crystalnano5
nano5 时间:2021-01-17 阅读:(
)
1DirectlyProbingLightAbsorptionEnhancementofSingleHierarchicalStructureswithEngineeredSurfaceRoughnessJingweiWang1,RunShi1,WeijunWang1,NianduoCai1,PengchengChen1,DejunKong1,AbbasAmini2&ChunCheng1Hierarchicalnanostructuresareidealarchitecturestoharvestsolarenergy.
Theunderstandingoflightabsorptioninsinglehierarchicalstructuresisemergentlyimportantandgreatlyhelpfulinenhancingmultiscaleopticalphenomenaandlightmanagement.
However,duetothegeometricalcomplexityofhierarchicalarchitectures,theoreticalandexperimentalstudiesoflightabsorptionhavefacedsignificantchallenges.
Here,wedirectlyquantifylightabsorptioninsinglehierarchicalstructuresforthefirsttimebyutilizingVO2-basednearfieldpowermeter.
Itisfoundthatlighttrappingissignificantlyenhancedinroughmicrowireswhentheroughnessamplitudeiscomparabletotheincidentlightwavelength.
TheroughnessenhancedlightabsorptionisverifiedasageneralphenomenononbothVO2andSihierarchicalstructures.
Therefore,ourworknotonlyprovidesasimpleandquantitativemethodofmeasuringlightabsorptionuponsinglegeometricallycomplexstructuresinmicro/nanoscale,butalsocontributesageneralruletorationallydesignofhierarchicalstructuresforenhancedperformanceinphotoelectricandphotochemicalapplications.
Conversionofsunlighttoelectricalandchemicalenergyisapromisingandprovenstrategyforlarge-scalepro-ductionofenergyfromarenewablesource.
Toeffectivelyharnesssolarenergy,aphotovoltaiccellorphoto-electrochemicalelectrodemustabsorbmostofthesolarspectrumandcollectthephoton-generatedcarrierswithminimallossestorecombination.
Forplanardevices,thistaskcanbedifficultbecausetherequiredthick-nessofmaterialforadequateabsorptionoflightisoftengreaterthanthedistanceoverwhichphoton-generatedchargescanbeefficientlycollected.
Semiconductormicro/nanostructuresoffernewapproachestomeettheserequirementsoflightabsorptionandchargecollection1–3.
Specifically,hierarchicalarchitecturesthatarecon-structedbymultiscalemicro/nanostructureshaveattractedintensiveattentionssincetheyareidealcandidatesforhigh-performancesolarenergyharvestingdevices4–8.
Thesestructurespossessspecificconfigurationsofmicros-calebackbonesandone-dimensional(1D)nanostructurearrayssurroundedthebackbones.
Thedirectpathwayalong1Dcrystallinenanostructuresdiminishesthepossibilityofchargerecombinationandoffersarelativelylargeaspectratioforrapidelectron-holeseparationandchargetransport,aswellaselectrochemicalreactions9–11.
Mostimportantly,high-densitytreelikebranchednanowirearraysofhierarchicalstructuresprovidelongopticalpathsforefficientlighttrappingandthuspromotetheutilizationoflightsignificantly12–16.
Plentyofeffortshavebeendevotedtothesynthesisandapplicationsofhierarchicalstructures,whilehowtheirstructuralparameters,suchasthesizeofmultiscalenanostructures,affectlightabsorptionisyettobesystematicallystudied.
Thus,quantificationoflightabsorptionuponsinglehierarchicalstructureshastobesettledurgently.
Lightabsorptionandpropagationatthesub-micrometerscalearethekeypointsformanycriticaltechnolo-giesandapplications.
Lightabsorptionof1Dnanostructurearraysisawellunderstoodphenomenonexperimen-tally,analytically(Maxwellequation),andnumerically(finiteelementmethod).
However,thelightabsorptionofsinglesub-micronsolidsisstillhardtobequantitativelydeterminedbyexperiments16–18.
Thisislargelyduetodifficultiesinaccurateanddirectcharacterizationofenergyflowandtemperaturedistributionatthisscale.
1DepartmentofMaterialsScienceandEngineering,SouthernUniversityofScienceandTechnology,Shenzhen,518055,China.
