linearwww.765.com

www.765.com  时间:2021-03-19  阅读:()
Yaoetal.
JournalofInequalitiesandApplications2014,2014:206http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206RESEARCHOpenAccessConstructionofminimum-normxedpointsofpseudocontractionsinHilbertspacesYonghongYao1,GiuseppeMarino2,Hong-KunXu3andYeong-ChengLiou4,5**Correspondence:simplex_liou@hotmail.
com4DepartmentofInformationManagement,ChengShiuUniversity,Kaohsiung,833,Taiwan5CenterforGeneralEducation,KaohsiungMedicalUniversity,Kaohsiung,807,TaiwanFulllistofauthorinformationisavailableattheendofthearticleAbstractAniterativealgorithmisintroducedfortheconstructionoftheminimum-normxedpointofapseudocontractiononaHilbertspace.
Thealgorithmisprovedtobestronglyconvergent.
MSC:47H05;47H10;47H17Keywords:xedpoint;minimum-norm;pseudocontraction;nonexpansivemapping;projection1IntroductionConstructionofxedpointsofnonlinearmappingsisaclassicalandactiveareaofnonlin-earfunctionalanalysisduetothefactthatmanynonlinearproblemscanbereformulatedasxedpointequationsofnonlinearmappings.
TheresearchofthisareadatesbacktoPi-card'sandBanach'stime.
Asamatteroffact,thewell-knownBanachcontractionprinciplestatesthatthePicarditerates{Tnx}convergetotheuniquexedpointofTwheneverTisacontractionofacompletemetricspace.
However,ifTisnotacontraction(nonexpan-sive,say),thenthePicarditerates{Tnx}fail,ingeneral,toconverge;hence,otheriterativemethodsareneeded.
In,Mann[]introducedthenowcalledMann'siterativemethodwhichgeneratesasequence{xn}viatheaveragedalgorithmxn+=(–αn)xn+αnTxn,n≥,(.
)where{αn}isasequenceintheunitinterval[,],Tisaself-mappingofaclosedconvexsubsetCofaHilbertspaceH,andtheinitialguessxisanarbitrary(butxed)pointofC.
Mann'salgorithm(.
)hasextensivelybeenstudied[–],andinparticular,itisknownthatifTisnonexpansive(i.
e.
,Tx–Ty≤x–yforallx,y∈C)andifThasaxedpoint,thenthesequence{xn}generatedbyMann'salgorithm(.
)convergesweaklytoaxedpointofTprovidedthesequence{αn}satisesthecondition∞n=αn(–αn)=∞.
(.
)Thisalgorithm,however,doesnotconvergeinthestrongtopologyingeneral(see[,Corollary.
]).
2014Yaoetal.
;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribu-tionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page2of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206BrowderandPetryshyn[]studiedweakconvergenceofMann'salgorithm(.
)fortheclassofstrictpseudocontractions(inthecaseofconstantstepsizesαn=αforalln;see[]forthegeneralcaseofvariablestepsizes).
However,Mann'salgorithmfailstoconvergeforLipschitzianpseudocontractions(seethecounterexampleofChidumeandMutan-gadura[]).
ItisthereforeaninterestingquestionofinventingiterativealgorithmswhichgenerateasequenceconverginginthenormtopologytoaxedpointofaLipschitzianpseudocontraction(ifany).
Theinterestofpseudocontractionsliesintheirconnectionwithmonotoneoperators;namely,TisapseudocontractionifandonlyifthecomplementI–Tisamonotoneoperator.
Wealsonoticethatitisquiteusualtoseekaparticularsolutionofagivennonlinearproblem,inparticular,theminimum-normsolution.
Forinstance,givenaclosedconvexsubsetCofaHilbertspaceHandaboundedlinearoperatorA:H→H,whereHisanotherHilbertspace.
TheC-constrainedpseudoinverseofA,ACisthendenedastheminimum-normsolutionoftheconstrainedminimizationproblemAC(b):=argminx∈CAx–b(.
)whichisequivalenttothexedpointproblemx=PCx–λA(Ax–b),(.
)wherePCisthemetricprojectionfromHontoC,AistheadjointofA,λ>isaconstant,andb∈HissuchthatPA(C)(b)∈A(C).
Itisthereforeaninterestingproblemtoinventiterativealgorithmsthatcangeneratesequenceswhichconvergestronglytotheminimum-normsolutionofagivenxedpointproblem.
