esxwww.kanav001.com

www.kanav001.com  时间:2021-03-19  阅读:()
RESEARCHARTICLEOpenAccessIron-sparingResponseofMycobacteriumaviumsubsp.
paratuberculosisisstraindependentHarishKJanagama1,Senthilkumar1,6,JohnPBannantine3,AbiramiKugadas1,PratikJagtap4,LeeAnnHiggins5,BruceAWitthuhn5,SrinandSreevatsan1,2*AbstractBackground:TwogenotypicallyandmicrobiologicallydistinctstrainsofMycobacteriumaviumsubsp.
paratuberculosis(MAP)exist-SandCMAPstrainsthatprimarilyinfectsheepandcattle,respectively.
Concentrationofironinthecultivationmediumhasbeensuggestedasonecontributingfactorfortheobservedmicrobiologicdifferences.
WerecentlydemonstratedthatSstrainshavedefectiveironstoragesystems,leadingustoproposethatthesestrainsmightexperienceirontoxicitywhenexcessironisprovidedinthemedium.
Totestthishypothesis,wecarriedouttranscriptionalandproteomicprofilingoftheseMAPstrainsunderiron-repleteor-depleteconditions.
Results:WefirstcomplementedM.
smegmatisΔideRwithIdeRofCMAPorthatderivedfromSMAPandcomparedtheirtranscriptionprofilesusingM.
smegmatismc2155microarrays.
Inthepresenceofiron,sIdeRrepressedexpressionofbfrAandMAP2073c,aferritindomaincontainingproteinsuggestingthattranscriptionalcontrolofironstoragemaybedefectiveinSstrain.
WenextperformedtranscriptionalandproteomicprofilingofthetwostraintypesofMAPunderiron-depleteand-repleteconditions.
Underiron-repleteconditions,Cstrainupregulatedironstorage(BfrA),virulenceassociated(Esx-5andantigen85complex),andribosomalproteins.
Instrikingcontrast,Sstraindownregulatedtheseproteinsunderiron-repleteconditions.
iTRAQ(isobarictagforrelativeandabsolutequantitation)basedproteinquantitationresultedintheidentificationoffourunannotatedproteins.
TwoofthesewereupregulatedbyaCMAPstraininresponsetoironsupplementation.
Theiron-sparingresponsetoironlimitationwasuniquetotheCstrainasevidencedbyrepressionofnon-essentialironutilizationenzymes(aconitaseandsuccinatedehydrogenase)andupregulationofproteinsofessentialfunction(irontransport,[Fe-S]clusterbiogenesisandcelldivision).
Conclusions:Takentogether,ourstudyrevealedthatCandSstrainsofMAPutilizedivergentmetabolicpathwaystoaccommodateinvitroironstress.
Theknowledgeofthemetabolicpathwaysthesedivergentresponsesplayaroleinareimportantto1)advanceourabilitytoculturethetwodifferentstrainsofMAPefficiently,2)aidindiagnosisandcontrolofJohne'sdisease,and3)advanceourunderstandingofMAPvirulence.
BackgroundMycobacteriumaviumsubsp.
paratuberculosis(MAP),thecausativeagentofJohne'sdisease(JD)ofruminants,oftenrequireseighttosixteenweekstoseecoloniesinculture-amajorhurdleinthediagnosisandthereforeinimplementationofoptimalcontrolmeasures.
Unlikeothermycobacteria,whichmobilizeironviamycobac-tins,MAPisunabletoproducedetectablemycobactininvitroorinvivo[1-3].
Althoughthereasonsforthein:vitromycobactindependencyofMAParecurrentlyunknown,wehaverecentlyshownthatthemycobactin(mbt)operonpromoterisactiveandthatthemycobac-tingenesaretranscribedbyMAPinsidemacrophages[4]andintissuesofnaturallyinfectedanimals(acceptedforpublicationinBMCGenomics).
Pathogenicmycobacteriaencounterawidevarietyofstressorsinsidethehostcellsandtheirabilitytoover-comeirondeprivationandirontoxicityrepresentsamajorvirulencedeterminant[5].