2CenterforInfrastructureEngineering,WesternSydneyUniversity,Kingswood,NewSouthWales,2751,Australia.
JingweiWangandRunShicontributedequallytothiswork.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoC.
C.
(email:chengc@sustc.
edu.
cn)Received:29March2018Accepted:12July2018Published:xxxxxxxxOPEN2Incaseofgeometricallycomplicatednanostructures,i.
e.
,hierarchicalstructures,simulationalorexperimentalevaluationsoflightabsorptionbecomeevenmoredifficult.
Recently,wehavedevelopedopticallyreadablenear-fieldpowermeters(NFP)basedonthemetal–insulatortransition(MIT)insinglecrystalvanadiumdioxide(VO2)micro/nanobeamswhichenablesdirectquantificationoflightabsorptionofanysinglemicro/nanowires19,20.
Here,wepresentthequantitativestudyoflightabsorptionofsinglehierarchicalstructuresbyapplyingthisuniqueNFPtechnique.
ThesurfaceofVO2andSimicrowireswereengineeredbyatop-downapproachwithfocusionbeam(FIB)techniquetoformhierarchicalstructureswithcontrollabletrenchsizes.
LongVO2wiresweresuspendedfromasubstrateasNFPs.
ThehierarchicalwiresbondedtotheNFPswerelocallyheatedusingafocusedlaserwhichstimulatesthephasetransition.
Theresultantdomainstructurescanbeopticallyimaged.
Byusingtheheattransporttheory,wedeterminedthelightabsorp-tionasafunctionoftrenchdepthandspacing.
Itwasfoundthatlighttrappingwassignificantlyenhancedforhierarchicalstructures(roughmicro/nanowires)whentheamplitudeofsurfaceroughnesswascomparabletothelightwavelength.
Fromtheresults,anenhancedlightabsorptionwasobtainedfromthesinglehierarchicalstruc-turespreparedbysurfaceroughnessengineering.
ItisfoundthattheenhancedlightabsorptioncouldbeobtainedbysurfaceroughnessengineeringonbothVO2andSimaterialsystemswhichthusprovidesauniversalstrategyformodernhierarchicalstructuredesign.
MethodsFortheopticalabsorbancemeasurementsofsingleVO2andSimicrowireswithpatternedtrenches,experimentswerecarriedoutinachamberwithaquartzwindow(SeetheSupplementaryFilesforthedetailsofsampleanddevicepreparation)19–21.
ThevacuumchamberwaspumpeddowntoNano5,3831–3838(2011).
5.
Wu,W.
-Q.
etal.
HydrothermalfabricationofhierarchicallyanataseTiO2nanowirearraysonFTOglassfordye-sensitizedsolarcells.
Sci.
Rep.
3(2013).
6.
Xu,H.
J.
&Li,X.
J.
Siliconnanoporouspillararray:asiliconhierarchicalstructurewithhighlightabsorptionandtriple-bandphotoluminescence.
Opt.
Express16,2933–2941(2008).
7.
Joo,K.
Y.
etal.
FormationofHighlyEfficientDye‐SensitizedSolarCellsbyHierarchicalPoreGenerationwithNanoporousTiO2Spheres.
Adv.
Mater.
21,3668–3673(2009).
8.
Park,M.
J.
etal.
3DHierarchicalIndiumTinOxideNanotreesforEnhancementofLightExtractioninGaN‐BasedLight‐EmittingDiodes.
Adv.
Opt.
Mater.
5(2017).
9.
Gabriel,M.
M.
etal.
Imagingchargeseparationandcarrierrecombinationinnanowirepinjunctionsusingultrafastmicroscopy.
NanoLett.
14,3079–3087(2014).
10.
Roh,D.
K.
,Chi,W.
S.
,Jeon,H.
,Kim,S.
J.
&Kim,J.
H.
Highefficiencysolid-statedye-sensitizedsolarcellsassembledwithhierarchicalanatasepinetree-likeTiO2nanotubes.
Adv.
Funct.
Mater.
24,379–386(2014).
11.
Wu,W.
-Q.
,Xu,Y.
-F.
,Rao,H.
-S.
,Su,C.
-Y.
&Kuang,D.
-B.