Thepurposeofthispaperistosolvesuchaproblemforpseudocontractions.
Moreprecisely,weshallintroduceaniterativealgorithmfortheconstructionofxedpointsofLipschitzianpseudocontractionsandprovethatouralgorithm(see(.
)inSec-tion)convergesinthestrongtopologytotheminimum-normxedpointofthemapping.
Fortheexistingliteratureoniterativemethodsforpseudocontractions,thereadercanconsult[,–];forndingminimum-normsolutionsofnonlinearxedpointandvariationalinequalityproblems,see[–];andforrelatediterativemethodsfornonex-pansivemappings,see[,,,]andthereferencestherein.
2PreliminariesLetHbearealHilbertspacewiththeinnerproduct·,·andthenorm·,respectively.
LetCbeanonemptyclosedconvexsubsetofH.
Theclassofnonlinearmappingswhichwewillstudyistheclassofpseudocontractions.
RecallthatamappingT:C→CisapseudocontractionifitsatisesthepropertyTx–Ty,x–y≤x–y,x,y∈C.
(.
)ItisnothardtondthatTisapseudocontractionifandonlyifTsatisesoneofthefollowingtwoequivalentproperties:(a)Tx–Ty≤x–y+(I–T)x–(I–T)yforallx,y∈C;or(b)I–TismonotoneonC:x–y,(I–T)x–(I–T)y≥forallx,y∈C.
Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page3of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206RecallthatamappingT:C→CisnonexpansiveifTx–Ty≤x–y,x,y∈C.
Itisimmediatelyclearthatnonexpansivemappingsarepseudocontractions.
Recallalsothatthenearestpoint(ormetric)projectionfromHontoCisdenedasfollows:Foreachpointx∈H,PCxistheuniquepointinCwiththepropertyx–PCx≤x–y,y∈C.
NotethatPCischaracterizedbytheinequalityPCx∈C,x–PCx,y–PCx≤,y∈C.
(.
)Consequently,PCisnonexpansive.
Inthesequelweshallusethefollowingnotations:Fix(S)standsforthesetofxedpointsofS;xnxstandsfortheweakconvergenceof(xn)tox;xn→xstandsforthestrongconvergenceof(xn)tox.
Belowistheso-calleddemiclosednessprinciplefornonexpansivemappings.
Lemma.
(cf.
[])LetCbeanonemptyclosedconvexsubsetofarealHilbertspaceH,andletS:C→Cbeanonexpansivemappingwithxedpoints.
If{xn}isasequenceinCsuchthatxnxand(I–S)xn→y,then(I–S)x=y.
Wealsoneedthefollowinglemmawhoseproofcanbefoundinliterature(cf.
[]).
Lemma.
LetCbeanonemptyclosedconvexsubsetofarealHilbertspaceH.
As-sumethatamappingF:C→Hismonotoneandweaklycontinuousalongsegments(i.
e.
,F(x+ty)→F(x)weaklyast→,wheneverx+ty∈Cforx,y∈C).
Thenthevariationalinequalityx∈C,Fx,x–x≥,x∈C(.
)isequivalenttothedualvariationalinequalityx∈C,Fx,x–x≥,x∈C.
(.
)Finally,westatethefollowingelementaryresultonconvergenceofrealsequences.
Lemma.
([])Let{an}beasequenceofnonnegativerealnumberssatisfyingan+≤(–γn)an+γnσn,n≥,where{γn}(,)and{σn}satisfy(i)∞n=γn=∞;(ii)eitherlimsupn→∞σn≤or∞n=|γnσn|isaconstantsuchthatM>(–ρ)supf(xt)–xt:t∈(,).
Inparticular,wegetfrom(.
)xn–u≤–ρf(u)–u,xn–u+tnM,u∈Fix(S).
(.
)Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page6of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206Since{xn}isbounded,withoutlossofgenerality,wemayassumethat{xn}convergesweaklytoapointx∈C.
Noticing(.
)wecanuseLemma.
togetx∈Fix(S).
Thereforewecansubstitutexforuin(.
)togetxn–x≤–ρfx–x,xn–x+tnM.
(.
)However,xnx.
Thistogetherwith(.
)guaranteesthatxn→x.
Thenet{xt}isthere-forerelativelycompact,ast→+,inthenormtopology.
Nowwereturnto(.
