光纤通信的发展趋势我国光纤通信事业的新发展

光纤通信的发展趋势  时间:2021-08-17  阅读:()

光通信的前景如何?能具体谈谈吗

参考前瞻产业研究院《中国光通信器件行业市场前瞻与投资战略规划分析报告》显示,随着光通信产业的发展,无论是谷歌光纤的搅局,还是百度光纤将大有所为,市场的痛并快乐着的局面总是在不断推进产业的兼并整合进程。

未来,市场、技术和产业动态,都有相关研究机构进行剖析与预测。

光通信未来的市场、技术、产业发展动态,将会有怎样的风云变幻。

  从现状来看,光纤光缆的价格维持在低位徘徊。

预制棒已经成为国内光纤光缆厂商提升盈利能力获取更高竞争力的关键所在,预制棒的产能利用率已经成为国内企业考虑的重要因素。

光纤光缆行业技术含量最高、壁垒最大的是上游预制棒环节,目前国内行业大厂均在光预制棒领域实现了自产,实现光预制棒-光纤-光缆的全产业链布局。

  我国光通信企业三季度财报光通信板块表现较好,目前看国内光纤光缆市场仍处于供小于求的局面,全球光棒产能都处于吃紧状态,光纤光缆厂商也在积极开拓新的应用市场,未来光通信行业景气度继续向上。

况且,我国光网络市场与产业拥有得天独厚的优势:拥有全球最大的市场,全球最完整的光通信产业链和制造基地,与世界水平最接近的技术领域和最有希望实现全面超越的产业领域。

在未来的几年,中国光通信行业发展必将势头喜人。

光纤通信应用现状怎么写?

给你一点写的方向!! 1、介绍下光纤通信的概念 2、介绍下它的发展历程 3、再写一点它的优点和缺点 4、介绍下光纤技术的应用领域 5、现状要从两方面写a:对这种技术的肯定,着重讲一下它的优点对于人们生活生产带来的快捷以及便利 b:对于这种技术运用的不足,或者说没有根据当地经济的发展水平儿盲目发展。









等等。



你可以查一点资料。



总之要用辩证的思维看待现状 希望能对你有一点帮助

光纤通信的发展

光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段. 光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。

进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。

光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。

通信的发展过程是以不断提高载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波 ,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。

光纤通信与以往的电气通信相比,主要区别在于有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,有利于资源合理使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在特殊环境或军事上使用。

FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。

FTTH所需要的光纤可能是现有已敷光纤的2~3倍。

过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。

由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH的实用化进程。

发达国家对FTTH的看法不完全相同:美国AT&T认为FTTH市场较小,在0F62003宣称:FTTH在20-50年后才有市场。

美国运行商Verizon和Sprint比较积极,要在10—12年内采用FTTH改造网络。

日本NTT发展FTTH最早,已经有近200万用户。

中国FTTH处于试点阶段。

现广泛采用的ADSL技术提供宽带业务尚有一定优势 与FTTH相比:①价格便宜②利用原有铜线网使工程建设简单③对于1Mbps—500kbps影视节目的传输可满足需求。

FTTH大量推广受制约。

对于不久的将来要发展的宽带业务,如:网上教育,网上办公,会议电视,网上游戏,远程诊疗等双向业务和HDTV高清数字电视,上下行传输不对称的业务,ADSL就难以满足。

尤其是HDTV,经过压缩,其传输速率尚需19.2Mbps。

正在用H.264技术开发,可压缩到5~6Mbps。

通常认为对QOS有所保证的ADSL的最高传输速串是2Mbps,仍难以传输HDTV。

可以认为HDTV是FTTH的主要推动力。

即HDTV业务到来时,非FTTH不可。

通常有P2P点对点和PON无源光网络两大类。

F2P方案一一优点:各用户独立传输,互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。

缺点:为了减少用户直接到局的光纤和管道,需要在用户区安置1个汇总用户的有源节点。

PON方案——优点:无源网络维护简单;原则上可以节省光电子器件和光纤。

缺点:需要采用昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,以避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不单是要网络扩容,还需要更换PON和更换用户模块来解决。

