笛卡尔乘积笛卡尔乘积是啥定义

笛卡尔乘积  时间:2021-08-02  阅读:()

数据库里的笛卡儿积是什么东西?

笛卡尔积又叫笛卡尔乘积,是一个叫笛卡尔的人提出来的。

简单的说就是两个集合相乘的结果。

具体的定义去看看有关代数系的书的定义。

直观的说就是 集合A{a1,a2,a3} 集合B{b1,b2} 他们的 笛卡尔积 是 A*B ={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2)} 任意两个元素结合在一起

笛卡尔乘积是啥定义

名称定义 假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}。

可以扩展到多个集合的情况。

类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。

笛卡儿积的运算性质 由于有序对中x,y的位置是确定的,因此A×B的记法也是确定的,不能写成B×A. 笛卡儿积也可以多个集合合成,A1×A2×…×An. 笛卡儿积的运算性质. 一般不能交换. 笛卡儿积,把集合A,B合成集合A×B,规定 A×B={?x?A?y?B} 推导过程 给定一组域D1,D2,…,Dn,这些域中可以有相同的。

D1,D2,…,Dn的笛卡尔积为: D1×D2×…×Dn={(d1,d2,…,dn)|di??Di,i=1,2,…,n} 所有域的所有取值的一个组合不能重复 例 给出三个域: D1=SUPERVISOR ={ 张清玫,刘逸 } D2=SPECIALITY={计算机专业,信息专业} D3=POSTGRADUATE={李勇,刘晨,王敏} 则D1,D2,D3的笛卡尔积为D: D=D1×D2×D3 = {(张清玫,计算机专业,李勇),(张清玫,计算机专业,刘晨), (张清玫,计算机专业,王敏),(张清玫,信息专业,李勇), (张清玫,信息专业,刘晨),(张清玫,信息专业,王敏), (刘逸,计算机专业,李勇),(刘逸,计算机专业,刘晨), (刘逸,计算机专业,王敏),(刘逸,信息专业,李勇), (刘逸,信息专业,刘晨),(刘逸,信息专业,王敏) } 这样就把D1,D2,D3这三个集合中的每个元素加以对应组合,形成庞大的集合群。

本个例子中的D中就会有2X2X3个元素,如果一个集合有1000个元素,有这样3个集合,他们的笛卡尔积所组成的新集合会达到十亿个元素。

假若某个集合是无限集,那么新的集合就将是有无限个元素。

序偶与笛卡尔积 在日常生活中,有许多事物是成对出现的,而且这种成对出现的事物,具有一定的顺序。

例如,上,下;左,右;3〈4;张华高于李明;中国地处亚洲;平面上点的坐标等。

一般地说,两个具有固定次序的客体组成一个序偶,它常常表达两个客体之间的关系。

记作〈x,y〉。

上述各例可分别表示为〈上,下〉;〈左,右〉;〈3,4〉;〈张华,李明〉;〈中国,亚洲〉;〈a,b〉等。

序偶可以看作是具有两个元素的集合。

但它与一般集合不同的是序偶具有确定的次序。

在集合中{a,b}={b,a},但对序偶〈a,b〉≠〈b,a〉。

设x,y为任意对象,称集合{{x},{x,y}}为二元有序组,或序偶(ordered pairs),简记为

称x为的第一分量,称y为第二分量。

定义3-4.1 对任意序偶 , , = 当且仅当a=c且b = d 。

递归定义n元序组 ={{a1},{a1 , a2}} = { {a1 , a2},{a1 , a2 , a3}} = < , a3 > = <, an> 两个n元序组相等 < a1,…an >= < b1,…bn >?(a1=b1) ∧ …∧ (an=bn) 定义3-4.2 对任意集合 A1,A2 , …,An, (1)A1×A2,称为集合A1,A2的笛卡尔积(Cartesian product),定义为 A1 ×A2={x | $u $v(x = ∧u ?A1∧v?A2)}={ | u ?A1∧v?A2} (2)递归地定义 A1 × A2× … × An A1 × A2×… × An= (A1× A2 × …× An-1)×An 例题1 若A={α,β},B={1,2,3},求A×B,A×A,B×B以及(A×B)?(B×A)。

