regulationgmail企业邮箱

gmail企业邮箱  时间:2021-01-28  阅读:()
ВведениеПреобразователипостоянногонапряжения,обеспечивающиепроизвольноесогласованиеуровнейвходногоивыходногонапряженийзасчетвведениявструктурутрансформатора,широкоизвестны[1,2]инаходятприменениевомногихнаправленияхэлектроники,втомчислевсолнечнойэнергетике[3,4].
Вчастности,внашейстранепроизводятсяпопыткиприменениятакихпреобразователейвсистемахэлектропитаниякосмическихаппаратов[5–8],вместоширокоиспользуемыхсистемэлектропитаниянабазебестрансформаторныхпреобразователейпостоянногонапряжения[9,10].
Приэтом,ввидутого,чтосолнечнаябатареянаразныхучасткахвольтампернойхарактеристики(ВАХ)можетиметьсвойствакакисточниОсиповА.
В.
идр.
Обеспечениеблагоприятногопереключениятранзисторовинверторатокав.
.
.
C.
138–145138УДК621.
314ОБЕСПЕЧЕНИЕБЛАГОПРИЯТНОГОПЕРЕКЛЮЧЕНИЯТРАНЗИСТОРОВИНВЕРТОРАТОКАВПРЕОБРАЗОВАТЕЛЯХСОЗВЕНОМПОВЫШЕННОЙЧАСТОТЫОсиповАлександрВладимирович,канд.
техн.
наук,зав.
лаб.
НИИавтоматикииэлектромеханикиприТомскомуниверситетесистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:ossan@mail.
ruШиняковЮрийАлександрович,дртехн.
наук,директорНИИкосмическихтехнологийТомскогоуниверситетасистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:shua@main.
tusur.
ruОттоАртурИсаакович,мл.
науч.
сотр.
НИИкосмическихтехнологийТомскогоуниверситетасистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:ottoai@mail.
ruЧернаяМарияМихайловна,мл.
науч.
сотр.
НИИкосмическихтехнологийТомскогоуниверситетасистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:cmm91@inbox.
ruТкаченкоАлександрАлександрович,канд.
техн.
наук,зав.
отделомНИИавтоматикииэлектромеханикиприТомскомуниверситетесистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:aem@tusur.
ruАктуальностьработыопределяетсянеобходимостьюуменьшениядинамическихпотерьвтранзисторахпреобразователясозвеномповышеннойчастотынаосноверегулируемогоинверторатока.
Цельработы:анализкоммутационныхпроцессовврегулируемоминверторетока,разработкасхемыиспособарегулированиявыходноготока,обеспечивающихбезопаснуютраекториюпереключениясиловыхтранзисторов.
Методыисследованияоснованынаобщихположенияхтеорииэлектрическихцепей,теорииалгебраическихуравнений,вычислительныхметодахииспользованиисовременныхинструментальныхсистемиметодовматематическогомоделирования.
Результаты.
Рассмотреныкоммутационныепроцессыприрезонансномпереключениитранзисторовинверторатокавпреобразователесозвеномповышеннойчастоты.
Показано,чтоблокирующиедиодыинвертораограничиваютамплитудурезонансныхколебанийтокатранзисторовнауровнетокавходногодросселя.
Исключениеблокирующихдиодовивключениеобратныхдиодовтранзисторовприводитквозможностиреверсатокакоммутирующегодросселяисущественномузавышениютокатранзисторов,определяемомувэтомслучаебалансоммощностиреактивныхэлементовкоммутационногоконтура.
Исследованыкоммутационныепроцессытранзисторовинвертораприфазовомрегулированиивыходноготока,приэтомустановлено,чтонаинтервалезакорачиваниявходногоисточникатоктранзисторасостоитизсоставляющейтокасамогоисточникапитанияисоставляющейтока,накопленноговкоммутирующихдросселяхприразрядеконденсаторавключаемоготранзистора.
Показано,чтомаксимальныйтоктранзисторовопределяетсясоотношениемволновогосопротивлениякоммутирующегоконтураисопротивлениянагрузки.
Составленыуравненияэнергобаланса,наосновекоторыхполученысоотношения,позволяющиеопределитьмаксимальныезначенияэлектрическихпараметровтранзисторов.
Сделанывыводы,проведенообсуждениеполученныхрезультатов.
Ключевыеслова:Инвертортока,коммутационныепроцессы,динамическиепотери,коммутирующийрезонансныйконтур,безопасноепереключениетранзисторов.
канапряжения,такиисточникатока,могутприменятьсясоответственнокакинверторынапряжения[7],такиинверторытока[8].
СопоставлениеэнергетическиххарактеристикуказанныхвариантовреализациипреобразователявреальныхдиапазонахизмененияВАХсолнечнойбатареипоказалоэффективностьименносистемнаосновеинверторетока.
Однакоприпостроениисистемынаосновеклассическогоинверторатокавегоключахприсутствуютблокирующиеобратнуюпроводимостьдиоды,существенноувеличивающиестатическиепотерииухудшающиеКПДпреобразователя,чтокрайненежелательноприпостроениисистемэлектропитаниякосмическихаппаратов.
Поэтомуфункциюблокирующихдиодоввпреобразователяхсвыходомнапостоянномтокевыполняютдиодывыходноговыпрямителя[8].
