ErrorAnalysisofNamedEntityRecognitioninBCCWJMasaakiIchihara1KanakoKomiya1TomoyaIwakura2MaikoYamazaki31IbarakiUniversity3FujitsuLaboratoriesLtd.
,2TokyoInstituteofTechnology{11t4004s@hcs,kkomiya@mx}.
ibaraki.
ac.
jp,iwakura.
tomoya@jp.
fujitsu.
com,yamazaki@lr.
pi.
titech.
ac.
jp1IntroductionNamedEntityRecognitionisaprocessbywhichnamedentities(NEs)suchasthenamesofpersons,locations,andartifactsareextracted.
Mostnamedentityrecognitiontechniqueshavebeenstudiedonnewsarticles,however,theirperformancesondier-entdomaintextssuchasblogs,booksandmaga-zinesarestillnotevaluatedwell.
ThispaperreportsanerroranalysisofKNPonsixdomainsforreveal-ingcausesoferrorsforfurtherimprovementofNErecognition1.
2ErrorAnalysisofKNPonBCCWJJapanesedependencyandcasestructureanalyzerKNP2([2]and[3])wasusedasthenamedentityrecognizer.
TheversionsweusedwereKNPVer.
4.
11andJUMANVer.
7.
0.
Thesixgenres,"Q&Asites","whitepapers","blogs","books","magazines",and"newspaperar-ticles",inBalancedCorpusofContemporaryWrit-tenJapanese(BCCWJ)wereusedasthetargetcor-pora.
OnehundredthirtysixtextsextractedfromBC-CWJ,theyareavailableasClassA3,wereusedfortheexperiments.
TheyweremanuallyannotatedwithninekindsofNEthatweredenedbyInformationRetrievalandExtractionExercise(IREX)4.
TheseNEtypesarethenamesofpersons,locations,artifacts,dates,times,moneys,percents,andoptional5.
Theanno-tationwasdonebyvemembersofNEteamoftheProjectNextNLP,andcheckedbyfourmembersofit.
1ThispaperisanEnglishversionof(Ichiharaetal.
,2015)[1]withadditionalinformationandsomecorrections.
2http://nlp.
ist.
i.
kyoto-u.
ac.
jp/EN/index.
phpKNP3http://plata.
ar.
media.
kyoto-u.
ac.
jp/mori/research/NLR/JDC/ClassA-1.
list4http://nlp.
cs.
nyu.
edu/irex/index-e.
html5KNPdoesnotextractoptionaltags.
WecomparedKNPoutputswiththemanuallyan-notatedtextsandanalyzederrors.
Table1showstheperformancesofKNP.
Theequa-tionsofrecall,precision,accuracy,andF-measureareasfollows.
"Correct",thenumeratorofrecall,precision,andaccuracy,isthenumberofthecor-rectanswersofKNP.
"Annotated",thedenominatorofrecall,denotesthenumberoftheNEsthatweremanuallyannotated.
"KNPoutputs",thedenomi-natorofprecision,denotesthenumberoftheNEsthatKNPoutput.
Thedenominatorofaccuracyisthelogicalsum(OR)of"Annotated"and"KNPout-puts".
Thedenominatorsofrecall,precision,andac-curacyvarybecauseKNPsometimescannotextractsomeNEsandsometimesextractswronginforma-tion.
Also,anNEthatthesystemoutputsometimesconsistsofmultipleannotatedNEsasillustratedbyanexampleinFigure1andviceversa.
Table1showstherecallislowerthantheprecision.
KNP:PERSON/PERSONAnnotationLOCATION/LOCATIONLOCATION/LOCATIONFigure1:AnexampleofanNEKNPoutputincludesmultipleannotatedNEsRecall=CorrectAnnotated(1)Precision=CorrectKNPoutputs(2)Accuracy=CorrectAnnotated∪KNPoutputs(3)Fmeasure=2Recall·PrecisionRecall+Precision(4)Table1:PerformancesofKNPPerformanceRateCorrectDenominatorRecall61.