(按照市场价格,PEP比PON经济) PON有多种,一般有如下几种:(1)APON:即ATM-PON,适合ATM交换网络。

(2)BPON:即宽带的PON。

(3)OPON:采用通用帧处理的OFP-PON。

(4)EPON:采用以太网技术的PON,GPON是千兆以太网的PON。

(5)WDM-PON:采用波分复用来区分用户的PON,由于用户与波长有关,使维护不便,在FTTH中很少采用。

无线接入技术发展迅速。

可用作WLAN的IEEE802.11g协议,传输带宽可达54Mbps,覆盖范围达100米以上,已可商用。

如果采用无线接入WLAN作用户的数据传输,包括:上下行数据和点播电视VOD的上行数据,对于一般用户其上行不大,IEEE802.11g是可以满足的。

而采用光纤的FTTH主要是解决HDTV宽带视频的下行传输,当然在需要时也可包含一些下行数据。

这就形成“光纤到家庭+无线接入”(FTTH+无线接入)的家庭网络。

这种家庭网络,如果采用PON,就特别简单,因为此PON无上行信号,就不需要测距的电子模块,成本大大降低,维护简单。

如果,所属PON的用户群体,被无线城域网WiMAX(1EEE802.16)覆盖而可利用,那么可不必建设专用的WLAN。

接入网采用无线是趋势,但无线接入网仍需要密布于用户临近的光纤网来支撑,与FTTH相差无几。

FTTH+无线接入是未来的发展趋势。

光交换的发展 实际上可表示为:通信输+交换。

光纤只是解决传输问题,还需要解决光的交换问题。

过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。

通信网除了用户末端一小段外,都是光纤,传输的是光信号。

合理的方法应该采用光交换。

但由于光开关器件不成熟,只能采用的是“光-电-光”方式来解决光网的交换,即把光信号变成电信号,用电子交换后,再变还光信号。

显然是不合理的办法,是效串不高和不经济的。

正在开发大容量的光开关,以实现光交换网络,特别是所谓ASON-自动交换光网络。

通常在光网里传输的信息,一般速度都是xGbps的,电子开关不能胜任。

一般要在低次群中实现电子交换。

而光交换可实现高速XGbDs的交换。

当然,也不是说,一切都要用光交换,特别是低速,颗粒小的信号的交换,应采用成熟的电子交换,没有必要采用不成熟的 大容量的光交换。

当前,在数据网中,信号以“包”的形式出现,采用所谓“包交换”。

包的颗粒比较小,可采用电子交换。

然而,在大量同方向的包汇总后,数量很大时,就应该采用容量大的光交换。

少通道大容量的光交换已有实用。

如用于保护、下路和小量通路调度等。

一般采用机械光开关、热光开关来实现。

由于这些光开关的体积、功耗和集成度的限制,通路数一般在8—16个。

电子交换一般有“空分”和“时分”方式。

在光交换中有“空分”、“时分”和“波长交换”。

光纤通信很少采用光时分交换。

光空分交换:一般采用光开关可以把光信号从某一光纤转到另一光纤。

空分的光开关有机械的、半导体的和热光开关等。

采用集成技术,开发出MEM微电机光开关,其体积小到mm。

已开发出1296x1296MEM光交换机(Lucent),属于试验性质的。

光波长交换:是对各交换对象赋于1个特定的波长。

于是,发送某1特定波长就可对某特定对象通信。

实现光波长交换的关键是需要开发实用化的可变波长的光源,光滤波器和集成的低功耗的可靠的光开关阵列等。

已开发出640x640半导体光开关+AWG的空分与波长的相结合的交叉连接试验系统(corning)。

采用光空分和光波分可构成非常灵活的光交换网。

日本NTT在Chitose市进行了采用波长路由交换的现场试验,半径5公里,共有43个终端节,(试用5个节点),速率为2.5Gbps。

自动交换的光网,称为ASON,是进一步发展的方向。

集成光电子器件的发展 如同电子器件那样,光电子器件也要走向集成化。

虽然不是所有的光电子器件都要集成,但会有相当的一部分是需要而且是可以集成的。

目前正在发展的PLC-平面光波导线路,如同一块印刷电路板,可以把光电子器件组装于其上,也可以直接集成为一个光电子器件。

要实现FTTH也好,ASON也好,都需要有新的、体积小的和廉价的和集成的光电子器件。