Другимважнымнаправлениемминимизациипотерьвпреобразователеявляетсяуменьшениекоммутационныхпотерьприпереключениитранзисторов,обеспечиваемоепутемихбезопасногопереключения,включенияпринуленапряжения(ZVS)ивыключенияпринулетока(ZCS),реализациянепосредственногопреобразователяповышающеготипасмягкойкоммутациейрассмотренав[11,12].
Впреобразователяхсозвеномповышеннойчастотынаинверторенапряжениядляобеспечениябезопасноговыключениятранзисторовтрадиционноприменяетсяпараллельноевключениеконденсаторов,демпфирующихпроцессвыключениятранзисторов.
Приэтомнаинтервалекоммутационнойпаузыэтиконденсаторывступаютврезонанссиндуктивностьюрассеяниятрансформатора,формируемыеприэтомгармоническиеколебаниянапряженияназакрытомтранзисторевопределенныемоментывремениобеспечиваютусловиядляZVS[13].
Другойспособсостоитвформированииколебанийвдополнительномконтуре[14].
Коммутационныепроцессывинверторетокадлярезонансныхсхемсвыходомнапеременномтокеисследованыв[15–17],дляпреобразователейсвыходомнапостоянномтокеипромежуточнымзвеномвысокойчастотымягкоепереключениеформируетсяспомощьюрезонансныхконтуров[18–20].
Приэтомзначенияпараметровреактивныхэлементоврезонансногоконтураменяютсяпогармоническомузаконуиформируютблагоприятныеусловиядляпереключениялишьвопределенныемоментывремени,чтозатрудняетреализациюплавногорегулированиявыходноготока.
Например,в[19,20]этазадачарешаетсявведениемдополнительноготранзистора,подключающеговтребуемыемоментывременинавходинвертораконденсаторклампиобрывающегоколебательныйпроцесс.
Такимобразом,исследованиекоммутационныхпроцессоввинверторетокаприегоработенавыпрямительиразработкаспособовбезопасногопереключениятранзистороввэтихсхемахявляетсяцельюнастоящейработы.
НерегулируемаясхемаинверторатокаНакоммутационныепроцессывинверторетокаоказываетбольшоевлияниеспецификаегоработы,вчастности,вотличиеотинверторанапряжения,винверторетокакоммутационнаяпаузаформируетсяпутемодновременноговключениявсехтранзисторовинвертора,чтопозволяетзакоротитьвходнойисточник.
ДляминимизациипотерьпривключениипоследовательностранзисторамивводятсякоммутирующиедросселяL1L4,затягивающиефронттоканавключаемомтранзисторе,иконденсаторCр,обеспечивающийформированиерезонансныхколебанийнаинтервалекоммутационнойпаузы(рис.
1,а).
ПринципработысхемыпоясняетсядиаграммамитоковинапряженийтранзисторовинверторатокаскоммутирующимидросселямиL1=L2=L3=L4=1мкГнирезонанснымконденсаторомСр=0,1мкФ,которыеприразныхзначенияхпаузыtpauseпоказанынарис.
1,б,в.
ПривключеннойдиагоналиVT2,VT3ивключениитранзисторовVT1,VT4засчетдросселейпроисходитплавноеувеличениетокавоткрываемыхтранзисторахVT1,VT4иуменьшениевVT2,VT3,чтоприводиткуменьшениювыходноготокаинвертора.
Сменаполярностипоследнегои,соответственно,дальнейшееизменениетоковтранзисторовпроисходитзасчетразрядарезонансногоконденсатора,токкоторогонеможетпревышатьтокавходногодросселя,т.
к.
черезнегопроходитцепьразряда.
Далеепроцессыопределяютсябалансоммощностиреактивныхэлементов.
Вслучае,представленномнадиаграммах,энергиязаряженногоконденсаторапревышаетэнергиюдросселей,поэтомукмоментуравенстватокаконденсатораитокавходногодросселянаконденсатореостаетсянапряжение,котороезапираетдиодытранзисторовVT1,VT4иразряжаетсятокомвходногодросселячерезтранзисторыVT2,VT3.
ВышесказанноеможноотразитьуравнениемгдеIL–токвходногодросселя;Uвых–выходноенапряжение,приведенноекпервичнойобмоткетрансформатора;EC_discharge–энергияконденсатора,сброшеннаявдроссель.
Следуетотметить,чтоинтервалсбросаэнергиивдроссельявляетсянаиболееблагоприятнымдлявыключениятранзисторовVT1,VT4,таккакихтокравеннулю(рис.
1,б).
ОднакопривключенныхтранзисторахколебательныйпроцесспродолжаетсясамплитудойнапряжениянаконденсатореUk,соответствующейравенствуэнергииконденсатораикоммутирующихдросселей,токитранзисторовприэтомколеблютсясполнойамплитудойтокавходногодросселя22LL,.
22kkULILUI22L_discharge,22CULIEИзвестияТомскогополитехническогоуниверситета.
2015.
Т.
326.
№4139Рис.
1.
Инвертортокасблокирующимидиодамиидиаграммыегоработы:а)схемаинверторатокаскоммутирующимидросселями;б)благоприятноевыключение,паузаtpause=0,6мкс;в)неблагоприятноевыключение,паузаtpause=2,5мксFig.
1.
