孪生素数孪生素数猜想有什么用

孪生素数  时间:2021-06-07  阅读:()

孪生素数是不是素数等差数列

孪生素数(也称为孪生质数、双生质数)是指一对素数,它们之间相差2。

例如3和5,5和7,11和13,10016957和10016959等等都是孪生素数。

详情见百科/link?url=NIGjcps1nyOMg3fVLoVejQV2TVFdGHp1RXhH8RP0C3P6UrgHMA28cOifZoOGzB2h

哥德巴赫猜想,孪生素数猜想的具体内容,并列出5个未被验证的数学猜想的具体内容拜托各位大神

什么是歌德巴赫猜想呢? 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。

1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。

如6=3+3,12=5+7等等。

公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想: (a)任何一个>=6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

这就是着名的哥德巴赫猜想。

欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。

叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。

从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。

当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。

有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。

但严格的数学证明尚待数学家的努力。

从此,这道著名的数学难题引起了世界上成千上万数学家的注意。

200年过去了,没有人证明它。

哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。

人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。

世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。

到了20世纪20年代,才有人开始向它靠近。

1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。

这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。

目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。

”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。

在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布朗证明了‘“9 + 9”。

1924年,德国的拉特马赫证明了“7 + 7”。

1932年,英国的埃斯特曼证明了“6 + 6”。

1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。

1938年,苏联的布赫夕太勃证明了“5 + 5”。

1940年,苏联的布赫夕太勃证明了“4 + 4”。

1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。

1956年,中国的王元证明了“3 + 4”。

1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。

1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。

1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。

1966年,中国的陈景润证明了 “1 + 2 ”。

从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。

自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。

布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。

前一部分的叙述是很自然的想法。

关键就是要证明'至少还有一对自然数未被筛去'。

目前世界上谁都未能对这一部分加以证明。

要能证明,这个猜想也就解决了。

然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。

故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1 与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。

因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。

所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。

然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据。

所以1+2与2+2,以及1+2(或至少有一种)"类别组合"方式是确定的,客观的,也即是不可排除的。

所以1+1成立是不可能的。

这就彻底论证了布朗筛法不能证"1+1"。

由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低。

能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循。

二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径。

于是出现了用别的方法来证明歌德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对歌德巴赫猜想证明没有一点作用。

歌德巴赫猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的。

它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾。

个别如何等于一般呢?个别和一般在质上同一,量上对立。

矛盾永远存在。

歌德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论。

c语言孪生素数,输入一个数,输出小于那个数的最大孪生素数,用函数。

看代码: #include? #include? //?判断是否是素数,是返回?1,不是返回?0 int?is_prime(int?n) { ????int?i,?tmp?=?(int)sqrt(n); ????for?(i?=?2;?i?<=?tmp;?++i) ????{ ????????if?(n?%?i?==?0) ????????{ ????????????return?0; ????????} ????} ????return?1; } int?main() {??? ????int?i,?n; ????printf?("请输入一个数:"); ????scanf?("%d",?&n); ????for?(i?=?n?-?1;?i?-?2?>=?2;?--i)?//?小于?n,所以让?i?从?n?-?1?开始 ????{ ????????if?(is_prime(i)?&&?is_prime(i?-?2)) ????????{ ????????????printf?("小于?%d?的最大孪生素数为:%d?和?%d ",?n,?i,?i?-?2); ????????????break; ????????} ????} ????return?0; }运行:

孪生素数猜想有什么用

善良的宋兰回答: 孪生素数猜想有什么用 数学界有一个共识,一流世界难题本身并不重要,重要的是为解决它而产生的新的数学方法和新的数学思想必将拓宽数学基础,试问哪一门成熟的科学能离开数学的发展.所以说世界难题的破解是一只会产金蛋的鹅,而不仅仅是这只鹅本身的价值. 离散数学在计算机科学与技术的地位,如同微积分在物理学与工程技术中的地位一样重要,由于计算机及人工智能科学是近几十年快速发展起来的新兴学科,其数学基础还有很大的拓广空间.中国预印本.数学序号:1286论文<<一个挑战世界难题的数学模型>>为证明哥猜,孪猜提出将现代的离散数学和古老的数论的公理系统链接起来构建一个更大更强的相容统一的公理体系.这种思想方法与美国数学家朗兰兹的纲领是一致的.期望数学界同仁志士作更深入一歩的探讨.看看哥猜,孪猜这只鹅能否为促进数学进一步发展下个金蛋.

CloudCone:$17.99/年KVM-1GB/50GB/1TB/洛杉矶MC机房

CloudCone在月初发了个邮件,表示上新了一个系列VPS主机,采用SSD缓存磁盘,支持下单购买额外的CPU、内存和硬盘资源,最低年付17.99美元起。CloudCone成立于2017年,提供VPS和独立服务器租用,深耕洛杉矶MC机房,最初提供按小时计费随时退回,给自己弄回一大堆中国不能访问的IP,现在已经取消了随时删除了,不过他的VPS主机价格不贵,支持购买额外IP,还支持购买高防IP。下面列...

零途云月付31.9元起,香港cn2 gia线路

零途云是一家香港公司,主要产品香港cn2 gia线路、美国Cera线路云主机,美国CERA高防服务器,日本CN2直连服务器;同时提供香港多ip站群云服务器。即日起,购买香港/美国/日本云服务器享受9折优惠,新用户有优惠码:LINGTUYUN,使用即可打折。目前,零途云还推出性价比非常高香港多ip站群云服务器,有需要的,可以关注一下。零途云优惠码:优惠码:LINGTUYUN (新用户优惠,享受9折优...

CUBECLOUD:香港服务器、洛杉矶服务器、全场88折,69元/月

CUBECLOUD(魔方云)成立于2016年,亚太互联网络信息中心(APNIC)会员,全线产品均为完全自营,专业数据灾备冗余,全部产品均为SSD阵列,精品网络CN2(GIA) CU(10099VIP)接入,与当今主流云计算解决方案保持同步,为企业以及开发者用户实现灵活弹性自动化的基础设施。【夏日特促】全场产品88折优惠码:Summer_2021时间:2021年8月1日 — 2021年8月8日香港C...

孪生素数为你推荐
avbAVBⅢ首选的治疗措施是什么?tdetde在国际贸易中的用词代表什么意思知识分享平台关于分享职场技能的知识付费平台,大家有什么好推荐的吗?vga接口定义主板VGA接口两排针脚的循序是怎么排列jstz泰州哪里有民工市场xcelsiussap bi是什么文本框透明word文本框的背景图片怎样调透明度activitygroup请问在activitygroup中嵌入多个webview,切换时如何保持状态电子邮件软件常用的邮件收发软件鸿道集团陈鸿道简历
网站空间购买 高防服务器租用选锐一 中文国际域名 vps虚拟服务器 域名备案流程 金万维动态域名 google镜像 vpsio 国内加速器 国内php空间 linux空间 电子邮件服务器 idc是什么 nerds 空间合租 上海联通宽带测速 网站加速软件 免费asp空间 国外在线代理服务器 lamp的音标 更多