解 A×B={〈α,1〉,〈α,2〉,〈α,3〉,〈β,1〉,〈β,2〉,<β,3〉} B×A={〈1,α〉,〈1,β〉,〈2,α〉,〈2,β〉,〈3,α〉,〈3,β〉} A×A={〈α,α〉,〈α,β〉,〈β,α〉,〈β,β〉} B×B={〈1,1〉,〈1,2〉,〈1,3〉,〈2,1〉,〈2,2〉,〈2,3〉,〈3,1〉,〈3,2〉,〈3,3〉} (A×B)?(B×A)=? 由例题1可以看到(A×B)?(B×A)=? 我们约定若A=?或B=?,则A×B=?。

由笛卡尔定义可知: (A×B)×C={〈〈a,b〉,c〉|(〈a,b〉∈A×B)∧(c∈C)} ={〈a,b,c〉|(a∈A)∧(b∈B)∧(c∈C)} A×(B×C)={〈a,〈b,c〉〉|(a∈A)∧(〈b,c〉∈B×C)} 由于〈a,〈b,c〉〉不是三元组,所以 (A×B)×C ≠A×(B×C) 定理3-4.1 设A, B, C为任意集合,*表示 ?,?或 – 运算,那么有如下结论: 笛卡尔积对于并、交差运算可左分配。

即: A×(B*C)=(A×B)*(A×C) 笛卡尔积对于并、交差运算可右分配。

即: (B*C) ×A=(B×A)*(C×A) ¤ 当*表示 ?时,结论(1)的证明思路:(讨论叙述法) 先证明A×(B ? C)?(A×B) ? (A×C) 从∈A×(B?C)出发,推出∈(A ×B) ? (A×C) 再证明(A×B) ? (A×C) ? A×(B ? C) 从∈(A×B) ? (A×C)出发,推出∈A×(B?C) 当*表示 ?时,结论(2)的证明思路:(谓词演算法) 见P-103页。

¤ 定理3-4.2 设A, B, C为任意集合,若C ≠ F,那么有如下结论: A?B?(A×C ?B×C) ? (C×A?C×B) ¤ 定理前半部分证明思路 :(谓词演算法) 先证明A?B ? (A×C?B×C) 以A?B 为条件,从∈A×C出发,推出∈B×C 得出(A×C?B×C)结论。

再证明(A×C ?B×C) ? A?B 以C≠F为条件,从x∈A出发,对于y∈C,利用?附加式,推出x∈B 得出(A?B)结论。

见P-103页。

¤ 定理3-4.3 设A, B, C, D为任意四个非空集合,那么有如下结论: A×B ? C×D的充分必要条件是A? C,B? D ¤证明思路:(谓词演算法) 先证明充分性: A×B ? C×D ? A? C,B? D 对于任意的x∈A、y∈B,从∈A×B出发,利用条件A×B? C×D, ∈C×D,推出x∈C, y∈D。

再证明必要性: A? C,B? D ?A×B? C×D 对于任意的x∈A、y∈B,从∈A×B出发,推出∈C×D。

笛卡尔(Descartes)乘积又叫直积。

设A、B是任意两个集合,在集合A中任意取一个元素x,在集合B中任意取一个元素y,组成一个有序对(x,y),把这样的有序对作为新的元素,他们的全体组成的集合称为集合A和集合B的直积,记为A×B,即A×B={(x,y)|x∈A且y∈B}。

笛卡尔积怎么算。要过程

笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尔积,又称直积,表示为X×Y,第一个对象是百X的成员度而第二个对象是Y的所有可能有序对的其中一个成员,而笛卡尔乘积的具体算法及过程如下: 设A,B为集合,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合叫做A与B的笛卡尔积,记作A x B. 笛卡尔积的符号化为: A×B={(x,y)|x∈A∧y∈B} 扩展问资料: 笛卡尔乘积中专业符号的意义 1、“∈”答是数学中的一种符号。