Currentinverterwithblockingdiodesanddiagramsofitsoperation:a)currentinverterwithswitchingchokes;b)favorableswitchingoff,pausetpause=0,6ms;c)unfavorableswitchingoff,pausetpause=2,5msВданномслучаекоммутационныепотеризависятотмоментавыключения.
Так,например,выключениеприсущественномтоке(рис.
1,в)нежелательно.
Такимобразом,винверторетокаможнореализоватьполностьюблагоприятноепереключениетранзисторов.
Однакостатическиепотеривтакойсхемесущественнывпервуюочередьиззаналичияблокирующихдиодов,установкакоторыхвклассическихсхемахнеобходимадляисключениязакорачиваниянапряжениявыходногоконденсатора.
Вслучаеработыинверторанавыпрямительблокирующиедиодымогутбытьисключеныизсхемы,таккакзакорачиваниювыходногоконденсаторапрепятствуютдиодывыпрямителя.
Схемаинверторатокабезблокирующихдиодовпредставленанарис.
2,а,приотсутствииблокирующихдиодовутранзисторовпоявляетсяобратнаяпроводимостьзасчетработыобратныхдиодов,поэтомукоммутационныепроцессывинверторетокасущественноменяются,диаграммыпредставленынарис.
2,б,в.
Какивслучаесхемынарис.
1,привключениитранзисторовVT1,VT4происходитплавноеперераспределениетоковмеждупарамитранзисторовVT2,VT3иVT1,VT4,однакозасчетобратныхдиодовразрядрезонансногоконденсаторапроисходитполностьюдосниженияегонапряжениядонуля,врезультатечеготоккоммутирующихдросселей,асоответственно,итранзисторовможетсущественнопревышатьтоквходногодросселя.
Такимобразом,амплитудаколебанийнапряжениярезонансногоконденсатораравнаамплитудевыходногонапряжения,приэтомтокколебательногоконтураиззаработыобратныхдиодовопределяетсясоотношениемэнергий,запасенныхвиндуктивностях,поотношениюкэнергиирезонансногоконденсатораИнтервал,накоторомтоккоммутирующихдросселейпревышаеттоквходногодросселя,являетсянаиболееблагоприятнымдлявыключениятранзисторовVT1,VT4,таккакихобратныедиодывэтовремяоткрыты,случайнарис.
2,б.
Однако,еслитранзисторынезапирать,колебательныйпроцесспродолжаетсясамплитудойтокавдросселях,превышающейвходнойтоксоответственноэнергиирезонансногоконденсатора.
Благоприятноговыключенияможнодостичьвмоментыотрицательноготокаключа,т.
е.
приоткрытыхобратныхдиодах(рис.
2,в).
Основнымнедостаткомпредставленныхсхемявляетсяневозможностьреализациирегулированиявыходноготокаинвертора,чтосущественносужаетобластьпрактическогопримененияприведенныхспособовобеспеченияблагоприятнойкоммутации.
ИнвертортокасфазовымрегулированиемПриширотноимпульсномрегулированиивыходноготока,реализуемом,какправило,путемфазовогосдвигауправляющихимпульсовверхнейинижнейпартранзисторов,натактеуправлениякромеинтервалапередачиэнергиивнагрузкуТобразуетсяинтервалзакорачиваниявходногоисточника(1–)Т.
ВыходныепараметрыопределяютсядлительностьюимпульсовтокаL;,UEII22,.
22kkULIIULа/aб/bв/c4,964,98t,мс-30030-30030UCICIVT1,VT4UVT1,VT44,994,97I,АU,I,АU,I,АU,I,АU,Uk4,964,984,97-30030-30030UCICIVT1,VT4UVT1,VT44,99t,мсVT1VT2VT4VT3RHTV1CL1L2L3L4LCPОсиповА.
В.
идр.
Обеспечениеблагоприятногопереключениятранзисторовинверторатокав.
.
.
C.
138–145140Рис.
2.
Инвертортокабезблокирующихдиодовидиаграммыегоработы:а)схемаинверторатокабезблокирующихдиодов;б)благоприятноевыключение,tpause=0,8мкс;в)неблагоприятноевыключение,tpause=2мксFig.
2.
Currentinverterwithoutblockingdiodesanddiagramsofitsoperation:a)currentinverterwithoutswitchingdiodes;b)favorableswitchingoff,pausetpause=0,8s;c)unfavorableswitchingoff,pausetpause=2sгдеЕ–входноенапряжение,т.
е.
инверторработаетврежимеповышениявыходногонапряжения.
Согласноалгоритмуфазовогорегулированиятранзисторыопережающейпарывключаютсяприненулевомнапряжении,атранзисторыотстающейпарывыключаютсяприненулевомтоке,поэтомутранзисторыопережающейпарыдолжныиметькоммутирующиедроссели,атранзисторыотстающейпары–коммутирующиеконденсаторы,соответствующаясхемаприведенанарис.
3.
Рис.
3.
ИнвертортокасфазовымрегулированиемFig.
3.
CurrentinverterwithphasecontrolРаботасхемыотраженанадиаграммах(рис.
4).
ПриоткрытойдиагоналитранзисторовVT2,VT3токвходногодросселязаряжаетвыходнойконденсатор,поистечениидлительностиимпульсазарядноготока(моментвремениt1)происходитотпираниетранзистораVT1иначинаетсяпроцесснарастаниятокавдросселеL1одновременноспроцессомспадатокавL2.