Multistackintegrationofthree-dimensionalhyperbranchedanatasetitaniaarchitecturesforhigh-efficiencydye-sensitizedsolarcells.
J.
Am.
Chem.
Soc.
136,6437–6445(2014).
12.
Garnett,E.
&Yang,P.
Lighttrappinginsiliconnanowiresolarcells.
NanoLett.
10,1082–1087(2010).
Figure3.
EffectofsurfaceroughnessontheopticalabsorptionofasingleSimicrowire.
(a)AsurfaceroughnessmodifiedSimicrowirebondedtoaVO2NFP.
TheleftpanelshowstheopticalimagesoftheSi-VO2systemwithlaseroffandon.
AM/IdomainwallistriggeredwhenthelaserisonandheatunidirectionallytransfersfromSimicrowiretotheVO2NFP.
(b)TheenlargedSEMimageandopticalimageofthepatternedsectionsoftheSimicrowire.
TheSimicrowiresurfaceiscarvedwiththetrenchesofdifferentdepthsandspacingusingFIB.
Theroughenedpartsshowacleardarkercontrastcomparedwiththesmoothpartintheopticalreflection,indicatingeffectivelyenhancedlightabsorption.
(c)OpticalabsorptionforaSiwirewiththeradiusof2.
1μmasafunctionoftrenchspacing(redcircles,depthfixedat400nm)ortrenchdepth(greensquares,spacingfixedat250nm).
Theincidentlaserwavelengthis488nmasindicatedwiththeblueline.
Solidlinesanddashedlinesareguidancefortheeye.
613.
Sheng,X.
etal.
Designandnon-lithographicfabricationoflighttrappingstructuresforthinfilmsiliconsolarcells.
Adv.
Mater.
23,843–847(2011).
14.
Wang,Z.
etal.
ZnO/ZnSxSe1xcore/shellnanowirearraysasphotoelectrodeswithefficientvisiblelightabsorption.
Appl.
Phys.
Lett.
101,073105(2012).
15.
Ko,S.
H.
etal.
NanoforestofHydrothermallyGrownHierarchicalZnONanowiresforaHighEfficiencyDye-SensitizedSolarCell.
NanoLett.
11,666–671(2011).
16.
Zhai,T.
etal.
FabricationofHigh-QualityIn2Se3NanowireArraystowardHigh-PerformanceVisible-LightPhotodetectors.
ACSNano4,1596–1602(2010).
17.
Cao,L.
etal.
Engineeringlightabsorptioninsemiconductornanowiredevices.
Nat.
Mater.
8,643(2009).
18.
Kim,P.
,Shi,L.
,Majumdar,A.
&McEuen,P.
Thermaltransportmeasurementsofindividualmultiwallednanotubes.
Phy.
Rev.
Lett.
87,215502(2001).
19.
Cheng,C.
etal.
DirectlyMeteringLightAbsorptionandHeatTransferinSingleNanowiresUsingMetal–InsulatorTransitioninVO2.
Adv.
Opt.
Mater.
3,336–341(2015).
20.
Cheng,C.
etal.
Heattransferacrosstheinterfacebetweennanoscalesolidsandgas.
ACSNano5,10102–10107(2011).
21.
Cheng,C.
,Liu,K.
,Xiang,B.
,Suh,J.
&Wu,J.
Ultra-long,free-standing,single-crystallinevanadiumdioxidemicro/nanowiresgrownbysimplethermalevaporation.
Appl.
Phys.
Lett.
100,103111(2012).
22.
Berglund,C.
N.
&Guggenheim,H.
J.
ElectronicPropertiesofVO2neartheSemiconductor-MetalTransition.
Phy.
Rev.
185,1022–1033(1969).
23.
Isabella,O.
,Kr,J.
&Zeman,M.
Modulatedsurfacetexturesforenhancedlighttrappinginthin-filmsiliconsolarcells.
Appl.
Phys.
Lett.
97,101106(2010).
24.
Tiedje,T.
,Abeles,B.
,Cebulka,J.
&Pelz,J.
Photoconductivityenhancementbylighttrappinginroughamorphoussilicon.
Appl.
Phys.
Lett.
42,712–714(1983).
25.