光纤通信的市场 众所周知,2000年IT行业泡沫,使光纤通信产业生产规模爆炸性地发展,产品生产过剩。

无论是光传输设备,光电子器件和光纤的价格都狂跌。

特别是光纤,每公里泡沫时期价格为¥1200,价格Y100左右1公里,比铜线还便宜。

光纤通信的市场何时能恢复? 根据RHK的对北美通信产业投入的统计和预测,如图2.在2002年是最低谷,相当于倒退4年。

有所回升,但还不能恢复。

按此推测,在2007-2008年才能复元。

光纤通信的市场也随IT市场好转。

这些好转,在相当大的程度是由FTTH和宽带数字电视所带动的。

FTTH毕竟是信息社会的需求,光纤通信的市场一定有美好的情景。

发达国家的FTTH已经开始建设,已经有相当的市场。

大体上看,器件和设备随市场的需要,其利润会逐步回升,2007-2008年可能良好。

但光纤产业,尽管反倾销成功,价格也仍低迷不起,利润甚微。

实际上,在世界范围内,光纤的生产规模过大,而FTTH的发展速度受社会环境、包括市民的经济条件和数字电视的发展的影响,上升缓慢。

据了解,有大公司封存几个光纤厂,根据市场情况,可随时启动生产,其结果是始终供大于求。

供不应求才能涨价,是通常的市场规律,所以光纤产业要想厚利,可能是2009年后的事情。

中国经济不发达地区和小城镇,还需要建设光纤线路,但光纤用量仍然处于供大于求的范围内。

对中国市场,FTTH受ADSL的挑战和数字电视HDTV发展的制约,会有所延后。

中国大量建设FTTH的社会环境和条件尚未具备,可能需要等待一段时间。

不过,北京奥运会需要HDTV的推动和设备价格的下降,会促进FTTH的发展。

预计在2007-2008年在中国FTTH可开始推广。

不过也有些大城市的所谓中心商业区CBD,有比较强的经济力量,已经采用光纤到住地PTTP来建设。

总的来说,中国的FTTH处于试点阶段。

试点的作用,一方面是摸索技术和建设的经验,另一方面,还起竞争抢占用户的作用。

所以,电信运行商,地方业主都积极对FTTH试点,以便发展宽带业务。

因此,广播运行商受到巨大的挑战,广播商应加快发展数字电视的进程,并且要充实节目内容和采取有竞争力的商业模式。

如果广播商要发展VOD点播电视,还需要对电缆电视网双向改造,如果采用光纤网,可更充分地适应未来的技术发展和市场需求。

宽带中国战略 工业和信息化部在2012年5月发布的《宽带网络基础设施“十二五”规划》中提出,到2015年,全国基本实现“城市光纤到楼入户,农村宽带进乡入村”。

城市家庭接入带宽达到20兆比特/秒,农村家庭接入带宽达到4兆比特/秒;实现光纤到户覆盖两亿户,用户超过4000万,城市新建住宅光纤到户率达到60%以上。

“我国宽带市场的接入方式与技术以ADSL为主,而其他宽带速率高的国家基本上是以光纤接入为主。

”中国工程院院士赵梓森说,实现光纤入户是宽带战略最重要的一环。

中国科学院院士干福熹表示,光纤通信具有信息容量大、传输距离远、信号干扰小等优点。

全世界通信系统中,90%以上的信息量都是经过光纤传输的。

未来5~10年,我国规模实施光纤到户每年所需的光纤预计在一亿公里以上,从而为国内光纤通信业发展带来很好的机遇。

据国际电信联盟最新统计,全球已推出宽带战略的国家和经济体达112个。

宽带战略的实施,必将带来光纤接入大发展,并使光纤宽带产业成为整个信息通信产业中成长最快、发展空间最大的产业之一。

全球光纤到户热点门户网站——中国光纤通信网,是目前国内领先的光纤通信资讯类门户网站。

随着中国三网融合和光纤到户的飞速发展,供用户交流的网上平台更少,专业的资讯比较分散。

而中国光纤通信门户的开放,为行业内企业,用户,爱好者提供了一个在网络上的互相传递业界资讯,交换产品信息等提供了一个大型专业的平台。

中国光纤通信门户的优势在于以提供行业资讯,新闻,专业知识,无数的产品供求信息,以及开放式的运营模式,多样化的增值服务,人性化的版面设计等。

使您能更好更领先的掌握行业中的动态,获取更多的商机。

从而为广大光纤通信企业拓展网络业务,进军电子商务提供不易多得的良机与契机。

中国光纤通信门户特色: 信息交流,技术沟通,产品展示,资讯阅览,新闻订阅,供求关系,寻求商机,广告服务,会员提升,企业建站,个性建设,协会资料,展会资源,行业人才,商务代理等。

行业政策、发展空间

光纤的产生、发展、应用及发展前景(详细)