ПослеспадатокатранзистораVT2донуляивозрастаниятокаVT1дономинальногозначения(моментвремениt2)токнагрузкиравеннулю,конденсаторC4транзистораVT4начинаетразряжатьсяпоцепиVD2–VT1–VT3.
ОткрытоесостояниеобратногодиоданаэтоминтервалесоздаетблагоприятныеусловиядлявыключенияVT2ипереходукрежимуоткрытойстойкиVT1,VT3,т.
е.
транзисторVT2выключается.
ПоокончанииразрядаконденсатораC4транзистораVT4(моментвремениt3)открываетсяобратныйдиодэтоготранзистораинакопленныйвпроцессеразрядаконденсаторатокдросселейL1,L2замыкаетсянакороткопоцепиVT1–VT3–VD4–VD2.
Такимобразом,наинтервалезакорачиваниявходногоисточникатоктранзисторовкоротящейстойкиVT1,VT3имеетдвесоставляющие:составляющуювходноготокаILисоставляющуюрезонансноготокакоммутирующихдросселейIrz+,обусловленнуюразрядомдемпфирующегоконденсаторат.
е.
токтранзисторовпревышаеттоквходногодросселяILнавеличинуIrz+,соответствующуюзапасеннойвконденсаторахэнергии.
Балансэнергиинаэтоминтервалеможетбытьотраженуравнением(1)согласнокоторомунаувеличениетокавдросселяхL1,L2кромеэнергииконденсаторазатрачивается222241VTmaxL2rzL_discharge(),222ULIILIEVTmaxLrz+,IIIILVT1VT2VT4VT3RTVCL1L2C3C4а/aб/bв/cIVT1,VT4UVT1,VT4UCICIk4,964,98t,мс-30030-300304,994,97I,АU,I,АU,I,АU,IVT1,VT4UVT1,VT4IVTmax030-30UCICIk4,964,98t,мс0304,994,97-30I,АU,VT1VT2VT4VT3TV1CL1L2L3L4LCИзвестияТомскогополитехническогоуниверситета.
2015.
Т.
326.
№4141энергиявходногодросселяEL_discharge,чтоможновидетьподиаграмменапряжениянавходеинвертораUвх.
Учитывая,чтонаэтоминтервале(t2–t3)энергияконденсатораделитсяпоровнумеждудросселями,таккакнапряжениянанихравны,атоквходногодросселянепротекаетчерездроссельL2,уравнениеможноупроститьИзполученногоуравненияможноопределитьмаксимальноезначениетокавтранзисторахгде=2L/C–волновоесопротивлениекоммутирующегорезонансногоконтураприобменеэнергиеймеждудвумядросселямииоднимконденсатором.
Вэтомсостоянииинверторнаходитсявесьинтервалвремени,соответствующийзакорачиваниювходногодросселя(1–)Т.
ПоокончанииэтогоинтервалавключаетсятранзисторVT4,егообратныйдиодпопрежнемуоткрыт,поэтомувключениеблагоприятноеинадиаграммахизмененийнепроисходит.
ПереходврежимпередачиэнергиивнагрузкупроисходитпривыключениитранзистораVT3(моментвремениt4),приэтомуменьшениединамическихпотерьVT3обеспечиваетконденсаторС3,которыйпослевыключенияначинаетзаряжатьсятокомIС3,накопленнымвиндуктивностяхL1,L2,зарядсопровождаетсяуменьшениемэтихтоков.
ПослезарядаконденсатораС3довыходногонапряжения(моментвремениt5)открываютсядиодывыпрямителяитокначинаетпоступатьвнагрузку.
Процессзарядаконденсатораприпренебрежениизатуханиемтокакоммутирующегоконтураипульсациямивходногодросселяможноотразитьследующимуравнениемэнергобаланса(2)Согласноэтомууравнениюзарядконденсатораосуществляетсякакэнергиейрезонансногоконтура,накопленнойвкоммутирующихдросселях,такиэнергиейвходногодросселяEL_charge.
Крометого,изначальноэнергия,накопленнаявкоммутирующихдросселях,превышаетэнергию,необходимуюдлязарядаконденсаторанавеличинуEL_discharge(1).
Такимобразом,энергия,накопленнаявкоммутирующихдросселях,превышаетэнергию,затрачиваемуюимидлязарядаконденсаторанавеличинуEL_charge+EL_discharge,азначит,зарядконденсаторадовыходногонапряженияпроизойдетзадолгодополногосбросатокарезонансногоконтурапринекоторомтокеНаследующеминтервалеработы(t5–t6)полученныйизбытокэнергииEL_charge+EL_dischargeпередаетсявнагрузку.
ОпределитьвеличинутокаIVTchargeможно,учитывая,чтополовинуэнергиидлязарядаконденсаторС3получаетотдросселяL1,атаккакнапряжениянанихравны,уравнениеможноупроститьоткудаили(3)т.
е.
токполногозарядаконденсатораравенгеометрическойразноститокатранзисторовкоротящейстойкиитокакоммутирующегорезонансногоконтура.
ПослезарядаконденсатораС3донапряженияпитанияоставшийсявдросселяхL1,L2контурныйтоксбрасываетсявнагрузку,вмоментвремениt6токидросселейуменьшаютсядозначенийIL1=ILIL2=0,чтоприводиткзапираниюобратногодиодатранзистораVT2ипереходуврежимпередачиэнергииотвходногоисточника.