Gaucher,A.
etal.
Ultrathinepitaxialsiliconsolarcellswithinvertednanopyramidarraysforefficientlighttrapping.
NanoLett.
16,5358–5364(2016).
26.
vanLare,M.
-C.
&Polman,A.
Optimizedscatteringpowerspectraldensityofphotovoltaiclight-trappingpatterns.
ACSPhotonics2,822–831(2015).
27.
Fan,Z.
etal.
Light-TrappingCharacteristicsofAgNanoparticlesforEnhancingtheEnergyConversionEfficiencyofHybridSolarCells.
ACSAppl.
Mat.
&Interfaces9,35998–36008(2017).
28.
Kim,S.
-K.
etal.
Tuninglightabsorptionincore/shellsiliconnanowirephotovoltaicdevicesthroughmorphologicaldesign.
NanoLett.
12,4971–4976(2012).
29.
Sandhu,S.
,Yu,Z.
&Fan,S.
Detailedbalanceanalysisandenhancementofopen-circuitvoltageinsingle-nanowiresolarcells.
NanoLett.
14,1011–1015(2014).
30.
Nowzari,A.
etal.
AcomparativestudyofabsorptioninverticallyandlaterallyorientedInPcore–shellnanowirephotovoltaicdevices.
NanoLett.
15,1809–1814(2015).
31.
DeLuca,M.
etal.
PolarizedlightabsorptioninwurtziteInPnanowireensembles.
NanoLett.
15,998–1005(2015).
32.
Lee,H.
etal.
Nanowire-on-Nanowire:All-NanowireElectronicsbyOn-DemandSelectiveIntegrationofHierarchicalHeterogeneousNanowires.
ACSNano(2017).
33.
Bell,A.
P.
etal.
Quantitativestudyofthephotothermalpropertiesofmetallicnanowirenetworks.
ACSNano9,5551–5558(2015).
34.
Versteegh,M.
A.
,vanderWel,R.
E.
&Dijkhuis,J.
I.
MeasurementoflightdiffusioninZnOnanowireforests.
Appl.
Phys.
Lett.
100,101108(2012).
35.
Jurgilaitis,A.
etal.
MeasurementsoflightabsorptionefficiencyinInSbnanowires.
Struct.
Dyn.
1,014502(2014).
36.
Park,Y.
-S.
&Lee,J.
S.
CorrelatingLightAbsorptionwithVariousNanostructureGeometriesinVerticallyAlignedSiNanowireArrays.
ACSPhotonics4,2587–2594(2017).
37.
Frederiksen,R.
etal.
VisualUnderstandingofLightAbsorptionandWaveguidinginStandingNanowireswith3Dfluorescenceconfocalmicroscopy.
ACSPhotonics4,2235–2241(2017).
38.
Fan,Z.
etal.
Orderedarraysofdual-diameternanopillarsformaximizedopticalabsorption.
NanoLett.
10,3823–3827(2010).
39.
Meng,S.
,Ren,J.
&Kaxiras,E.
NaturaldyesadsorbedonTiO2nanowireforphotovoltaicapplications:enhancedlightabsorptionandultrafastelectroninjection.
NanoLett.
8,3266–3272(2008).
40.
Jain,V.
etal.
InP/InAsPNanowire-basedSpatiallySeparateAbsorptionandMultiplicationAvalanchePhotodetectors.
ACSPhotonics4(11),2693(2017).
41.
Park,J.
-S.
etal.
EnhancementofLightAbsorptioninSiliconNanowirePhotovoltaicDeviceswithDielectricandMetallicGratingStructures.
NanoLett.
17,7731–7736(2017).
42.
Wei,W.
-R.
etal.
Above-11%-efficiencyorganic–inorganichybridsolarcellswithomnidirectionalharvestingcharacteristicsbyemployinghierarchicalphoton-trappingstructures.
NanoLett.
13,3658–3663(2013).
43.
Hu,L.
&Chen,G.
Analysisofopticalabsorptioninsiliconnanowirearraysforphotovoltaicapplications.
NanoLett.
7,3249–3252(2007).
AcknowledgementsThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.
51776094),theGuangdong-HongKongjointinnovationproject(GrantNo.
