的照明,而且对光束的展宽要求小,既可以在分配前也可以在分配后展宽。

  平面全息图分析   用非散射光记录的共线全息图上的条纹间隔与感光乳剂的厚度相比为较宽的。

照明这张全息图的波前中的一条光线在通过全息图前只和一条记录条纹相互作用。

因此全息图的响应近似于一个有聚焦特性的平面衍射光栅。

加伯在分析这些特性时是把这样的全息图严格地当作二维的。

用对二维模型分析的结果也很符合实验观察。

  在应用利思与乌帕尼克首先采用的离轴技术所得到的全息图上,其条纹频率则超过共线全息图,超过了量正比于物光束与参考光束之间的夹角。

条纹间隔的典型值可以考虑由两平面波的干涉得到。

  正弦强度分布的周期d可以由下式决定:   2dsinθ=λ, θ为波法线与干涉条纹间的夹角,波长λ,条纹间隔d   式中当θ=15°,λ=0.5微米(绿光)时,则d=1微米。

记录离轴全息图的感光乳剂的厚度通常为15微米,实际上,在这样的乳剂中记录的全息图已不能当作是二维的了。

因此重要的是要记录住平面全息图的分析结果只能准确地应用于使用相当薄的介质所形成的全息图。

  体积全息图衍射   基本的体积全息图对相干照明的响应可以用偶合波理论来描述。

  假设有两个在yz平面传播的并具有单位振幅的平面波,其进入记录介质并进行干涉的情况,按折射定律,有   sin /sin =sin /sin =n   n为记录介质的折射率; 及 分别表示两个波在空气中与z轴的夹角; 及 则为两个波在介质中与z轴的夹角。

  布拉格定律可以用空气中的波长 ,全息片介质折射率 写成如下形式:    2dsinθ= /   体积全息图的特性由布拉格定律确定,因此对照明显示出选择响应。

  二.光全息学典型应用   高分辨率成像   当一张全息图用与制作全息图参考光束共轭的光束照明时,在理论上能再现没有像差没有畸变的物波,其投影实象的分辨率仅受全息图边界衍射的限制。

由于分辨率将随全息图尺寸的增加而增加。

由于全息图可以做的很大,因此可以指望在现场大到5×5厘米时空间频率高到1000线/毫米。

显然此种情况下放大率为1,但1:1的高分辨率投影成像,在集成电路的光刻工艺中有重要的潜在应用。

将光刻掩模精密成象在半导体薄片上的工作,目前是用接触印象法来完成的。

但这方法很快就会使模板损坏。

用投影方法将影象转移到薄片上是一理想的可供选择的方法,但要非常优良和非常昂贵的镜头才能使投影的掩模象达到要求的分辨率和视场。

  当用相干光源照明制作全息图时,摄影乳剂的收缩,表面变形,非线性及洽谈噪声源的影响就更大了。

它们可使图象产生斑纹,衬度降低和边缘模糊,这些缺陷又是用光刻法制作集成电路所不允许的。

新的,更稳定的材料可能是这些问题的解答。

  特征识别   由空间调制参考波形成的傅立叶变换全息图的许多特性,曾被范德鲁等人用于特征识别。

他们采用全息法作成的空间滤波器完成了“匹配滤波”在特征识别中的应用。

  匹配滤波与概念,形成与应用可由下图说明    当要把形成的空间滤波器作为特征识别时,在输入平面内z轴上方部分是一个由平面波透明的,在不透明背景上包含M个透明字符的透明片。

我们将这一组字符阵列的透过率表示为   这里所有字符均围绕 点对称分布, 是阵列中的一个典型字符,其中心在 点。

另外,在输入平面内 处,有一光强度为 δ 的明亮的点光源,并在空间频率面εη面上形成一张傅立叶变换全息图。

这一全息图可以看作是t 与δ函数形成的平面波干涉的记录。

但是当全息图完成识别功能时,仅由透过t的一小部分,即通过入射平面内的一个或几个字符的光所照明,我们将会看到,在输出平面上我们所关心的再现,是表示识别结果的一个明亮的象点。

  信息储存与编码   全息图既可以存储二维信息也可以存储三维信息。

信息可以是彩色的或者编码的,图象的或者字母数字的;可以存储在全息图的表面,或存储在整个体积中;可以为空间上分离的,或者重叠的;可以是永久记录或者是可以消象的。

记录的内容可以是彼此无关的或者相互成对的;可以是可辨认的影象或似乎是无意义的图形。

  现代光全息学的发展前景十分广阔,而其实用技术必然会实现普及,有识之士当携手共同研究以促进社会进步.