Главнымнедостаткомпредставленногоспособаобеспеченияблагоприятнойкоммутациитранзисторовявляетсязавышениеихмаксимальноготокасогласновыражению(3),котороепоотношениюквходномутокубудетвыглядетьследующимобразомВидно,чтодлямаксимальноготокатранзисторовопределяющимявляетсясоотношениесопротивлениянагрузкикволновомусопротивлениюкоммутационногоконтура.
Выводы1.
Винверторетокаскоммутирующимидросселямиивыходнымконденсаторомнаинтервалекоммутационнойпаузыформируютсярезонансныеколебания,обеспечивающиевыключениетранзисторовпринулетока,причемамплитудаколебанийзависитоттипаключейинвертора.
Вчастности,приключахсблокирующимидиодамиамплитудаколебанийтокаограничиваетсявходнымтокоминвертора,априисполненииключейинверторасобратнымидиодамиопределяетсяэнергиейрезонансногоконденсатора.
2.
Реализацияфазовогорегулированиявинверторетокаменяетрежимыкоммутациитранзисторов,поэтомуобеспечениеихблагоприятногопереключениядостигаетсязасчетрезонансногообменареактивнойэнергиеймеждукоммутирующимидросселямиопережающейпарытранзисторовидемпфирующимиконденсаторамиотстающейпарытранзисторов.
Приэтоммаксимальныйтоктранзисторовпревышаеттоквходногодросселянавеличинуреактивноготокакоммутирующегоконтура,определяемогоеговолновымсопротивлением.
VTmaxHVTmaxLL11.
IURIII2VTchargeLLrez2,IIII22VTchargeVTmaxrezIII2221VTmaxVTcharge3(),42LIIUVTchargeLrez-.
III2322221VTmaxVTcharge2rz+rz-L_charge2()().
22ULIILIIE+VTmax,rzLUUIII2242rz.
42ULIОсиповА.
В.
идр.
Обеспечениеблагоприятногопереключениятранзисторовинверторатокав.
.
.
C.
138–1451423.
Вописанномвработеинверторетокасфазовымрегулированиемвкоммутационныхпроцессахчастьэнергиивходногодросселяпоступаетвнагрузкучерезэлементыкоммутационногоконтура.
Энергияпередаетсявкоммутационныйдроссельпривключениитранзистораопережающейпарысогласно(1)ивдемпфирующийконденсаторпривыключениитранзистораотстающейпарысогласно(2).
Послеполногозарядаконденсатораполученнаяотвходногодросселяэнергияпоступаетвнагрузку.
ИзвестияТомскогополитехническогоуниверситета.
2015.
Т.
326.
№4143СПИСОКЛИТЕРАТУРЫ1.
КобзевА.
В.
Многозоннаяимпульснаямодуляция.
Теорияиприменениевсистемахпреобразованияпараметровэлектрическойэнергии.
–Новосибирск:Наука,1979.
–304с.
2.
РозановЮ.
К.
Полупроводниковыепреобразователисозвеномповышеннойчастоты.
–М.
:Энергоатомиздат,1987.
–184с.
3.
Pushpullconverterforhighefficiencyphotovoltaicconversion/P.
Petit,MAillerie.
,J.
P.
Sawicki,J.
P.
Charles//EnergyProcedia.
–2012.
–V.
18.
–P.
1583–1592.
4.
NewarchitectureforhighefficiencyDCDCconverterdedicatedtophotovoltaicconversion/P.
Petit,A.
Zegaoui,J.
P.
Sawicki,M.
Aillerie,J.
P.
Charles//EnergyProcedia.
–2011.
–V.
8.
–P.
688–694.
5.
Системаэлектропитаниякосмическогоаппарата:пат.
Рос.
Федерации№2396666;заявл.
29.
06.
2009;опубл.
10.
08.
10,Бюл.
№22.
–8с.
6.
Способэлектропитаниякосмическогоаппарата:пат.
Рос.
Федерации№2488933;заявл.
13.
10.
2011;опубл.
20.
04.
13.
Бюл.
№21.
–7с.
Рис.
4.
Коммутационныепроцессывинверторетокаприфазовомрегулировании.
L1,L2=1мкГн,С3,С4=50нФ,RH=10Ом,Е=30В,=0,7.
а)полныйтактуправления;б)интервалзакорачиванияисточникаFig.
4.
Switchingprocessesinthecurrentinverteratphasecontrol.
L1,L2=1HY,С3,С4=50nF,RH=10Ohm,Е=30V,=0,7.
a)completecontrolcycle;b)sourceshortingintervalа/aб/bγТ(1-γ)ТUупVT2UупVT105UупVT3UупVT405U,U,UVT4UVT3UVT1UVT2II4I34,974,984,99t,мс040040-40040IVT1IVT3IVT4IVT2U,I,АU,I,АU,I,АtpauseU,U,I,АUупVT305UупVT105ILIrz+Irz-IVTchgIVT2I3UVT4UVT1t2t3t4t54,9804,9824,9830400400-4040t,мс4,981U,I,АU,I,АU,UупVT2UупVT3UI4IVT1UVT2IVT4UVT3IVT3t1t6IОсиповА.
В.