光纤通信是目前最主要的信息传输技术。

迄今为止,尚未发现可以替代它的技术。

即使在世界通信低谷时期,各公司在资金极其短缺、研发投入相对紧张的情况下,对光纤通信新技术的研究仍然没有停止和放松。

创造出实验室4×40Gb/s无电再生传输10000km的最高记录;在现有商用网络上实现了基于40Gb/s的DWDM1200km的超长距离传输的现场技术试验。

适于城域网的MSTP、CWDM技术,EOT(传送网承载以太网)、MOT(传送网承载MPLS)、ASON、EPON/GPON等技术都是这个时期的重要成果。

此外1310/1550nmVCSEL器件、1310nm量子点半导体激光器、G.656光纤、光子晶体光纤等新的器件和光纤,也从另一个角度说明了光纤通信技术在不断向前发展。

我国的光纤通信技术在政府的大力支持下也有较大的发展。

国家“十五”重大科技攻关项目“40Gb/sSDH(STM-256)光纤通信设备和系统研制”已取得重大进展,实现了40Gb/s光信号在G.652光纤上480km的传输;“八六三”项目“80×40Gb/sDWDM系统研制”也有重大进展、“具有Tb/s交换能力的ASON系统”已经实现了基本功能,并在中国移动进行了测试、“EPON光纤接入系统”已经通过“八六三”专家组验收,将进入现场试验、“G.656光纤研制成绩喜人; “九七三”项目中的光子晶体光纤及其器件也正在进展之e799bee5baa6e79fa5e98193e58685e5aeb931333231383332中……。

在实际运营的通信网络中,许多新技术的应用同样反映了光纤通信技术的发展。

例如,目前以10Gb/s为基础的DWDM已逐渐成为核心网的主流,160×10Gb/sDWDM系统已经在我国多个运营商的网络中得到应用,CWDM、MSTP在城域网中广泛使用,光纤到户的试验网已经在武汉、成都等城市开展。

总的来说,光纤通信技术的进步是信息社会的需要,是经济发展的必然,是永无止境的。

以太网是以计算机局域网的面目问世的,在没有和光传输技术结合之前,只限于在局域网范围内应用。

在和光传输技术结合以后,以太网技术得到迅速发展,不再限于局域网,同时扩展到城域网,甚至到广域网的应用。

现在的以太网技术和原来的以太网技术相比,得到很大的发展。

就拿在光接入网中的EPON来说,原来以太网的MAC技术是点到点的连接,而在EPON中却变化成了点到多点的连接。

只所以要发展光纤接入,就是人们的业务需求已经不仅仅限于传统的话音,而对高速数据、高保真音乐、互动视像等业务的需求越来越迫切。

这些业务都需要较大的带宽,传统的金属线接入甚至VDSL都无法满足需求,所以转向带宽能力强的光纤接入。

同时除了话音之外的这些业务用分组通信的方式来支持更有优越性,即使是话音,用分组方式也有优势。

以太网技术是分组通信中应用最普遍、最简单的技术,再有光纤这种最具优势的传输媒介支持,使以太网技术可以在接入网中发挥巨大的作用。

EPON是前面提到的以太网技术和无源光网络结合的产物。

作为光纤接入中极有优势的PON技术很早就出现了,它可以和多种技术相结合,如ATM、SDH等,分别产生APON、GPON等光接入方式。

APON的基本标准早在1998年就发布了,在一些国家也进行了推广。

它对宽带业务的支持有QoS的保证,是有技术优势的,但其技术复杂、成本较高,加之近年ATM技术受到IP技术的挑战,其发展受到严重阻碍,以致影响到APON也在走下坡。

GPON出现较晚,它是继承了APON的技术。

结合SDH发展起来的,其最初的标准于2003年发布,至今已制定了一系列的标准。

GPON对电路交换型的业务的支持最有优势,又可以充分利用现有网上的SDH资源,所以它一出现就受到极大的关注。

但它仍有比较复杂的劣势,使得其成本依然偏高,使其推广受到一定的影响。

EPON的发展最晚,它的标准是今年6月底才通过的。

它的最大优势就是继承了以太网简单的优点,所以成本相对较低,被业界看好。

但它对TDM类业务支持相对难度大些,所以EPON和GPON有得一争,孰优孰劣还将拭目以前面我已经谈到,在光纤接入网中,EPON和GPON哪个能受到青睐现在还难分难解。

但总得来说,光纤到户要推广普及、大规模商用,必然经历一个渐进的过程。

这是因为人们对一种事物的认识和接受是有渐进过程的,此外更重要的两个因素是网络所提供的业务和价格,这两点缺一不可,当然运营商和设备提供商正在共同努力来解决这两个问题。