TranscriptandproteinprofilingofMTBandotherpathogensinresponseto*Correspondence:sreev001@umn.
edu1DepartmentofVeterinaryPopulationMedicine,UniversityofMinnesota,SaintPaulMN,USAFulllistofauthorinformationisavailableattheendofthearticleJanagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/2682010Janagamaetal;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
invitroironstressiswelldocumented[6-9].
WhileMAPtranscriptomeorproteomeprofilesinresponsetoheatshock,pH,oxidativestress,hypoxia,andnutrientstarvationhavebeendemonstrated[10-12],stressresponsestoironsupplementationorstarvationarelacking.
Irondependentregulator(IdeR)hasbeenverywellstudiedasaglobalregulatorinvolvedinmaintainingironhomeostasisinMycobacteriumtuberculosis(MTB)[13].
RecentlywehavedemonstratedthatIdeRofMAPinthepresenceofironrecognizesaconsensussequenceonthepromotercalled"ironbox"andregulatesexpres-sionofgenesinvolvedinironacquisition(mbt)andsto-rage(bfrA).
Moreinterestingly,wedemonstratedthatpolymorphismsinthepromoterofironstoragegene(bfrA)inSMAPstrainsrelativetoCMAPstrainsresultsinadifferentialgeneregulation[4].
IdeRdepen-dentrepressionofbfrAinthepresenceofironsuggestsvariationsinironstoragemechanismsand/orironrequirementsincattleandsheepMAPstrains.
Comparativegenomichybridizations,shortsequencerepeatanalysisandsinglenucleotidepolymorphismsofMAPisolatesobtainedfromdiversehostspecieshaveestablishedandindexedgenomicdifferencesbetweenCandSstrainsofMAP[14-19].
PhylogeneticanalysisofsequenceshasidentifiedCandSstrainsasseparatepathogenicclonesthatshareacommonancestor[20-23].
Furthermore,cellularinfectionstudiesshowdis-tinctivephenotypesbetweenthetwoMAPstraintypes[24,25].
WealsorecentlydemonstratedthatSstrainshavedefectiveironstoragesystems,leadingustopro-posethatthesestrainsmightexperienceirontoxicitywhenexcessironisprovidedinthemedium[4].
Takentogether,theliteraturesuggeststhatMAPstrainsvaryintheirirondependentgeneregulation.
Totestthisfurther,weprofiledtheirtranscriptomesandproteomesinresponsetoironanddemonstratedthatironinducedmetabolicpathwaysaresignificantlydiverse.
MethodsBacterialstrains,DNAmanipulationsandmediaMycobacteriumaviumsubsp.
paratuberculosisstrainsMAP1018(CMAP)andMAP7565(SMAP)weregrowninMiddlebrook7H9supplementedwithOADCenrichmentmediumandmycobactinJ(2mg/mL;AlliedMonitor,Fayette,MO).
TotestthehypothesisthatgeneregulationmaybedependentonironavailabilityMAPstrainsweregrowninMiddlebrook7H9mediumwithoutmycobactinJorSautonmedium(0.
5gKH2PO4,0.
5gMgSO4,4.
0gL-asparagine,60mlglycerol,0.
05gferricammoniumcitrate,2.
0gcitricacid,0.
1ml1%(w/v)ZnSO4and2.
5ml20%Tween80in1liter).
GrowthofMAPstrainsintheabsenceofmycobactinJtookover6monthstoprovidesufficientmaterialforproteomicsandtranscrip-tionalprofiling.
Forironrestriction,2,2'-dipyridyl(SigmaAldrich,St.
Louis,MO)wasaddedataconcentrationof200μM.
MAP7565andMAP1018havebeengenotypedbySSRaswellascomparativegenomicsusingoligoarrays.
Theyrepresentthetypicalgenomotypesofsheepandcattlestrains,respectively[18]andshowdistinctphenotypesinbothhumanandbovinemacrophages[24,25].