идр.
Обеспечениеблагоприятногопереключениятранзисторовинверторатокав.
.
.
C.
138–145144UDC621.
314FAVORABLESWITCHINGOFTRANSISTORSOFTHECURRENTINVERTERINCONVERTERSWITHTHEHIGHFREQUENCYLINKAleksandrV.
Osipov,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:ossan@mail.
ruYuriyA.
Shinyakov,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:shua@main.
tusur.
ruArturI.
Otto,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:ottoai@mail.
ruMariyaM.
Chernaya,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:cmm91@inbox.
ruAleksandrA.
Tkachenko,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:aem@tusur.
ruTherelevanceoftheresearchisdeterminedbytheneedtoreducedynamiclossesintransistorsoftheinverterwithhighfrequencylinkbasedonthecurrentadjustableinverter.
Theaimoftheresearchistosynthesizethecurrentinverterschemeandtodevelopthemethodofitsregulation,providingasafeswitchingoftransistors.
Researchmethodsarebasedonthegeneraltheoryofelectricalcircuits,theoryofalgebraicequations,computingmethodsandtheuseofmoderninstrumentalsystemsandmethodsofmathematicalmodeling.
7.
Системыэлектропитаниякосмическихаппаратовнаосноверегулируемыхпреобразователейспромежуточнымзвеномповышеннойчастоты/А.
В.
Осипов,Ю.
А.
Шиняков,А.
И.
Отто,М.
М.
Черная//ИзвестияТомскогополитехническогоуниверситета.
–2013.
–Т.
323.
–№4.
–С.
126–132.
8.
Системыэлектропитаниякосмическихаппаратовнаосноверегулируемыхинверторовтока/А.
В.
Осипов,Ю.
А.
Шиняков,А.
И.
Отто,М.
М.
Черная,А.
А.
Ткаченко//ИзвестияТомскогополитехническогоуниверситета.
–2014.
–Т.
324.
–№4.
–С.
102–109.
9.
Системыэлектропитаниякосмическихаппаратов/Б.
П.
Соустин,В.
И.
Иванчура,А.
И.
Чернышев,Ш.
Н.
Исляев.
–Новосибирск:ВОНаука,1994.
–318с.
10.
MukundR.
Patel.
Spacecraftpowersystems.
NewYork;Washington,D.
C.
:CRCPress,691p.
URL:http://www.
ereading.
mobi/bookreader.
php/135136/Patel__Spacecraft_Power_Systems.
pdf(датаобращения:15.
01.
2015).
11.
Двухфазныйповышающийпреобразовательсмягкойкоммутациейтранзисторовиособенностиегодинамическихсвойств/Р.
К.
Диксон,Ю.
Н.
Дементьев,Г.
Я.
Михальченко,С.
Г.
Михальченко,С.
М.
Семенов//ИзвестияТомскогополитехническогоуниверситета.
–2014.
–Т.
324.
–№4.
–С.
96–101.
12.
ShengYuTs.
,ChihYangHs.
InterleavedstepupconverterwithasinglecapacitorsnubberforPVenergyconversionapplications//InternationalJournalofElectricalPower&EnergySystems.
–2013.
–V.
53.
–P.
909–922.
13.
ИдрисовИ.
К.
Комбинированныйдвухтрансформаторныйпреобразовательсобратнымключомимягкимвключением:автореф.
дис.
…канд.
техн.
наук.
–Томск,2013.
–22с.
14.
ChanuriCh.
,ShahidI.
,SoibT.
ANewSoftSwitchingPWMDCDCConverterwithAuxiliaryCircuitandCentreTappedTransformerRectifier//MalaysianTechnicalUniversitiesConferenceonEngineering&Technology.
–Malaysia,2013.
–P.
241–247.
15.
СилкинЕ.
М.
Применениенулевыхсхеминверторовтокасквазирезонанснойкоммутацией//Силоваяэлектроника.
–2005.
–№3.
–С.
84–87.
16.
Инвертортока:пат.
Рос.
Федерации№2285325;заявл.
28.
04.
2003;опубл.
10.
10.
2006,Бюл.
№28.
–7с.
17.
МуркинМ.
Н.
,ЗеманС.
К.
,ЯрославцевЕ.
В.
Исследованиекоммутационныхпроцессоввинверторетока//ИзвестияТомскогополитехническогоуниверситета.
–2009.
–Т.
315.
–№4.
–С.
111–116.
18.
РозановЮ.
К.
,НикифоровА.
А.
Высокочастотнаякоммутацияэлектрическихцепейсрезонанснымиконтурами–перспективноенаправлениепреобразовательнойтехники//Электротехника.
–1991.
–№6.
–С.
20–28.
19.
МелешинВ.
И.
,ЯкушевВ.
А.
,ФрейдлинС.
Анализтранзисторногопреобразователятокасмягкойкоммутацией//Электричество.
–2000.
–№1.
–С.
52–56.
20.
PrasannaU.
,AkshayK.
AnalysisandDesignofZeroVoltageSwitchingCurrentFedIsolatedFullBridgeDC/DCConverter//IEEEElectricalandComputerEngineering.
–2011.
–P.
239–245.
Поступила25.
02.
2015г.
REFERENCES1.
KobzevA.
V.
Mnogozonnayaimpulsnayamodulyatsiya.