此外在我国,还有一个体制的问题,即电信业务与广播电视业务的经营问题,由于这个问题比较复杂和敏感,所以这里就不展开了。

此外,从国际上推广的经验来看,政府的支持也是非常重要的因素。

最终,FTFH的大趋势总是不可阻挡的。

光纤接入网的发展首先对接入网本身就是一种革命。

传统的接入网无例外的都用金属线接入,在无线技术和光纤通信技术发展之后,无线接入和光纤接入逐步进入了接入网,但所占比例很少。

光纤到户的更寥寥无几,一般在馈线段用光纤还较多,即大多城市实现了FTTC/FTTB,在分配线即户线段用的极少。

光纤接入网即FTTH的发展对于现有用户有一个庞大的户线工程改造的问题,对新建建筑涉及引入光纤到楼内、室内的问题,甚至可能修改建筑规范要求。

更大影响是接入网中承载的业务会变得丰富多彩,而且由于目前家庭多是几室几庭结构,用户终端设备遍及各个房间,光纤入户后,如何将信息送到所有得终端设备,是继续用光纤,还是该用金属线,或者该用无线,这是涉及家庭(或者说用户驻地网络)的问题,目前正在探讨之中。

如家庭电话线网络、家庭电力线网络、家庭无线网络等都在进行研究。

此外光纤接入网发展后对城域网甚至核心网都有很大影响。

实现光纤到户后,平均每户的带宽以150Mb/s计算,如果全国仅以l000万户FTTH用户来看,新增带宽为l500Tb/s.。

只以平均同时使用概率10%计算,将有150Tb/s带宽的信号涌入各地的城域网,因此城域网将面临巨大的扩容压力。

而且新增带宽的绝大部分属于分组数据业务,所以城域网中将主要扩建分组数据网,届时城域网中分组交换的容量将大大超过电路交换的容量。

而且新增带宽中相当一部分将流入核心网,所以核心网同样面临新建和扩容的压力,同样核心网所承载信号的类型也有很大改变,将会从以电路型信号为主变为以分组信号为主。

光纤接入还要有一个逐步为人们接受的过程,同时除了业务、成本两大要素之外,技术的本身也有逐渐成熟的过程,还有工程设计、施工、测试、维护、经营、管理等一系列配套问题需要解决,还需要逐步试验,取得经验后再逐步推广。

所以光纤接入网的建设不是一朝一夕的事。

光纤到户是光纤通信发展的一个新亮点。

通过普及光纤到户,将全面带动光纤通信各方面技术的发展,包括光电子器件、光纤、光缆、系统设备,还有前面提到的工程设计、施工、测试、维护、经营、管理等方方面面的发展。

从目前国际上光纤到户的推广对光纤通信市场的带动作用已经是非常明显的事实,已经证实了这一点。

光纤到户的基本技术问题已经得到解决,所以在国际上发展很快。

当然技术是会不断进步的,现有的技术还会不断改进。

例如,如何在GPON中更好地支持分组业务;在EPON中如何更好地支持电路型业务;各种技术如何进一步降低成本,提高性能,如何适应新业务的提供和升级换代等。

从一般意义来说,光纤通信是传输技术,从传输领域,目前还没有发现有哪种传输技术比光纤通信更有竞争力。

按我所知道的概念,接入网也属于传输网的范畴,从这一点来看,无线接入由于其可移动性,使其具有一定的优势,但其带宽有限、移动终端的体积不可能太大,显示屏幕不会太大等局限性,使得在非移动场合,人们依然愿意使用固定终端,光纤接入自然是最终的选择。

所以在核心网,光纤通信有绝对优势,在接入网,无线接入与光纤接入互补发展。

光纤通信的发展前景是非常宽广的。

当前商用光纤通信系统的最大容量才达到1.6Tb/s(实际上这是系统最终容量实际使用的还不到一半),而光纤的带宽能力以目前的技术来计算至少有200~300Tb/s。

可见现在才用了光纤能力的1%还弱,光纤的潜能还远远没有发挥,这还没有考虑技术进一步发展带来的更大能力。

可见光纤通信尚有极大的发展余地。

现在人们所谈及的全光通信实际上还是未来真正全光通信的“初级阶段”,真正实现全光信号处理的全光网将给人们带来的通信的变革是现在无法详尽描述的。

光纤的起源与发展

光纤   是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

光导纤维由前香港中文大学校长高锟发明。

  微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。

通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。

  在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。

  通常光纤与光缆两个名词会被混淆.多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆.光纤外层的保护结构可防止周遭环境对光纤的伤害,如水,火,电击等.光缆分为:光纤,缓冲层及披覆.光纤和同轴电缆相似,只是没有网状屏蔽层。