M.
smegmatis(mc2155)andE.
coliTOP10F(Invitro-genCorporation,Carlsbad,CA)competentcellsweregrowninLuriaBertani(LB)mediumandantibiotics(kanamycin(20μg/ml)orhygromycin(100μg/ml))wereaddedwhennecessary.
TheopenreadingframesofideR(MAP2827)derivedfromCorSMAPstrainswereclonedintopSM417andM.
smegmatisΔideR(SM3)wascomplementedaspreviouslyreported[4].
Briefly,MAP2827fromMAP1018(cideR)orMAP7565(sideR)wasamplifiedviaPCRusingprimersthatcarriedrestric-tionsitesforBamHIandHindIII.
AmplifiedproductsweredoubledigestedwithBamHIandHindIIIandligatedintoapredigested(BamHIandHindIII)expres-sionplasmidpSM417.
AccuracyoftheligationandorientationofMAP2827inpSM417wasverifiedbysequencing.
SM3wastransformedwithpSM417carry-ingMAP2827fromCorSMAPstrains.
Aseedstockfromlogarithmicallygrown(OD600=1.
0)culturesweredilutedtofreshmediumtoyieldanOD600=0.
1.
Theseweregrowninvariousaliquotsunderconstantshaking(120rpm)at37°C.
Thesecul-turesweremonitoredfortheirgrowthatweeklyinter-valsbymeasuringtheirabsorbanceat600nmwavelengthusingSpectraMaxM2(MolecularDevices,Sun-nyvale,CA)untiltheyreachedanabsorbanceof1.
0(Additionalfile1,FigureS1).
Atthispoint,thecultureswerethenpelleted,washedinicecold1XPBSandre-suspendedinfreshculturemedium(withorwithouttheadditionof2,2'-dipyridyl(SigmaAldrich,St.
Louis,MO)).
Dipyridylwasaddedataconcentrationof200μM.
Followingthreehoursofincubationat37°Cunderconstantshaking,cellswerepelletedandwashedwithicecold1XPBSandeitherusedinmicroarraysoriTRAQ.
ThedetailedexperimentaldesignisprovidedasAdditionalfile1,FigureS2.
NucleicacidandproteinextractionLogphaseMAPorM.
smegmatiscultureswerepelleted,washedandre-suspendedinfreshculturemediumwithorwithout200μMof2,2'-dipyridyl.
Thecultureswereincubatedat37°Cwithshakingfor3hr.
immediatelypriortoRNAandproteinextraction.
ForRNA,cellswerehomogenizedinMinibead-beaterfor4min.
byadding0.
3mlof0.
1mmsterileRNase-freezirconiumbeadsfollowedbyextractionusingTrizolJanagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/268Page2of11(Invitrogen,Carlsbad,CA).
AllsamplesweretreatedwithRNase-freeDNaseI(Ambion,Inc.
,Austin,TX)toeliminategenomicDNAcontamination.
ThepurityandyieldoftotalRNAsampleswasconfirmedusingAgilent2100EBioanalyzer(AgilentTechnologies,Inc.
,SantaClara,CA).
RNAwasstoredat-80untilusedinmicro-arraysandrealtimeRT-PCRassays.
Forprotein,cellswerere-suspendedinminimalquan-tity(250μL)ofiTRAQdissolutionbuffer(0.
5MTEABpH8.
5)and0.
1%SDS.
Thesolutionwastransferredtoa2mlscrewcaptubecontaining0.
1mmzirconiumbeads(Biospec)anddisruptedinminibeadbeater(Bios-pec)for4*1minutepulseswithsampleskeptonicebetweenpulses.
Thelysatewasthencentrifugedat12,000*gfor10minutesat4°C.
SupernatantwastransferredtoafreshtubewithoutdisturbingthepelletandusediniTRAQlabelingfordetectionofproteome(Additionalfile1,FigureS3).
MicroarrayexperimentsGeneexpressionprofilingofS(1018)andC(7565)MAPstrainswasperformedusingMAPK-10microar-raysobtainedfromDr.
MichaelPaustian,NADC,IA.