Teoriyaiprimenenievsistemakhpreobrazovaniyaparametrovelektricheskoyenergii[Multizonalpulsemodulation.
Thetheoryandapplicationinconversionsystemsofelectricenergyparameters].
Novosibirsk,NaukaPubl.
,1979.
304p.
2.
RozanovYu.
K.
Poluprovodnikovyepreobrazovatelisozvenompovyshennoychastoty[Semiconductorconverterswithhighfrequencylink].
Moscow,EnergoatomizdatPubl.
,1987.
184p.
3.
PetitP.
,AillerieM,SawickiJ.
P.
,CharlesJ.
P.
Pushpullconverterforhighefficiencyphotovoltaicconversion.
EnergyProcedia,2012,vol.
18,pp.
1583–1592.
4.
PetitP.
,ZegaouiA.
,SawickiJ.
P.
,AillerieM.
,CharlesJ.
P.
NewarchitectureforhighefficiencyDCDCconverterdedicatedtophotovoltaicconversion.
EnergyProcedia,2011,vol.
8,pp.
688–694.
5.
KudryashovV.
S.
,ElmanV.
O.
,NesterishinM.
V.
,GordeevK.
G.
,GladushchenkoV.
N.
,KhartovV.
V.
,KochuraS.
G.
,SoldatenkoV.
G.
,MelnikovN.
V.
,KozlovR.
V.
Sistemaelectropitaniyakosmicheskogoapparata[Thepowersupplysystemofthespacecraft].
PatentRF,no.
2396666,2010.
6.
KarplyukD.
S.
,KorotkikhV.
V.
,NestirishinM.
V.
,OpеnkoS.
I.
Sposobelectropitaniyakosmicheskogoapparata[Themethodofthespacecraftsupply].
PatentRF,no.
2488933,2013.
7.
OsipovA.
V.
,ShinyakovYu.
A.
,OttoA.
I.
,ChernayaM.
M.
Sistemyelektropitaniyakosmicheskikhapparatovnaosnovereguliruemykhpreobrazovateleyspromezhutochnymzvenompovyshennoychastity[Thepowersystembasedonspacevehiclescontrolledconverterswithintermediatehighfrequencylink].
BulletinoftheTomskPolytechnicUniversity,2013,vol.
323,no.
4,pp.
126–132.
8.
OsipovA.
V.
,ShinyakovYu.
A.
,OttoA.
I.
,ChernayaM.
M.
,TkachenkoA.
A.
Sistemyelektropitaniyakosmicheskikhapparatovnaosnovereguluruemykhinvertorovtoka[Powersupplysystemsofspacecraftbasedonadjustablecurrentinverters].
BulletinoftheTomskPolytechnicUniversity,2014,vol.
324,no.
4,pp.
102–109.
9.
SoustinB.
P.
,IvanchuraV.
I.
,ChernyshevA.
I.
,IslyaevSh.
N.
Sistemyelektropitaniyakosmicheskikhapparatov[Spacecraftpowersupplysystem].
Novosibirsk,NaykaPubl.
,1994.
318p.
10.
MukundR.
Patel.
Spacecraftpowersystems.
NewYork;Washington,D.
C.
:CRCPress,691p.
Availableat:http://www.
ereading.
mobi/bookreader.
php/135136/Patel__Spacecraft_Power_Systems.
pdf(accessed15January2015).
11.
DiksonR.
K.
,DementevYu.
N.
,MikhalchenkoG.
Ya.
,MikhalchenkoS.
G.
,SemenovS.
M.
Dvukhfaznypovyshayushchypreobrazovatelsmyagkoykommutatsieytranzistoroviosobennostiegodinamicheskikhsvoystv[Dynamicpropertiesofatwophaseboostconverterwithsoftswitchingtransistorstechnology].
BulletinoftheTomskPolytechnicUniversity,2014,vol.
324,no.
4,pp.
96–101.
12.
ShengYuTs.
,ChihYangHs.
InterleavedstepupconverterwithasinglecapacitorsnubberforPVenergyconversionapplications.
InternationalJournalofElectricalPower&EnergySystems,2013,vol.
53,pp.
909–922.
13.
IdrisovI.
K.
Kombinirovannydvukhtransformatornypreobrazovatelsobratnymklyuchomimyagkimvklyucheniem.
Kand.
Diss.
[Combinedtwotransformerinverterwithreversekeyandsoftswitching.
Dis.
Kand.
nauk].
Tomsk,2013.
22p.
14.
ChanuriCh.
,ShahidI.
,SoibT.
ANewSoftSwitchingPWMDCDCConverterwithAuxiliaryCircuitandCentreTappedTransformerRectifier.
MalaysianTechnicalUniversitiesConferenceonEngineering&Technology.
Malaysia,2013.
pp.
241–247.
15.
SilkinE.
M.
Primenenienulevykhskheminvertorovtokaskvazirezonansnoykommutatsiey[Applyingazeroinvertercircuitcurrentwithquasiresonantswitching].
Silovayaelectronika,2005,no.
3,pp.
84–87.
16.
SilkinE.
M.
Invertortoka[Thecurrentinverter].
PatentRF,no.
2285325,2006.
17.
MurkinM.
N.
,ZemanS.
K.
,YaroslavtsevE.
V.
Issledovaniekommutatsionnykhprotsessovvinvertoretoka[Studyingswitchingprocessesincurrentinverter].