中心是光传播的玻璃芯。

在多模光纤中,芯的直径是15μm~50μm, 大致与人的头发的粗细相当。

而单模光纤芯的直径为8μm~10μm。

芯外面包围着一层折射率比芯低的玻璃封套, 以使光纤保持在芯内。

再外面的是一层薄的塑料外套,用来保护封套。

光纤通常被扎成束,外面有外壳保护。

纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。

  光导纤维的发明和使用   1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。

结果使观众们大吃一惊。

人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。

  人们曾经发现,光能沿着从酒桶中喷出的细酒流传输;人们还发现,光能顺着弯曲的玻璃棒前进。

这是为什么呢?难道光线不再直进了吗?这些现象引起了丁达尔的注意,经过他的研究,发现这是全反射的作用,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。

表面上看,光好像在水流中弯曲前进。

实际上,在弯曲的水流里,光仍沿直线传播,只不过在内表面上发生了多次全反射,光线经过多次全反射向前传播。

  后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝——玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。

由于这种纤维能够用来传输光线,所以称它为光导纤维。

  光导纤维可以用在通信技术里。

1979年9月,一条3.3公里的120路光缆通信系统在北京建成,几年后上海、天津、武汉等地也相继铺设了光缆线路,利用光导纤维进行通信。

  利用光导纤维进行的通信叫光纤通信。

一对金属电话线至多只能同时传送一千多路电话,而根据理论计算,一对细如蛛丝的光导纤维可以同时通一百亿路电话!铺设1000公里的同轴电缆大约需要500吨铜,改用光纤通信只需几公斤石英就可以了。

沙石中就含有石英,几乎是取之不尽的。

  另外,利用光导纤维制成的内窥镜,可以帮助医生检查胃、食道、十二指肠等的疾病。

光导纤维胃镜是由上千根玻璃纤维组成的软管,它有输送光线、传导图像的本领,又有柔软、灵活,可以任意弯曲等优点,可以通过食道插入胃里。

光导纤维把胃里的图像传出来,医生就可以窥见胃里的情形,然后根据情况进行诊断和治疗。

  光纤的历史   1880-AlexandraGrahamBell发明光束通话传输   1960-电射及光纤之发明   1977-首次实际安装电话光纤网路   1978-FORT在法国首次安装其生产之光纤电   1990-区域网路及其他短距离传输应用之光纤   2000-到屋边光纤=>到桌边光纤   2005 FTTH(Fiber To The Home)光纤直接到家庭

我国光纤通信事业的新发展

近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展呈现了蓬勃发展的新局面,预计2000年世界信息传输网的80%以上的业务将由光纤通信完成。

1 传输体制全面转向 传统的光纤通信是以准同步传输体制(PDH)为基础的,随着网络日趋复杂和庞大,以及用户要求的日益提高,这种传输体制正暴露出一系列不可避免的内在缺点,一种有机地结合高速大容量光纤传输技术和智能网元技术的新传输体制——光同步传送网应运而生,ITU-T将之称为同步数字体系(SDH)。

这种技术体制一诞生就获得了广泛的支持,年销售额已超过70亿美元。

我国也已成为世界SDH大国。

有趣的是,原来一直沿用北美SONET体制的我国周边国家和地区,象日本、韩国、台湾也先后决定从SONET体制转向SDH体制。

2 向超高速系统发展 传统的光纤通信发展始终在按照电信号的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每个比特的成本大约下降30%~40%,因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续提高的根本原因。

目前商用系统已从45Mb/s增加到 10Gb/s,可以携带12万条话路,其速率在20年时间里提高了2000倍,比同期的微电子技术的集成度增长速度还要快得多。

高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体业务提供了实现的可能。

目前10Gb/s系统已开始批量装备网络,全世界安装的终端已超过100O个,主要在北美、欧洲、日本和澳大利亚也有少量试验和商用系统。

3 向超大容量波分复用系统演进 如前所述,采用电的时分复用系统的扩容潜力已尽,然而光纤的20Onm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。

如果将多个发送波长适当错开的光源信号同时在一根光纤上传送,则可以大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。