)andtakethelimitasn→∞togetx–u≤–ρf(u)–u,x–u,u∈Fix(S).
Inparticular,xsolvesthefollowingvariationalinequality:x∈Fix(S),(I–f)u,u–x≥,u∈Fix(S).
ByLemma.
,weseethatxsolvesthevariationalinequalityx∈Fix(S),(I–f)x,u–x≥,u∈Fix(S).
(.
)Therefore,x=(PFix(S)f)x.
Thatis,xistheuniquexedpointinFix(S)ofthecontractionPFix(S)f.
Clearlythisissucienttoconcludethattheentirenet{xt}convergesinnormtoxast→+.
Finally,ifwetakef=,thenvariationalinequality(.
)isreducedto≤x,u–x,u∈Fix(S).
Equivalently,x≤x,u,u∈Fix(S).
Thisclearlyimpliesthatx≤u,u∈Fix(S).
Therefore,xistheminimum-normxedpointofS.
Thiscompletestheproof.
Wearenowinapositiontoprovethestrongconvergenceofalgorithm(.
).
Theorem.
LetCbeanonemptyclosedconvexsubsetofarealHilbertspaceH,andletT:C→CbeL-LipschitzianandpseudocontractivewithFix(T)=.
Supposethatthefollowingconditionsaresatised:(i)limn→∞αn=and∞n=αn=∞;(ii)limn→∞αnβn=limn→∞βnαn=;(iii)limn→∞αnβn––αn–βnαnβn–=.
Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page7of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206Thenthesequence{xn}generatedbyalgorithm(.
)convergesstronglytotheminimum-normxedpointofT.
ProofFirstweprovethatthesequence{xn}isbounded.
Wewillshowthisfactbyinduc-tion.
Accordingtoconditions(i)and(ii),thereexistsasucientlylargepositiveintegermsuchthat–(L+)(L+)αn+βn+βnαn>,n≥m.
(.
)Fixp∈Fix(T)andtakeaconstantM>suchthatmaxx–p,x–p,.
.
.
,xm–p,p≤M.
(.
)Next,weshowthatxm+–p≤M.
Setym=(–αm–βm)xm+βmTxm;thusxm+=PC[ym].
Then,byusingproperty(.
)ofthemetricprojection,wehavexm+–ym,xm+–p≤.
(.
)BythefactthatI–Tismonotone,wehave(I–T)xm+–(I–T)p,xm+–p≥.
(.
)From(.
),(.
)and(.
),weobtainxm+–p=xm+–p,xm+–p=xm+–ym,xm+–p+ym–p,xm+–p≤ym–p,xm+–p=xm–p,xm+–p–αmxm,xm+–p+βmTxm–xm,xm+–p=xm–p,xm+–p+αmxm+–xm,xm+–p–αmp,xm+–p–αmxm+–p,xm+–p+βmTxm–Txm+,xm+–p+βmxm+–xm,xm+–p–βmxm+–Txm+,xm+–p≤xm–pxm+–p+αmxm+–xmxm+–p+αmpxm+–p–αmxm+–p+βmTxm–Txm++xm+–xmxm+–p≤xm–pxm+–p+αmpxm+–p–αmxm+–p+(L+)(αm+βm)xm+–xmxm+–p.
Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page8of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206Itfollowsthat(+αm)xm+–p≤xm–p+αmp+(L+)(αm+βm)xm+–xm.
(.
)By(.
),wehavexm+–xm=PC(–αm–βm)xm+βmTxm–PC[xm]≤(–αm–βm)xm+βmTxm–xm≤αmp+xm–p+βmTxm–p+xm–p≤αmp+xm–p+(L+)βmxm–p≤(L+)(αm+βm)xm–p+αmp≤(L+)(αm+βm)M.
(.
)Substitute(.
)into(.
)toobtain(+αm)xm+–p≤xm–p+αmp+(L+)(L+)(αm+βm)M≤+αmM+(L+)(L+)(αm+βm)M,thatis,xm+–p≤–(αm/)–(L+)(L+)(αm+βm)+αmM=–(αm/)[–(L+)(L+)(αm+βm+(βm/αm))]+αmM≤M.
Byinduction,wegetxn–p≤M,n≥,(.
)whichimpliesthat{xn}isboundedandsois{Txn}.
NowwetakeaconstantM>suchthatM=supnxn∨Txn–xn.