BulletinoftheTomskPolytechnicUniversity,2009,vol.
315,no.
4,pp.
111–116.
18.
RozanovYu.
K.
,NikiforovA.
A.
Vysokochastotnayakommutatsiyaelectricheskikhtsepeysrezonansnymikonturami–perspektivnoenapravleniepreobrazovatelnoytekhniki[Highfrequencyswitchingofelectriccircuitswithresonantcircuitsisapromisingdirectionintransformativetechnology].
RussianElectricalEngineering,1991,no.
6,pp.
20–28.
19.
MeleshinV.
I.
,YakushevV.
A.
,FreydlinS.
Analiztranzistornogopreobrazovatelyatokasmyagkoykommutatsiey[Analysisofthetransistorcurrentconverterwithasoftswitching].
ElectricalTechnologyRussia,2000,no.
1,pp.
52–56.
20.
PrasannaU.
,AkshayK.
AnalysisandDesignofZeroVoltageSwitchingCurrentFedIsolatedFullBridgeDC/DCConverter.
IEEEElectricalandComputerEngineering,2011.
pp.
239–245.
Received:25February2015.
ИзвестияТомскогополитехническогоуниверситета.
2015.
Т.
326.
№4145Results.
Thepaperconsidersswitchingprocessesincaseofresonantswitchingoftransistorsofthecurrentinverterintheconverterwiththehighfrequencylink.
Itisshownthatblockingdiodesoftheinverterrestrictamplitudeofresonanceoscillationsofcurrentoftransistorsatthelevelofcurrentoftheinputchoke.
Theexceptionofblockingdiodesleadstoessentialupratingofcurrentofthetransistors,definedbybalanceofpowerofreactiveelementsofaresonantcircuit.
Theauthorshavestudiedtheswitchingprocessesoftransistorsoftheinverterincaseofphaseregulationofanoutputcurrent.
Itwasascertainedthatontheintervalofinputsourceshortcircuitthetransistorcurrentconsistsofthesourcecurrentcomponentandcurrentcomponentaccumulatedinswitchingchokesincaseofthecapacitordischarge.
Theauthorsderivedtheenergybalanceequations.
Theywerethebaseforobtainingtheratioswhichallowdefiningthemaximumvaluesofcurrentintransistors.
Theauthorsmadeconclusionsanddiscussedtheresults.
Keywords:Currentinverter,switchingoperations,dynamiclosses,switchingresonantcircuit,safeswitchingoftransistors.

PhotonVPS:美国Linux VPS半价促销2.5美元/月起,可选美国洛杉矶/达拉斯/芝加哥/阿什本等四机房

photonvps怎么样?photonvps现在针对旗下美国vps推出半价促销优惠活动,2.5美元/月起,免费10Gbps DDoS防御,Linux系统,机房可选美国洛杉矶、达拉斯、芝加哥、阿什本。以前觉得老牌商家PhotonVPS贵的朋友可以先入手一个月PhotonVPS美国Linux VPS试试了。PhotonVPS允许合法大人内容,支持支付宝、paypal和信用卡,30天退款保证。Photo...

SugarHosts糖果主机,(67元/年)云服务器/虚拟主机低至半价

SugarHosts 糖果主机商也算是比较老牌的主机商,从2009年开始推出虚拟主机以来,目前当然还是以虚拟主机为主,也有新增云服务器和独立服务器。早年很多网友也比较争议他们家是不是国人商家,其实这些不是特别重要,我们很多国人商家或者国外商家主要还是看重的是品质和服务。一晃十二年过去,有看到SugarHosts糖果主机商12周年的促销活动。如果我们有需要香港、美国、德国虚拟主机的可以选择,他们家的...

数脉科技:香港服务器低至350元/月;阿里云CN2+BGP线路,带宽10M30M50M100M

数脉科技(shuhost)8月促销:香港独立服务器,自营BGP、CN2+BGP、阿里云线路,新客立减400港币/月,老用户按照优惠码减免!香港服务器带宽可选10Mbps、30Mbps、50Mbps、100Mbps带宽,支持中文本Windows、Linux等系统。数脉香港特价阿里云10MbpsCN2,e3-1230v2,16G内存,1T HDD 或 240G SSD,10Mbps带宽,IPv41个,...

gmail企业邮箱为你推荐
登陆qq空间首页qq空间登陆首页租车平台哪个好想网上租车,选什么平台好?苹果x和xr哪个好苹果x和xr哪个好?有何区别?电脑管家和360哪个好360和电脑管家哪个好传奇类手游哪个好传奇哪个版本比较好玩 最好玩的传奇手游排行榜浮动利率和固定利率哪个好对于企业来说固定利率贷款与浮动利率贷款优缺点各是什么?谢谢了。炒股软件哪个好用玩股票哪个软件好?手机炒股软件哪个好手机炒股哪个软件好 要免费的车险哪个好汽车保险买哪个公司的好雅思和托福哪个好考托福好考还是雅思好考?
asp网站空间 www二级域名 网通服务器租用 域名查询系统 广州主机租用 cpanel 抢票工具 100x100头像 天互数据 gspeed me空间社区 双线asp空间 便宜空间 lamp怎么读 免费php空间 免费稳定空间 睿云 电信主机托管 免费赚q币 godaddyssl 更多