鉴于近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。

如果认为1995年是起飞年的话,其全球销售额仅仅为1亿美元,而2000年预计可超过40亿美元,2005年可达120 亿美元,发展趋势之快令人惊讶。

目前全球实际敷设的WDM系统已超过2000个,而实用化系统的最大容量已达160Gb/s(16×10Gb/s),美国朗讯公司宣布年底将推出80个波长的WDM系统,其总容量可达200Gb/s(80×2.5Gb/s)或400Gb/s(40×10Gb/s)。

实验室的最高水平则已达到2.6THz(132×20Gb/s)。

可以认为近两年来超大容量密集波分复用系统的发展是光纤通信发展史上的又一次划时代的里程碑,为全球信息高速公路奠定了坚实的基础。

4 实现全光联网 上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。

如果在光路上也能实现类似 SDH在电路上的分插功能和交叉连接功能的话,无疑是如虎添翼,增加新一层的威力。

根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,即能直接在光路上对不同波长的信号实现上下和交叉连接功能。

实现光联网的基本目的是: ·实现超大容量光网络(一对光纤达80~320Gb/s); ·实现网络扩展性,允许网络的节点数和业务量不断增长; ·实现网络可重构性,达到灵活重组网络的目的; ·实现网络的透明性,允许互连任何系统和制式的信号; ·实现快速网络恢复,恢复时间可达100ms。

鉴于光联网具有上述潜在的巨大优势,发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。

全光联网已经成为继SDH电联网以后的又一次新的光通信发展高潮,有人将1998年称为光联网年并不过分。

其标准化工作将于1999年基本完成,其设备的商用化时间也大约在2000年左右。

建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络不仅可以为未来的国家信息基础设施(NIl)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

5 新一代光纤和新一代光缆的建设高潮 5.1 新一代的非零色散光纤 目前的公用电信领域几乎由单模光纤一统天下。

然而,随着光纤网容量需求的迅速增长,传输速率已经增长到10Gb/s,波分复用技术也开始应用,无再生传输距离也随着光纤放大器的引入而迅速延长。

面对这种超高速、超大容量、超长传输距离的新形势,传统的色散未移位单模光纤(称为G.652光纤)已暴露出力不从心的态势。

针对G.652光纤的弱点,近两年出现了一种新型的非零色散光纤,称之为G.655光纤。

这是一种专门为下一代超大容量波分复用系统设计的新型光纤。

目前北美新敷设干线光缆已放弃G.652光纤和G.653光纤,全部转向G.655光纤。

第二代的G.655光纤——大有效芯径的光纤也已经问世,具有更合理的色散规范值,可以更有效地克服光纤非线性的影响,从根本上缓解了系统容量增加的限制,最适合于以10Gb/s为基础的高密集波分复用系统,代表了干线光纤的最新发展方向。

5.2 新一轮的干线光缆建设高潮 前几年人们曾普遍认为,发达国家的干线光缆建设已经基本结束,然而近两年来IP业务的爆炸式增长所引发的对网络容量的巨大需求导致了新一轮的干线光缆建设高潮。

为此,不少有远见的电信公司特别是那些新兴的以经营IP业务为主的电信公司掀起了新一轮大规模建设光缆网的高潮。

以著名的新兴公司Qwest为例,计划在1998年底前新建总共为2.5万公里的光缆,覆盖全美。

其特点是全部采用最新的G.655光纤,并具有高达120芯的光纤密度。

,Global Link和Level 3等公司都在建全国性的骨干网,全部采用G.655光纤。

6 IP over SDH与IP over Optical 以IP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持IP业务已成为新技术能否有长远技术寿命的标志。

目前,ATM和SDH均能支持IP,分别称为IP over ATM和IP over SDH,两者各有千秋。

IP over ATM利用ATM的速度快、容量大、多业务支持能力的优点以及IP的简单、灵活、易扩充和统一性的特点,可以达到优势互补的目的,不足之处是网络体系结构复杂、传输效率低、开销损失大(达20%~30%)。

而SDH与IP的结合(IP over SDH)恰好能弥补上述IP over ATM的弱点。

其基本思路是将IP数据报通过点到点协议(PPP)直接映射到SDH帧,省掉了中间复杂的ATM层。

具体做法是先把IP数据报封装进PPP 分组,然后再利用HDLC组帧,再将字节同步映射进SDH的VC包封中,最后再加上相应SDH开销置入STM-N帧中即可。

IP over SDH在本质上保留了因特网作为IP网的无连接特征,形成统一的平面网,简化了网络体系结构,提高了传输效率,降低了成本,易于实现IP组播和兼容不同技术体系实现网间互联。