ExpressionprofilingofM.
smegmatisΔideRcomplemen-tedwithcorsideRwascarriedoutusingM.
smegmatismc2155arraysprovidedviaPathogenFunctionalGeno-micsResourceCenter(PFGRC)atJ.
CraigVenterInsti-tute(JCVI).
ArrayhybridizationsandanalyseswereperformedasdescribedpreviouslyandaccordingtotheprotocolsestablishedatPFGRCwithminormodifica-tions[26]andaccordingtoMIAME2.
0guidelines.
Briefly,synthesisoffluorescentlylabeledcDNA(Cya-nine-3orCyanine-5)fromtotalRNAandhybridizationsoflabeledcDNAtoMAPK-10ormc2155oligoarraywasperformed.
Microarrayhybridizationswereper-formedfromcDNAisolatedfromtwoindependentexperiments.
Oneachindependentoccasion,bacterialculturesgrowingunderiron-repleteoriron-limitingmediumwereusedforRNAextractions,cDNAlabelingandarrayhybridizations.
EachslidewascompetitivelyhybridizedwithcDNAobtainedfromiron-replete(labeledwithcy3orcy5)andiron-limitinggrowthmed-ium(counterlabeledwithcy5orcy3)torevealrelativeexpressionaldifferences.
About4μg(2μgeachfromironlimitationorsufficient)ofcDNAwasusedtohybri-dizeontothearray.
However,ifthecDNAyieldislowforasampletheRNAfromthesamesamplewasusedtosynthesizemorecDNA,pooledandlabeledontothearrays.
HybridizedslideswerescannedusingHPScanarray5000(PerkinElmerInc.
,Waltham,MA).
Theimageswereprocessedandnumericaldatawasextractedusingthemicroarrayimageanalysissoftware,BlueFuse(BlueGnomeLtd,Cambridge)andTM4micro-arraysuiteavailablethroughJCVI.
Genesdifferentiallyregulatedatafoldchangeof1.
5orgreaterwereidenti-fiedatafalsediscoveryrateof1%byStatisticalAnalysisofMicroarrays(SAM)program[26].
Genesthatshowedafoldchange1.
5orgreaterinallthereplicatearrayswereretainedandreportedasbeingup-ordownregu-latedinthepresenceofiron.
RealtimeRT-PCRRNAisolatedfromMAPstrainsgrownunderiron-repleteoriron-limitinggrowthmediumwasusedinrealtimeRT-PCRassays.
Geneswereselectedbasedontheirdiverserolesandmicroarrayexpressionpattern.
Selectedgenesincludedsiderophoretransport(MAP2413c,MAP2414c),esx-3secretionsystem(MAP3783,MAP3784),aconitase(MAP1201c),fattyacidmetabo-lism(MAP0150c)andvirulence(MAP0216,MAP3531c,MAP1122andMAP0475).
RNAwastreatedwithDNa-seI(Ambion,Austin,TX)andonestepQ-RTPCRwasperformedusingQuantiFastSYBRGreenmix(Qiagen,Valencia,CA)andgenespecificprimers(Additionalfile1,TableS1)inaLightcycler480(Roche,Indianapolis,IN).
iTRAQexperimentsProteinextractedfromthetwoMAPstrainsgrowniniron-repleteoriron-limitingmediumwasusediniTRAQanalysis(Additionalfile1,FigureS3).
iTRAQlabelingandproteinidentificationwascarriedoutasdescribedpreviouslywithminormodifications[27].
Briefly,celllysatewasquantifiedusingthebicinchoni-nicacid(BCA)proteinassay(Pierce,Rockford,IL)priortotrypsindigestion.
PeptideswerelabeledwithiTRAQreagents(114and115forMAP1018growniniron-repleteandiron-limitingmediumrespectively;116and117forMAP7565growniniron-repleteandiron-limit-ingmediumrespectively)atlysineandarginineaminoterminalgroups.
Thelabeledpeptideswerepooled,driedandre-suspendedin0.
2%formicacid.