[Herea∨b=max{a,b}fora,b∈R.
]SetS=(I–T)–(i.
e.
,SisaresolventofthemonotoneoperatorI–T).
WethenhavethatSisanonexpansiveself-mappingofCandFix(S)=Fix(T)(cf.
Theoremof[]).
ByLemma.
,weknowthatwhenever{γn}(,)andγn→+,thesequence{zn}denedbyzn=SPC(–γn)zn(.
)Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page9of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206convergesstronglytotheminimum-normxedpointxofS(andofTasFix(S)=Fix(T)).
Withoutlossofgenerality,wemayassumethatzn≤Mforalln.
Itsucestoprovethatxn+–zn→asn→∞(forsomeγn→+).
Tothisend,werewrite(.
)as(I–T)zn=PC(–γn)zn,n≥.
Byusingthepropertyofmetricprojection(.
),wehave(–γn)zn–(zn–Tzn),xn+–(zn–Tzn)≤–γnzn,xn+–zn–(zn–Tzn)+Tzn–zn,xn+–zn–(zn–Tzn)≤–γnzn+Tzn–zn,xn+–zn+zn–Tzn≤γnzn,Tzn–zn–γnzn+Tzn–zn,xn+–zn≤γnznTzn–zn–zn+Tzn–znγn,xn+–zn≤znTzn–zn.
Notethatzn–Tzn=PC(–γn)zn–zn≤(–γn)zn–zn=γnzn.
Hence,weget–zn+Tzn–znγn,xn+–zn≤γnzn.
(.
)From(.
)wehavezn+–zn=SPC(–γn+)zn+–SPC(–γn)zn≤(–γn+)zn+–(–γn)zn=(–γn+)(zn+–zn)+(γn–γn+)zn≤(–γn+)zn+–zn+|γn+–γn|zn.
Itfollowsthatzn+–zn≤|γn+–γn|γn+zn.
(.
)Setγn:=αnβn.
Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page10of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206Bycondition(ii),γn→+andγn∈(,)fornlargeenough.
Hence,by(.
)and(.
)wehave–zn+βn(Tzn–zn)αn,xn+–zn≤αnβnzn≤αnβnM(.
)andzn–zn–≤αnβn––αn–βnαnβn–M.
(.
)By(.
)wehavexn+–xn=PC(–αn–βn)xn+βnTxn–PCxn≤αnxn+βnTxn–xn≤(αn+βn)M.
(.
)Next,weestimatexn+–zn+.
Sincexn+=PC[yn],xn+–yn,xn+–zn≤.
Using(.
)andbythefactthatTisL-Lipschitzianandpseudocontractive,weinferthatxn+–zn=xn+–zn,xn+–zn=xn+–yn,xn+–zn+yn–zn,xn+–zn≤yn–zn,xn+–zn=(–αn–βn)xn+βnTxn–zn,xn+–zn=(–αn–βn)xn–zn,xn+–zn+βnTxn–Txn+,xn+–zn+βnTxn+–Tzn,xn+–zn+–αnzn+βn(Tzn–zn),xn+–zn,whichleadstoxn+–zn≤(–αn–βn)xn–znxn+–zn+βnLxn–xn+xn+–zn+βnxn+–zn+αn–zn+βnαn(Tzn–zn),xn+–zn≤–αn–βnxn–zn+xn+–zn+βnxn+–zn+Lxn–xn++βnxn+–zn+αnβnzn.
Itfollowsthat,using(.
),(.
)and(.
),wegetxn+–zn≤–αn–βn+αn–βnxn–zn+L+αn–βnxn+–xn+αn(+αn–βn)βnzn+βn+αn–βnxn+–zn≤–αn+αn–βnxn–zn+(αn+βn)+αn–βnLMYaoetal.
JournalofInequalitiesandApplications2014,2014:206Page11of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206+αn(+αn–βn)βnM+βn+αn–βnM≤–αn+αn–βnxn–zn–+zn–zn–+(αn+βn)+αn–βn+αn(+αn–βn)βn+βn+αn–βnM≤–αn+αn–βnxn–zn–++αn–βnzn–zn–xn–zn–+zn–zn–+(αn+βn)+αn–βn+αn(+αn–βn)βn+βn+αn–βnM≤–αn+αn–βnxn–zn–++αn–βnαnβn––αn–βnαnβn–M+(αn+βn)+αn–βn+αn(+αn–βn)βn+βn+αn–βnM,(.