2016A050503012),theGuangdongNaturalScienceFundsforDistinguishedYoungScholars(GrantNo.
2015A030306044),andtheTrainingProgramforOutstandingYoungTeachersatHigherEducationInstitutionsofGuangdongProvince(GrantYQ2015151),Climbingproject(pdjh2017c0030),StudentInnovationTrainingProgram(2017X40).
ThestartinggrantsfromSouthernUniversityofScienceandTechnologyareacknowledged.
TheauthorsalsoappreciatethevaluablesuggestionsfromProf.
JunqiaoWufromUniversityofCalifornia,Berkeley.
AuthorContributionsJ.
W.
andR.
S.
carriedouttheexperimentanddesignedthestudy.
C.
C.
draftedthearticle.
W.
W.
,N.
C.
,P.
C.
,D.
K.
,A.
A.
performedcriticalrevision.
Allauthorsreadandapprovedthefnalmanuscript.
AdditionalInformationSupplementaryinformationaccompaniesthispaperathttps://doi.
org/10.
1038/s41598-018-29652-8.
CompetingInterests:Theauthorsdeclarenocompetinginterests.
Publisher'snote:SpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
7OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.
0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCre-ativeCommonslicense,andindicateifchangesweremade.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicense,unlessindicatedotherwiseinacreditlinetothematerial.
Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenseandyourintendeduseisnotper-mittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Toviewacopyofthislicense,visithttp://creativecommons.
org/licenses/by/4.
0/.
TheAuthor(s)2018
ZJI怎么样?ZJI是一家成立于2011年的商家,原名维翔主机,主要从事独立服务器产品销售,目前主打中国香港、日本、美国独立服务器产品,是一个稳定、靠谱的老牌商家。详情如下:月付/年付优惠码:zji??下物理服务器/VDS/虚拟主机空间订单八折终身优惠(长期有效)一、ZJI官网点击直达香港葵湾特惠B型 CPU:E5-2650L核心:6核12线程内存:16GB硬盘:480GB SSD带宽:5Mbps...
腾讯云轻量应用服务器又要免费升级配置了,之前已经免费升级过一次了(腾讯云轻量应用服务器套餐配置升级 轻量老用户专享免费升配!),这次在上次的基础上再次升级。也许这就是良心云吧,名不虚传。腾讯云怎么样?腾讯云好不好。腾讯云轻量应用服务器 Lighthouse 是一种易于使用和管理、适合承载轻量级业务负载的云服务器,能帮助个人和企业在云端快速构建网站、博客、电商、论坛等各类应用以及开发测试环境,并提供...
之前几个月由于CHIA挖矿导致全球固态硬盘的价格疯涨,如今硬盘挖矿基本上已死,硬盘的价格基本上恢复到常规价位,所以,pacificrack决定对全系Cloud server进行价格调整,降幅较大,“如果您是老用户,请通过续费管理或升级套餐,获取同步到最新的定价”。官方网站:https://pacificrack.com支持PayPal、支付宝等方式付款VPS特征:基于KVM虚拟,纯SSD raid...
nano5为你推荐
租用主机哪个平台可以租电脑注册国际域名怎么申请国际域名国外域名注册选择海外注册域名有什么好处?中文域名注册查询如何注册中文域名?请问个人怎样注册中文域名。cn的,个人注册别人公司的可以吗?违法吗?或者怎样才能注册com域名空间域名和空间是什么意思域名备案域名备案需要什么香港虚拟空间香港空间,香港虚拟主机,香港虚拟空间推荐一家,公司要做一个网站,需要1G的,不限流量的,其它的空间不要免备案虚拟空间教你怎么看免备案虚拟主机空间成都虚拟空间五星网络隶属于成都冠一科技有限公司,虚拟空间购买了不到一个月不能访问2次,质量真差啊!国外网站空间怎么样把网站空间放到国外去?
大连虚拟主机 google电话 阿里云os GGC lunarpages ix主机 12u机柜尺寸 typecho 本网站服务器在美国 云全民 vip购优汇 域名转接 183是联通还是移动 100mbps 中国电信宽带测速器 申请免费空间和域名 联通网站 下载速度测试 北京主机托管 广东服务器托管 更多