79%2641Precision74.
79%16322182Accuracy57.
95%2816F-measure67.
68Theerrorswereclassiedintothefollowingvetypes.
Exampleswereshownwithdescription.
NoextractionTheerrorwhereKNPdidnotex-tracttokensasanNEthoughtheywereanno-tated.
KNP:AnnotationARTIFACT/ARTIFACTNoannotationTheerrorwhereKNPextractedtokensasanNEthoughtheywerenotanno-tated.
KNP:PERSON/PERSONAnnotationWrongrangeTheerrorwhereKNPextractedto-kensasanNEandonlytherangewaswrong.
(Theextractedtokenswerepartiallyannotatedortheywerethepartoftheannotatedtokens.
)KNP1:PERSON/PERSONAnnotation1PERSON/PERSONKNP2:ORGANIZATION/ORGANIZATIONAnnotation2ORGANIZATION/ORGANIZATIONWrongtagTheerrorwhereKNPextractedtokensasanNEandonlythetagtypewaswrong.
KNP:PERSON/PERSONAnnotationLOCATION/LOCATIONWrongrangeandtagTheerrorwhereKNPex-tractedtokensasanNEandboththerangeandthetagtypewerewrong.
KNP:PERSON/PERSONAnnotationLOCATION/LOCATIONTable2:SummaryoferrorsErrortypeNumRateNoextraction61952.
28%Noannotation15913.
43%Wrongrange16213.
68%Wrongtag12710.
73%Wrongrangeandtag1179.
88%Allerrors1184100.
00%Table2showsasummaryoferrors.
Theseerrorswerecountedbythelogicalsum(OR)ofannotatedNEsandKNPoutputs.
Themostfrequenterrorwas"Noextraction"anditaccountedformorethanhalfofthetotalerrors.
Thesecondmostfrequenter-rorwas"Wrongrange"andmostofthemweretheerrorswhereextractedtokenswerethepartoftheannotatedtokens.
Table3showsasummaryoferrorsbytypesofNEs.
Theseerrorswerealsocountedbythelogi-calsum(OR)ofannotatedNEsandKNPoutputs.
"Correct"and"Error"arethenumbersofthecorrectanswersandtheerrorsofKNP.
"Total"isthesumof"Correct"and"Error".
"Noextraction"and"Er-rorswithextraction"inthetablemeanthenumbersof"Noextraction"andtheerrorsotherthan"Noex-traction",respectively.
"Noextractionrate"istheratioof"Noextraction"in"Error".
Table3showsthatnoextractionratesof"ARTI-FACT","PERCENT","TIME",and"OPTIONAL"areespeciallyhigh.
Atthesametime,therearesmallnumberofNEsof"PERCENT"and"TIME"inthecorpora.
Therefore,wecansee"ARTIFACT"isthebigreasonwhythenoextractionrateofalltagsishigh.
Noextractionrateof"OPTIONAL"is100%becauseKNPdoesnotextractOPTIONALsandthisisanotherreason.
Table3alsoshowsthatmostof"TIME","MONEY",and"PRECENT"werecorrectlytaggedbyKNPiftheyweretagged.
Mostoftheerrorswhentheywereextractedarethoseof"ORGANIZA-TION","PERSON",and"LOCATION".
Thesumoferrorsof"ARTIFACT"and"DATE"arelessthan30%ofallerrorswhentheywereextracted.
Table4showstheaccuraciesandtheratesofnoextractionin"Total"accordingtothetagtype.
"Ac-curacy"istheratioofthecorrectanswersin"Total",thesumofcorrectanswersanderrorsofKNP,and"Noextraction/Total"istheratioofnoextractioninit.
Theseerrorswerealsocountedbythelogicalsum(OR)ofannotatedNEsandKNPoutputs.
Table4showsthattheaccuracyof"ARTIFACT"isparticularlylowcomparingwiththeothertags.
Thesametableshowstheratioofnoextractionin"Total"isalsohigh.