)wheretheniteconstantM>isgivenbyM:=maxLM,M,Msupnxn–zn–+zn–zn–.
Letδn=αn+αn–βn≈αn(asn→∞)andnotethatby(.
)itfollowsthat{δn}(,).
Moreover,setθn=αnβn––αn–βnαnβn–+αn+βn+βnαn+αnβn+βnαnM.
Thenrelation(.
)isrewrittenasxn+–zn≤(–δn)xn–zn–+δnθn.
(.
)Byconditions(i),(ii)and(iii),itiseasilyfoundthatlimn→∞δn=,∞n=δn=∞,limn→∞θn=.
WecanthereforeapplyLemma.
to(.
)andconcludethatxn+–zn→asn→∞.
Thiscompletestheproof.
Remark.
Choosethesequences(αn)and(βn)suchthatαn=(n+)aandβn=(n+)b,n≥,Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page12of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206whereItisclearthatconditions(i)and(ii)ofTheorem.
aresatised.
Toverifycondition(iii),wecomputeαnβn––αn–βnαnβn–=αn–αn–βnαnβn–=(n+)a–(n+)a–bna–b=(n+)a+na–b–≈a–bn(n+)a→.
Therefore,{αn}and{βn}satisfyallthreeconditions(i)-(iii)inTheorem.
.
4ApplicationToshowanapplicationofourresults,wedealwiththefollowingproblem.
Problem.
Let(.
)Atwhichvaluedoes{xn}approachasngoestoinnityWeclaimthatlimn→∞xn=anditcanbeeasilyderivedbyapplyingTheorem.
.
ProofInordertoapplyourresult,letH=R,C=[,]anddeneT:C→CbyTx:=x+x.
ObservethatTisLipschitzian,pseudocontractiveandthatFix(T)={}.
Moreover,ifwesetαn=n–/andβn=n–/,then(i)limn→∞αn=and∞n=αn=∞;(ii)limn→∞αnβn=limn→∞βnαn=;(iii)limn→∞αnβn––αn–βnαnβn–=.
ThenTheorem.
ensuresthatlimn→∞xn=.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsAllauthorscontributedequallyandsignicantlyinwritingthispaper.
Allauthorsreadandapprovedthenalmanuscript.
Authordetails1DepartmentofMathematics,TianjinPolytechnicUniversity,Tianjin,300387,China.
2DipartimentodiMatematica,UniversitádellaCalabria,ArcavacatadiRende(CS),87036,Italy.
3DepartmentofAppliedMathematics,NationalSunYat-SenUniversity,Kaohsiung,80424,Taiwan.
4DepartmentofInformationManagement,ChengShiuUniversity,Kaohsiung,833,Taiwan.
5CenterforGeneralEducation,KaohsiungMedicalUniversity,Kaohsiung,807,Taiwan.
Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page13of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/206AcknowledgementsYonghongYaowassupportedinpartbyNSFC71161001-G0105.
Yeong-ChengLiouwassupportedinpartbyNSC101-2628-E-230-001-MY3andNSC101-2622-E-230-005-CC3.
Received:15February2014Accepted:9May2014Published:23May2014References1.
Mann,WR:Meanvaluemethodsiniteration.
Proc.
Am.
Math.
Soc.
4,506-510(1953)2.
Geobel,K,Kirk,WA:TopicsinMetricFixedPointTheory.
CambridgeStudiesinAdvancedMathematics,vol.
28.
CambridgeUniversityPress,Cambridge(1990)3.
Goebel,K,Reich,S:UniformConvexity,HyperbolicGeometryandNonexpansiveMappings.
Dekker,NewYork(1984)4.
Reich,S:WeakconvergencetheoremsfornonexpansivemappingsinBanachspaces.
J.
Math.
Anal.
Appl.
67,274-276(1979)5.
Reich,S,Zaslavski,AJ:ConvergenceofKrasnoselskii-Manniterationsofnonexpansiveoperators.
Math.
Comput.
Model.
32,1423-1431(2000)6.
Suzuki,T:StrongconvergenceofapproximatedsequencesfornonexpansivemappingsinBanachspaces.
Proc.
Am.
Math.
Soc.
135,99-106(2007)7.
Xu,HK:AvariableKrasnoselskii-Mannalgorithmandthemultiple-setsplitfeasibilityproblem.
InverseProbl.