缺点是网络容量和拥塞控制能力差,大规模网络路由表太复杂,只有业务分级,尚无优先级业务质量,对高质量业务难以确保质量,尚不适于多业务平台,是以运载IP业务为主的网络的理想方案。

随着千兆比高速路由器的商用化,其发展势头很强。

例如美国Sprint公司和GTE公司已决定采用 Cisco的GSR12000高速路由器作为节点建立IP骨干网。

世界最大的ISP-UUNet也宣布将在骨干网上采用IP over SDH。

另外,对于跨洋的点到点通信这样简单的骨干网显然无需采用复杂的IP over ATM,此时IP overSDH是非常适合的技术手段。

采用这种技术的关键是千兆比高速路由器,这方面近来已有重大突破性进展,例如美国Cisco公司已于1997年9月推出12000系列千兆比特交换路由器(GSR),可以在千兆比特速率上实现因特网业务选路,还具有5~60Gb/s的多带宽交换能力,提供灵活的拥塞管理、组播和QoS功能,其骨干网速率可以高达2.5Gb/s,将来能升级至10Gb/s。

这类新型高速路由器的端口密度和端口费用已经可以与ATM相比,转发分组延时也已经降至ms量级,不再是问题。

简言之,随着千兆比特高速路由器的成熟和IP业务的大发展,IP over SDH将会获得越来越广泛的应用,其发展趋向值得密切注视。

从长远看,当IP业务量逐渐增加时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单的统一的IP网结构(IP over Optical),其开销最低,传输效率最高,因而最适用于未来超大型IP骨干网的核心汇接。

在相当长的时期,IP over ATM,IP over SDH和IP over Optical将会共存互补,各有其最佳应用场合和领域。

7 结束语 从上述干线光纤通信的发展现状与趋势来看,可以认为光纤通信又一次进入了蓬勃发展的新高潮。

而这一次发展高潮涉及的范围更广,技术更新更难,影响力和影响面也更宽,势必对整个电信网和信息业产生更加深远的影响,也将对下一世纪的社会经济发展产生巨大影响,值得密切注视和研究。

hostodo:美国大流量VPS,低至$3,8T流量/月-1.5G内存/1核/25gNVMe/拉斯维加斯+迈阿密

hostodo从2014年年底运作至今一直都是走低价促销侧率运作VPS,在市场上一直都是那种不温不火的品牌知名度,好在坚持了7年都还运作得好好的,站长觉得hostodo还是值得大家在买VPS的时候作为一个候选考虑项的。当前,hostodo有拉斯维加斯和迈阿密两个数据中心的VPS在促销,专门列出了2款VPS给8T流量/月,基于KVM虚拟+NVMe整列,年付送DirectAdmin授权(发ticket...

随风云-内蒙古三线BGP 2-2 5M 25/月 ,香港CN2 25/月 ,美国CERA 25/月 所有云服务器均支持5天无理由退款

公司成立于2021年,专注为用户提供低价高性能云计算产品,致力于云计算应用的易用性开发,面向全球客户提供基于云计算的IT解决方案与客户服务,拥有丰富的国内BGP、三线高防、香港等优质的IDC资源。公司一直秉承”以人为本、客户为尊、永续创新”的价值观,坚持”以微笑收获友善, 以尊重收获理解,以责任收获支持,以谦卑收获成长”的行为观向客户提供全面优质的互...

妮妮云(43元/月 ) 香港 8核8G 43元/月 美国 8核8G

妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款,超过2天不退款 物...

光纤通信的发展趋势为你推荐
getsockopt如何判断socket已经断开sap是什么足疗,sap,指压都是什么qq实名注册qq实名认证战棋类最好玩的战棋类网页游戏是什么 要可以自己控制的横幅广告通栏广告 横幅广告是什么意思局域网ip扫描工具局域网的IP段怎么扫描蓝牙开发iOS的蓝牙开发跟Android有什么不同dreamweaver序列号DW序列号是多少啊spinmaster那个街球队 叫什么And1的 球队和球员介绍平均数计算器用科学计算器怎么求平均数 、标准差、方差??
linode代购 鲨鱼机 linkcloud 12306抢票攻略 360抢票助手 parseerror tightvnc 云全民 如何用qq邮箱发邮件 太原网通测速平台 免费智能解析 wordpress中文主题 ledlamp 空间服务器 成都主机托管 闪讯网 国外免费网盘 globalsign ssd vpsaa 更多