Therefore,wecouldseethat"Noextraction"of"ARTIFACT"isthebiggestcauseTable3:SummaryoferrorsbytypesofNEsTagCorrectErrorTotalNoextractionErrorswithextractionNoextractionrateARTIFACT902593491926774.
13%DATE343145488628342.
76%LOCATION4092266357215431.
86%MONEY884922250.
00%ORGANIZATION2362004367712338.
50%PERCENT79129110283.
33%PERSON3642225868813439.
64%TIME2393290100.
00%OPTIONAL01071071070100.
00%AllTags16321184281661956552.
28%Table4:Accuraciesandratesofnoextractionin"Total"accordingtothetagtypeTagAccuracyNoextraction/TotalARTIFACT25.
79%55.
01%DATE70.
29%12.
70%LOCATION64.
41%11.
34%MONEY95.
65%2.
17%ORGANIZATION54.
13%17.
66%PERCENT86.
81%10.
99%PERSON62.
12%15.
02%TIME71.
88%28.
13%OPTIONAL0.
00%100.
00%AllTags57.
95%21.
98%oftheerrorsofKNPandthemainreasonoflowrecall.
3ErrorAnalysisof"NoEx-traction"Thetargetcorporaweusedconsistedofsixgenres,"Q&Asites","whitepapers","blogs","books","magazines",and"newspaperarticles",inBCCWJ.
Table5showsasummaryoferrorsbygenresoftexts.
Theseerrorsexcept"Noextraction"arethosethatKNPoutput.
"Correct"and"Error"arethenumberofthecorrectanswersandtheerrorsofKNP.
"Total"isthesumof"Correct"and"Error".
"Noextraction"and"Errorswithextraction"intheta-blemeanthenumbersof"Noextraction"andtheerrorsotherthan"Noextraction",respectively.
"Noextractionrate"istheratioof"Noextraction"in"Error".
"Docs"isthenumberofdocumentsofthegenre.
Thetotalnumberoferrors(1169)andtotalnum-beroferrorswithextraction(550)aredierentfromthoseinTables2and3(1184and565).
Thisisbe-causesomeNEsthatKNPoutputincludemultipleTable6:Accuraciesandratesofnoextractionin"Total"accordingtothegenreGenreAccuracyNoextraction/TotalQ&A40.
00%44.
21%Whitepaper58.
73%20.
63%Blog50.
74%27.
89%Book50.
35%28.
07%Magazine53.
45%14.
66%Newspaper72.
27%15.
49%All58.
26%22.
10%annotatedNEs.
Inaddition,thenumberofwordsvariesaccordingtothegenre.
WethinkthisisareasonwhythetotalnumberoftheNEswasnotproportionaltothenumberofthedocuments.
Table5showsthatthegenrewhosenoextractionratewasthehighestwas"Q&Asites"andthegenrewiththelowestratewas"magazines".
Table6showstheaccuraciesandtheratesofnoextractionin"Total"accordingtothegenre.
"Accu-racy"istheratioofthecorrectanswersin"Total",thesumofcorrectanswersanderrorsofKNP,and"Noextraction/Total"istheratioofnoextractioninit.
Theseerrorsexcept"Noextraction"arethosethatKNPoutput.
"Accuracy"of"All"(58.
26%)isdierentfrom"Recall"inTable1(61.
79%)becausethenumberoftheNEsKNPoutputwasdierentfromthenumberoftheNEsthatwereannotatedbyhumans.
Table6showsthat"newspaperarticles"isthegenrewhoseaccuracyisthehighest.
WethinkthisisbecauseKNPwastrainedwithnewspaperarticlesofMAINICHISHIMBUN.
Table6alsoshowsthegenrewiththelowestaccuracywas"Q&Asites".
WethinkthisisbecausethewritingstyleofQ&Asiteswasthemostdierentfromthatofnewspaperarticles.