22,2021-2034(2006)8.
Bauschke,HH,Matousková,E,Reich,S:Projectionandproximalpointmethods:convergenceresultsandcounterexamples.
NonlinearAnal.
,TheoryMethodsAppl.
56,715-738(2004)9.
Browder,FE,Petryshyn,WV:ConstructionofxedpointsofnonlinearmappingsinHilbertspaces.
J.
Math.
Anal.
Appl.
20,197-228(1967)10.
Marino,G,Xu,HK:Weakandstrongconvergencetheoremsforstrictpseudo-contractionsinHilbertspaces.
J.
Math.
Anal.
Appl.
329,336-346(2007)11.
Chidume,CE,Mutangadura,SA:AnexampleontheManniterationmethodforLipschitzpseudo-contractions.
Proc.
Am.
Math.
Soc.
129,2359-2363(2001)12.
Ceng,LC,Petrusel,A,Yao,JC:Strongconvergenceofmodiedimplicititerativealgorithmswithperturbedmappingsforcontinuouspseudocontractivemappings.
Appl.
Math.
Comput.
209,162-176(2009)13.
Chidume,CE,Abbas,M,Ali,B:ConvergenceoftheManniterationalgorithmforaclassofpseudocontractivemappings.
Appl.
Math.
Comput.
194,1-6(2007)14.
Chidume,CE,Zegeye,H:Iterativesolutionofnonlinearequationsofaccretiveandpseudocontractivetypes.
J.
Math.
Anal.
Appl.
282,756-765(2003)15.
Ciric,L,Raq,A,Cakic,N,Ume,JS:ImplicitMannxedpointiterationsforpseudo-contractivemappings.
Appl.
Math.
Lett.
22,581-584(2009)16.
Huang,NJ,Bai,MR:Aperturbediterativeprocedureformultivaluedpseudo-contractivemappingsandmultivaluedaccretivemappingsinBanachspaces.
Comput.
Math.
Appl.
37,7-15(1999)17.
Ishikawa,S:Fixedpointsbyanewiterationmethod.
Proc.
Am.
Math.
Soc.
44,147-150(1974)18.
Lan,KQ,Wu,JH:Convergenceofapproximantsfordemicontinuouspseudo-contractivemapsinHilbertspaces.
NonlinearAnal.
49,737-746(2002)19.
LopezAcedo,G,Xu,HK:Iterativemethodsforstrictpseudo-contractionsinHilbertspaces.
NonlinearAnal.
67,2258-2271(2007)20.
Moore,C,Nnoli,BVC:StrongconvergenceofaveragedapproximantsforLipschitzpseudocontractivemaps.
J.
Math.
Anal.
Appl.
260,269-278(2001)21.
Qin,X,Cho,YJ,Kang,SM,Zhou,H:ConvergencetheoremsofcommonxedpointsforafamilyofLipschitzquasi-pseudocontractions.
NonlinearAnal.
71,685-690(2009)22.
Udomene,A:Pathconvergence,approximationofxedpointsandvariationalsolutionsofLipschitzpseudo-contractionsinBanachspaces.
NonlinearAnal.
67,2403-2414(2007)23.
Yao,Y,Liou,YC,Marino,G:Ahybridalgorithmforpseudo-contractivemappings.
NonlinearAnal.
71,4997-5002(2009)24.
Yao,Y,Liou,YC,Marino,G:StrongconvergenceoftwoiterativealgorithmsfornonexpansivemappingsinHilbertspaces.
FixedPointTheoryAppl.
(2009).
doi:10.
1155/2009/27905825.
Zegeye,H,Shahzad,N,Mekonen,T:ViscosityapproximationmethodsforpseudocontractivemappingsinBanachspaces.
Appl.
Math.
Comput.
185,538-546(2007)26.
Zhang,Q,Cheng,C:StrongconvergencetheoremforafamilyofLipschitzpseudocontractivemappingsinaHilbertspace.
Math.
Comput.
Model.
48,480-485(2008)27.
Cui,YL,Liu,X:NotesonBrowder'sandHalpern'smethodsfornonexpansivemaps.
FixedPointTheory10(1),89-98(2009)28.
Yao,Y,Chen,R,Xu,HK:Schemesforndingminimum-normsolutionsofvariationalinequalities.
NonlinearAnal.
72,3447-3456(2010)29.