镭射全息模压机原理

利用干涉和衍射原理记录并再现物体光波波前的一种技术。

其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束(图A);另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。

记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下(图B),一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。

再现的图像立体感强,具有真实的视觉效应。

全息图的每一部分都记录了物体上各点的光信息,故原则上它的每一部分都能再现原物的整个图像,通过多次曝光还可以在同一张底片上记录多个不同的图像,而且能互不干扰地分别显示出来。

全息照片可分为振幅型(又叫吸收型)和位相型两大类,它们按照与被记录时的曝光量相对应的方式分别改变照明光波的振幅或位相。

如果根据干涉条纹的间距和感光膜层厚度的相对大小来划分,则有薄型(二维型或平面型)和厚型(三维型或体积型)两类全息照片。

在薄型全息照片中,按拍摄时物光束与参考光束是否在感光膜的同侧入射,分为透射型全息照片和反射型全息照片。

如按记录全息图时光路布局的不同分类,有同轴型全息图和离轴型全息图。

全息学的原理适用于各种形式的波动,如X射线、微波、声波、电子波[1]等。

只要这些波动在形成干涉花样时具有足够的相干性即可。

光学全息术可望在立体电影、电视、展览、显微术、干涉度量学、投影光刻、军事侦察监视、水下探测、金属内部探测、保存珍贵的历史文物、艺术品、信息存储、遥感,研究和记录物理状态变化极快的瞬时现象、瞬时过程(如爆炸和燃烧)等各个方面获得广泛应用。

又称全息照相术。

记录波动干扰的振幅和位相分布以及随后使之重现的技术。

广泛地用作三维光学的成像,也可用于声波(见声全息)和射频波。

VirMach:$27.3/月-E3-1240v1/16GB/1TB/10TB/洛杉矶等多机房

上次部落分享过VirMach提供的End of Life Plans系列的VPS主机,最近他们又发布了DEDICATED MIGRATION SPECIALS产品,并提供6.5-7.5折优惠码,优惠后最低每月27.3美元起。同样的这些机器现在订购,将在2021年9月30日至2022年4月30日之间迁移,目前这些等待迁移机器可以在洛杉矶、达拉斯、亚特兰大、纽约、芝加哥等5个地区机房开设,未来迁移的时...

hostkvm:美国VPS,三网强制CU-VIP线路,$5/月,1G内存/1核/15gSSD/500g流量

hostkvm在2021年3月新上线洛杉矶新VPS业务,强制三网接入中国联通优化线路,是当前中美之间性价比最高、最火热的线路之一,性价比高、速度非常好,接近联通AS9929和电信AS4809的效果,带宽充裕,晚高峰也不爆炸。 官方网站:https://hostkvm.com 全场优惠码:2021(全场通用八折,终身码,长期) 美国 US-Plan0【三网联通优化线路】 内存:1G CPU:...

CYUN(29元/月)美国、香港、台湾、日本、韩国CN2,续费原价

关于CYUN商家在之前有介绍过一次,CYUN是香港蓝米数据有限公司旗下的云计算服务品牌,和蓝米云、蓝米主机等同属该公司。商家主要是为个人开发者用户、中小型、大型企业用户提供一站式核心网络云端部署服务,促使用户云端部署化简为零,轻松快捷运用云计算。目前,CYUN主要运营美国、香港、台湾、日本、韩国CN2线路产品,包括云服务器、站群服务器和独立服务器等。这次看到CYUN夏季优惠活动发布了,依然是熟悉的...

激光全息为你推荐
阿里邮箱个人版注册怎样申请公共邮箱美国代购网站哪个好海淘网站哪个好 美国亚马逊服务器价格亚马逊云计算的价格蛮高的,国内性价比好点的有什么云计算?怎么架设服务器如何搭建游戏服务器加速云安卓5.0手机中辅助功能里的加速引擎是什么意思?快云服务器快云VPS速度怎么样?云服务器好用吗云服务器好吗?国内云盘国内的企业网盘哪个好?ms min10min是什么时间单位一键换ip谁有自动换IP地址的软件
哈尔滨服务器租用 域名空间购买 万网域名代理 万网域名解析 申请免费域名 老域名全部失效请记好新域名 132邮箱 yardvps 韩国电信 wordpress技巧 丹弗 美国十次啦服务器 有益网络 什么是刀片服务器 域名接入 鲁诺 西安主机 服务器论坛 lamp怎么读 主机返佣 更多