methodsasssd
asssd 时间:2021-01-16 阅读:(
)
PredictionofElectricLoadNeuralNetworkPredictionModelforBigDataGuochenJin1,*,XiangyingTang2,DepingMiao21Departmentofxxxx,yyyyUniversity,Beijing,China2Schoolofaaaa,bbbbUniversity,Changsha,China*Correspondingauthor:cccc@dddd.
comKeywords:NeuralNetwork,PredictionModel,BigData.
Abstract:Powerloadforecastingisveryimportantforpowerdispatching.
Accurateloadforecastingisofgreatsignificanceforsavingenergy,reducinggeneratingcostandimprovingsocialandeconomicbenefits.
Inordertoaccuratelypredictthepowerload,basedonBPneuralnetworktheory,combinedwiththeadvantagesofClementineindealingwithbigdataandpreventingoverfitting,aneuralnetworkpredictionmodelforlargedataisconstructed.
IntroductionTheaccuratepredictionofpowerloadisofgreatsignificancefortheelectricpowerproductionandthesafeoperationofthepowergridandthenationaleconomy[1].
Shorttermloadforecastingisanimportantpartofenergymanagementsystem.
Thepredictionerrordirectlyaffectstheanalysisresultsofsubsequentsafetycheckofpowergrid,whichisofgreatsignificancefordynamicstateestimation,loadschedulingandcostreduction[2-4].
Traditionalpredictionmethodsarebasedonlinearregression,suchastimeseriesmethod,analysismethodandpatternrecognitionmethodhasdefectsofrespectively[5].
ThebasicfunamentalofBPneuralnetwork2.
1ThestructureofBPneuralnetworkBPneuralnetworkisamulti-layernetworkwitherrorreversepropagation,whichiscomposedofinputlayernodes,hiddenlayernodesandoutputlayernodes.
Thisprocesshasbeenreducedtoanacceptableleveloferrortothenetworkoutput,ortoapredeterminednumberoflearningtimes.
ThenetworkstructureisshowninFigure1.
Figure1.
NeuralnetworkstructureThegeneralmodelofartificialneuralnetworkconsistsoffourbasicelements,whichare:(1)TheBPneuralnetworkislinkedbydifferentnodecoefficients.
Whenconnectingweightsandweightsarepositive,itindicatesthatthecurrentlinkisanexcitingstate.
Conversely,ifthelinkcoefficientisnegative,thelinkstateisastateofsuppression.
(2)Theinputsignalandthelinearsignalarethecombinationofthesignalsforeachinputsignal.
(3)Thefunctionofthenonlinearactivationfunction:makingtheneuronoutputsignalwithinacertainrange.
(1)(2)(3)BPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
2.
2ThedeterminationofthenumberofnetworklayersBPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
Results3.
1TheestablishmentofsimulationmodelThelargedatapredictionmodelfortheuser'selectricityconsumptionisimplementedintheClementinesoftware.
3.
2AnalysisofexperimentalresultsByselectingtheloadpredictionresultsof403and411lines.
Wecanseethattheactualvaluesofthelinesbasicallymatchthepredictedvalues,buttherearealsosomeerrors,especiallyinthepeakperiodofelectricityconsumption,asshowninTable.
1.
Table.
1.
Comparisonofpowerloadforecastingof403lineComparisonPowerForecastingA1293792387B92873529837C89452323894Fromthecomparisonbetweenpredictiondataandactualdata,theBPneuralnetworkhasbetterpredictionperformanceandrelativelysmallerror,whichcanmeetthedemandcompletely,andhasfastpredictionspeedandconvenientoperation.
ConclusionsThetrendofmassdatainpowersystemprovidesabasisforloadcharacteristicanalysisandpredictionmodelestablishment,buttheclassicalloadforecastingmethodcannotaffordsuchahugetimeandcomputingresourceconsumption.
Theproblemofoverfittinginlargesamplesetwillaffectthepredictionaccuracy.
Inthispaper,apowerloadforecastingmodelisbuiltbyusingtheBPneuralnetworkmodel,makingfulluseofthepowerfuldataprocessingfunctionofClementineandpreventingtheoverfittingfunction.