Yao,Y,Xu,HK:Iterativemethodsforndingminimum-normxedpointsofnonexpansivemappingswithapplications.
Optimization60,645-658(2011)30.
Xu,HK:Viscosityapproximationmethodsfornonexpansivemappings.
J.
Math.
Anal.
Appl.
298,279-291(2004)31.
Yao,Y,Yao,JC:Onmodiediterativemethodfornonexpansivemappingsandmonotonemappings.
Appl.
Math.
Comput.
186,1551-1558(2007)32.
Browder,FE:SemicontractionandsemiaccretivenonlinearmappingsinBanachspaces.
Bull.
Am.
Math.
Soc.
74,660-665(1968)33.
Lu,X,Xu,HK,Yin,X:Hybridmethodsforaclassofmonotonevariationalinequalities.
NonlinearAnal.
71,1032-1041(2009)34.
Zhou,H:Strongconvergenceofanexplicititerativealgorithmforcontinuouspseudo-contractionsinBanachspaces.
NonlinearAnal.
70,4039-4046(2009)Yaoetal.
JournalofInequalitiesandApplications2014,2014:206Page14of14http://www.
journalofinequalitiesandapplications.
com/content/2014/1/20610.
1186/1029-242X-2014-206Citethisarticleas:Yaoetal.
:Constructionofminimum-normxedpointsofpseudocontractionsinHilbertspaces.
JournalofInequalitiesandApplications2014,2014:206

Virmach款低价VPS可选可以选择多个机房,新增多款低价便宜VPS主机7.2美元起

Virmach商家我们是不是比较熟悉?速度一般,但是人家价格低,而且机房是比较多的。早年的时候有帮助一个有做外贸也许需要多个机房且便宜服务商的时候接触到这个商家,有曾经帮助够买过上百台这样的低价机器。这里需要提醒的,便宜但是速度一般,尤其是中文业务速度确实不快,如果是外贸业务,那肯定是没有问题。这几天,我们有看到Virmach推出了夏季优惠促销,VPS首年8折,最低年付仅7.2美元,多机房可选,如...

Virtono:圣何塞VPS七五折月付2.2欧元起,免费双倍内存

Virtono是一家成立于2014年的国外VPS主机商,提供VPS和服务器租用等产品,商家支持PayPal、信用卡、支付宝等国内外付款方式,可选数据中心共7个:罗马尼亚2个,美国3个(圣何塞、达拉斯、迈阿密),英国和德国各1个。目前,商家针对美国圣何塞机房VPS提供75折优惠码,同时,下单后在LET回复订单号还能获得双倍内存的升级。下面以圣何塞为例,分享几款VPS主机配置信息。Cloud VPSC...

ZJI:香港物理服务器,2*E5-2630L/32G/480G SSD/30Mbps/2IP/香港BGP,月付520元

zji怎么样?zji是一家老牌国人主机商家,公司开办在香港,这个平台主要销售独立服务器业务,和hostkvm是同一样,两个平台销售的产品类别不一平,商家的技术非常不错,机器非常稳定。昨天收到商家的优惠推送,目前针对香港邦联四型推出了65折优惠BGP线路服务器,性价比非常不错,有需要香港独立服务器的朋友可以入手,非常适合做站。zji优惠码:月付/年付优惠码:zji 物理服务器/VDS/虚拟主机空间订...

www.765.com为你推荐
渣渣辉商标渣渣辉是什么意思啊?netlife熊猫烧香是怎么制作的地图应用用哪个地图导航最好最准西部妈妈网啊,又是星期天陈嘉垣反黑阿欣是谁演的 扮演者介绍杰景新特美国杰尼.巴尼特的资料seo优化工具想找一个效果好的SEO优化软件使用,在网上找了几款不知道哪款好,想请大家帮忙出主意,用浙江哪款软件效果好www.toutoulu.com老板强大的外包装还是被快递弄断了机器蜘蛛有谁知道猎人的机械蜘蛛在哪捉的梦遗姐男人梦遗,女人会吗?
域名反查 cn域名价格 谷歌域名邮箱 怎么申请域名 中国域名网 中国万网域名 罗马假日广场 winscp 联通c套餐 樊云 simcentric shopex空间 上海域名 免费高速空间 空间技术网 hktv 如何安装服务器系统 卡巴斯基免费试用版 优酷黄金会员账号共享 腾讯总部在哪 更多