读作“属于”。

若a∈A,则a属于集合A,a是集合A中的元素。

数学上读此符号时,直接可以用“属于”这个词来表达。

2、∧,称为合取,就是逻辑与,例如:P∧Q?当且仅内当P与Q同时为真(T)时,结果为真,容其余全为假(F) 3、∨,称为析取,就是逻辑或,例如: P∨Q,当且仅当P与Q同时为F时,结果为假,其余全为真。

4、┐ 为逻辑非

求C语言描述的笛卡尔乘积代码!!!在线等!!

展开全部 #include #include void main() { int *a, *b,x; int Na,Nb; int i,j; printf("input Na "); scanf("%d",&Na); printf("input Nb "); scanf("%d",&Nb); a = (int *) malloc(sizeof(int) * Na); b = (int *) malloc(sizeof(int) * Nb); printf("input a[]: "); for (i=0;iprintf("input b[]: "); for (i=0;iprintf("--------- "); // a * b: for (j=0;j{ for (i=0;i{ x = a[j] * b[i]; printf("%d ",x); } printf(" "); } }

笛卡尔乘积是啥定义

笛卡尔(Descartes)乘积又叫直积。

假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。

可以扩展到多个集合的情况。

类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。

wordpress专业外贸建站主题 WordPress专业外贸企业网站搭建模版

WordPress专业外贸企业网站搭建模版,特色专业外贸企业风格 + 自适应网站开发设计 通用流行的外贸企业网站模块 + 更好的SEO搜索优化和收录 自定义多模块的产品展示功能 + 高效实用的后台自定义模块设置!采用标准的HTML5+CSS3语言开发,兼容当下的各种主流浏览器: IE 6+(以及类似360、遨游等基于IE内核的)、Firefox、Google Chrome、Safari、Opera...

快云科技:夏季大促销,香港VPS7.5折特惠,CN2 GIA线路; 年付仅不到五折巨惠,续费永久同价

快云科技怎么样?快云科技是一家成立于2020年的新起国内主机商,资质齐全 持有IDC ICP ISP等正规商家。我们秉承着服务于客户服务于大众的理念运营,机器线路优价格低。目前已注册用户达到5000+!主营产品有:香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机!产品特色:全配置均20M带宽,架构采用KVM虚拟化技术,全盘SSD硬盘,RAID10阵列, 国...

#推荐# cmivps:全场7折,香港不限流量VPS,支持Windows系统

cmivps香港VPS带来了3个新消息:(1)双向流量改为单向流量,相当于流量间接扩大一倍;(2)Hong Kong 2T、Hong Kong 3T、Hong Kong 无限流量,这三款VPS开始支持Windows系统,如果需要中文版Windows系统请下单付款完成之后发ticket要求官方更改即可;(3)全场7折年付、8折月付优惠,优惠码有效期一个月!官方网站:https://www.cmivp...

笛卡尔乘积为你推荐
可以访问违规网站的浏览器能否让UC浏览屏蔽掉这些骗子违法的网站域名,永久不能访问。bftBFT和大学英语四,六级考试有什么区别图像识别算法图像识别算法都有哪些ie9下载window7系统下载getsockopt提示出现这个怎么办?blastpblast 和bomb的区别豆瓣fm电台豆瓣电台怎么听自己喜欢歌手的歌电视蚂蚁电视机里进蚂蚁怎么处理安卓模拟器哪个好用安卓模拟器哪个好用系统登录界面电脑用户登录界面,输入密码登不进去了,怎么解决,急
域名网站 拜登买域名批特朗普 187邮箱 阿里云邮箱登陆首页 kvmla simcentric 流媒体服务器 贵州电信宽带测速 ev证书 免费全能空间 阿里云浏览器 卡巴斯基官方免费版 秒杀预告 怎样建立邮箱 静态空间 卡巴斯基试用版 根服务器 免费的asp空间 服务器维护 免费asp空间 更多