Thesametableshowsthatthegenrewhosenoextractionratewasthehighestwas"Q&Asites"Table5:SummaryoferrorsbygenresoftextsGenreCorrectErrorTotalNoextractionErrorswithextractionNoextractionrateDocsQ&A76114190843073.
68%74Whitepaper42730072715015050.
00%8Blog171166337947256.
63%34Book2172144311219356.
54%5Magazine1861623485111131.
48%2Newspaper5552137681199455.
87%13AllGenres16321169280161955052.
95%136andthegenrewiththelowestratewas"magazines".
3.
1NoExtractionofQ&ASites"Q&Asites"wasthegenrewhoseaccuracywasthelowest.
Theexamplesofnoextractionerrorsin"Q&Asites"areshownasfollows.
iManynamesofproducts,characters,andmedicineswerenotextracted.
(SakuraWars)(SuperNintendoEntertainmentSystem)(ActRaiser)4(Res-identEvil4)(KamenRider)(Ultraman)(Gundam)(Minostacin)(Aspirin)iiAbbreviationswerenotextracted.
Formalnamesarenotedinbrackets.
(MarioWorld)(SuperMarioWorld)GC((NintendoGameCube))JNB((JapanNetBank))LA((LosAngeles))iiiTheunusualdateexpressionswerenotextracted.
(90/11/21)ivHiraganaexpressionsweresometimeswronglyparsed.
"(Satoshi)"in"(CHIEBUKURERSatoshi)"shouldbethenameofpersonbutitiswronglyparsedas"(Satoru)":averb.
vNEswritteninalphabetsandnumberswerenotextracted.
"(JREast)"wereextracted.
3.
2NoExtractionofNewspaperAr-ticles"Newspaperarticles"wasthegenrewhoseaccuracywasthehighest.
Theexamplesofnoextractioner-rorsin"newspaperarticles"areshownasfollows.
iSomeNEswithspecicprexesandsuxeswerenotextracted.
(half**,ex.
halftime)(**region,ex.
(capitalregion)(threemajormetropolitanareas))(**area)(**point)(same**,ex.
(same**year)(sameday)(sameyearautumn))iiOPTIONALswerenotextractedbecauseKNPdoesnotextractoptionaltags.
iiiTheunusualEnglishexpressionsinJapanesesen-tenceswerenotextracted.
KOERAJAPANivBracketssometimescausetheerrors.
(Phoenix(Arizona,US))vNEsthatconsistofgeneralnounswerenotex-tracted.
Thiscouldbethereasonwhythenamesofproductsandcharacterswerenotextracted.
(Hirune,anap)(Zaurus)(FamilyMart)(Sharp)(TheRenaissance)"Softbank"sometimescouldbeextractedandsometimescouldnot.
Theywereparsedasnom-inativecasewhentheywereextractedandas"inclause"whentheywerenot.
4DiscussionAccordingtotheexamplesdescribed,wethinkthatthelackofknowledgeinthedictionaryandtheerrorsoftheparserarethebigreasonsoftheerrorsofthenamedentityrecognition.
Inparticular,thenamesofartifactsincludingthenamesofproductsorchar-actersareoftennewwordsthatwerecoined.
TheseNEsarenotinthedictionaryKNPusesandthere-fore,theyshouldbejudgediftheyweretheNEsornotdependsonthefeaturesofthesurroundingpat-ternsandthesyntacticfeatures.
Asaresult,thecorrectparsingwouldbeimportantfortheNEsthatcannotusedictionaryinformation.
However,theca-sualwritingstylelikeQ&Asitescausestheerrorsinmorphologicalanalysisandparsing.
Wethinkthatifthesentencesoftheseinformalwritingstylescouldbecorrectlyanalyzedandparsed,theerrorswouldbedecreased.
Thetrainingoftextswithinformalwritingstylescouldbethesolutionofthisproblem.
Inaddition,mostoftheNEsthatwerenotextractedbyKNPwerefoundinWikipediaorotherWebsites.
Thisinformationalsocouldhelptherecallimprove.