TheexperimentalresultsshowthattheBPneuralnetworkmodelhasgoodpredictabilityandrobustness,andhasacertainpracticalapplicationvalue.
AcknowledgementsTheauthorsgratefullyacknowledgethefinancialsupportfromxxxfunds.
ReferencesChengQiyun,SunCaixin,ZhangXiaoxing,etal.
Short-Termloadforecastingmodelandmethodforpowersystembasedoncomplementationofneuralnetworkandfuzzylogic[J].
TransactionsofChinaElectrotechnicalSociety,2004,19(10):53-58.
Fangfang.
ResearchonpowerloadforecastingbasedonImprovedBPneuralnetwork[D].
HarbinInstituteofTechnology,2011.
AmjadyN.
Short-termhourlyloadforecastingusingtimeseriesmodelingwithpeakloadestimationcapability[J].
IEEETransactionsonPowerSystems,2001,16(4):798-805.
MaKunlong.
Shorttermdistributedloadforecastingmethodbasedonbigdata[D].
Changsha:HunanUniversity,2014.
SHIBiao,LIYuXia,YUXhua,YANWang.
Short-termloadforecastingbasedonmodifiedparticleswarmoptimizerandfuzzyneuralnetworkmodel[J].
SystemsEngineering-TheoryandPractice,2010,30(1):158-160.
亚洲云Asiayun怎么样?亚洲云Asiayun好不好?亚洲云成立于2021年,隶属于上海玥悠悠云计算有限公司(Yyyisp),是一家新国人IDC商家,且正规持证IDC/ISP/CDN,商家主要提供数据中心基础服务、互联网业务解决方案,及专属服务器租用、云服务器、云虚拟主机、专属服务器托管、带宽租用等产品和服务。Asiayun提供源自大陆、香港、韩国和美国等地骨干级机房优质资源,包括B...
ucloud:全球大促活动降价了!这次云服务器全网最低价,也算是让利用户了,UCloud商家调低了之前的促销活动价格,并且新增了1核1G内存配置快杰型云服务器,价格是47元/年(也可选2元首月),这是全网同配置最便宜的云服务器了!UCloud全球大促活动促销机型有快杰型云服务器和通用型云服务器,促销机房国内海外都有,覆盖全球20个城市,具体有北京、上海、广州、香港、 台北、日本东京、越南胡志明市、...
Hostodo 算是比较小众的海外主机商,这次九月份开学季有提供促销活动。不过如果我们有熟悉的朋友应该知道,这个服务商家也是比较时间久的,而且商家推进活动比较稳,每个月都有部分活动。目前有提供机房可选斯波坎、拉斯维加斯和迈阿密。从机房的地理位置和实际的速度,中文业务速度应该不是优化直连的,但是有需要海外业务的话一般有人选择。以前一直也持有他们家的年付12美元的机器,后来用不到就取消未续约。第一、开...
asssd为你推荐
独立ip主机独立ip虚拟主机怎么样?是不是真的很好用,和vps有什么区别吗?空间租用租用空间多少钱 1MB?中文域名注册查询哪里有可以查询中文域名是否被注册的地方?asp主机空间Asp空间是什么空间啊?跟有的网站提供的免费空间有什么区别吗?代理主机主机做成代理服务器,其他局域网内的电脑必须通过我的这个网络出去免费网站空间申请申请免费空间的网站免费网站空间申请需要一个免费的网站空间申请地址。重庆网站空间重庆建网站的公司 我司准备建一个好点的网站,求推荐香港虚拟主机香港虚拟主机多少钱一年呢?虚拟主机评测网怎么选一台好的虚拟主机
虚拟主机试用30天 私服服务器租用 最便宜的vps 荷兰vps 购买域名和空间 免费动态域名 紫田 权嘉云 seednet 申请网页 google台湾 外贸空间 湖南idc 服务器防火墙 qq金券 lamp什么意思 ssl加速 免备案jsp空间 小夜博客 沈阳idc 更多