5ConclusionThispaperreportsanerroranalysisofthenamedentityrecognizerKNPonsixdomainsforrevealingcausesoferrors.
ThetextsofBCCWJweremanu-allyannotatedandcomparedwiththeautomaticallytaggedtexts.
Theanalysisrevealedthatthemostfrequenterrorwas"Noextraction":thecasewherethetokenswerenotextractedbyKNPthoughtheywereannotated.
Italsorevealedthat"Noextrac-tion"of"ARTIFACT"isthebiggestcauseoflowrecalland"Q&Asite"isthegenrewhoseaccuracyisthelowest.
Wefocusedonthenoextractionerrorsandfoundoutthatthelackofdictionaryinformationandthevariouswritingstylescausetheseerrors.
AcknowledgementsThisworkwaspartiallysupportedbyJSPSKAK-ENHIGrantNumber24700138.
WewouldliketothankDr.
RyoheiSasanowhoprovidesusthehelp-fulinformationaboutKNPandteammembersofNEteamofProjectNextNLP.
References[1]MasaakiIchihara,MaikoYamazaki,andKanakoKomiya.
Erroranalysisofnamedentityextrac-tioninbccwj(bccwj).
7,p.
toappear,2015.
[2]RyoheiSasanoandSadaoKurohashi.
Japanesenamedentityrecognitionusingnon-localinfor-mation(injapanese).
IPSJJournal,Vol.
49,No.
11,pp.
3765–3776,2008.
[3]knp.
,19,pp.
110–113,2013.
前几天有关注到Megalayer云服务器提供商有打算在月底的时候新增新加坡机房,这个是继美国、中国香港、菲律宾之外的第四个机房。也有工单询问到官方,新加坡机房有包括CN2国内优化线路和国际带宽,CN2优化线路应该是和菲律宾差不多的。如果我们追求速度和稳定性的中文业务,建议还是选择CN2优化带宽的香港服务器。这里有要到Megalayer新加坡服务器国际带宽的测试服务器,E3-1230配置20M国际带...
LightNode是一家位于香港的VPS服务商.提供基于KVM虚拟化技术的VPS.在提供全球常见节点的同时,还具备东南亚地区、中国香港等边缘节点.满足开发者建站,游戏应用,外贸电商等应用场景的需求。新用户注册充值就送,最高可获得20美元的奖励金!成为LightNode的注册用户后,还可以获得属于自己的邀请链接。通过你的邀请链接带来的注册用户,你将直接获得该用户的消费的10%返佣,永久有效!平台目前...
BGP.TO目前针对日本和新加坡服务器进行促销,其中日本东京服务器6.5折,而新加坡服务器7.5折起。这是一家专门的独立服务器租售网站,提供包括中国香港、日本、新加坡和洛杉矶的服务器租用业务,基本上都是自有硬件、IP资源等,国内优化直连线路,机器自动化部署上架,并提供产品的基本管理功能(自助开关机重启重装等)。新加坡服务器 $93.75/月CPU:E3-1230v3内存:16GB硬盘:480GB ...
softbank官网为你推荐
美国主机租用美国服务器多少钱一年?linux虚拟主机怎么样在自己的电脑上安装一个Linux的虚拟机操作系统?vps主机vps主机好吗?是不是垃圾?网站空间商网站空间商怎么查询100m虚拟主机100M的虚拟主机都能做些什么虚拟主机管理系统如何用win虚拟主机管理系统搭建河南虚拟主机新网的虚拟主机怎么样?虚拟主机测评虚拟主机哪个最好华众虚拟主机管理系统华众虚拟主机管理系统怎么样?买域名买域名要多少钱?
technetcal mach 512av 长沙服务器 阿里云浏览器 泉州移动 中国电信测速器 沈阳主机托管 lamp什么意思 阿里云手机官网 xshell5注册码 免费获得q币 shuangcheng htaccess 最新优惠 美国十大啦 达拉斯 stealthy 主机之家 国内免备案cdn 更多