There-sus-pendedpeptideswerepassedthroughOasisMCX3CC(60mg)extractioncartridgespermanufacturerrecom-mendations(WatersCorporation,Milford,MA)fordesaltingpriortostrongcationexchange(SCX)fractionation.
ElutedpeptidesweredriedanddissolvedinSCXbuf-ferA(20%v/vACNand5mMKH2PO4pH3.
2,withphosphoricacid)andfractionatedusingapolysulfoethylAcolumn(150mmlength*1.
0mmID,5μmparticles,300poresize)(PolyLCInc.
,Columbia,MD)onamagic2002HPLCsystem(MichromBioResources,Inc.
,Auburn,CA).
Peptideswereelutedbyrunninga0-20%bufferBgradientforgreaterthan55min.
and20%-100%bufferB(20%v/vACN,5mMKH2PO4pH3.
2,500mMKCL)for20min.
atacolumnflowrateof50μl/min.
SeveralfractionswerecollectedatfrequentJanagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/268Page3of11intervalsandsevenfractionsthatshowedmAU280>2wereanalyzedbyLC-MS/MSaspreviouslydescribed[28].
Fractionswerereconstitutedinreversed-phaseloadbuffer(10mMphosphatebuffer)andanalyzedina4800MALDITOF/TOFinstrument(ABSciex,FosterCity,CA).
ProteinpilotSoftware3.
0.
1(ABSciex,Fos-tercity,CA)whichutilizestheparagonscoringalgo-rithm[29]wasusedtoidentifyandquantifytherelativeabundanceofthelabeledpeptides.
Relativeabundanceofproteins(iron-repletev/siron-limitation)foreachMAPstrainwasdeterminedbycomparingthereporterionratios(114/115forCand116/117forSMAP).
iTRAQexperimentswererepeatedontwoindependentexperimentsforeachtreatmentofeachstrain.
WesearchedagainsttheMAPK-10,nonredundant(nr)mycobacteriaproteinsandentirenrproteindatabasedepositedintheNCBIalongwiththecontaminantstoidentifyMAPspecificpeptidesatafalsediscoveryrateof1%.
ResultsTranscriptionalprofilingofMAPIdeRWerecentlycharacterizedMAPIdeRandcomputation-allypredictedthatIdeRinthepresenceofironregulatesexpressionof24genes[4].
Inthecurrentstudy,weidentifiedthat20ofthe24previouslypredictedgenesweredifferentiallyexpressedinresponsetoironbyMAPmicroarrays.
Mycobactinsynthesis,transportandfattyacidbiosynthesisgeneswererepressedinthepre-senceofironbybothcattleandsheepMAPstrains(Additionalfile1,TableS2).
HoweverironstorageandoxidoreductasegeneswereupregulatedinthepresenceofirononlyinCMAP(Additionalfile1,FigureS4).
Wefirstconfirmedifthesedifferencesareduetoreg-ulationviaIdeR.
IdeRisessentialinMAPandattemptstodeletethisgenefailed[26].
WecomplementedM.
smegmatisΔideR(SM3)withCorSstrainideRandcomparedregulationaldifferencesinthepresenceorabsenceofiron.
Genesthatshowedalog2foldchangeof1.
0inSM3orSM3complementedwithemptyplas-mid(negativecontrols)inthepresenceorabsenceofironwhilehavingafoldchange>±1.
5inthecomple-mentedstrains(test)andplasmidcarryingM.
smegmatisideRandmc2155(wildtype)(positivecontrol)werecon-sideredasbeingregulatedbyMAPIdeR.
Fourteenofthe20geneswereregulatedbyIdeRsofbothMAPstrainsinM.
smegmatis.
Furthermore,ourresultssug-gestedthatsIdeRfunctionsbyprimarilyrepressinggenesinthepresenceofironwhereascIdeRfunctionsbothbyrepressingmycobactinsynthesisandde-repres-singironstoragegenesinthepresenceofiron(Addi-tionalfile1,TableS3).
ThesewerefurthervalidatedbyrealtimeRT-PCRinbothM.
smegmatistransformantscarryingMAPideRsandMAPgeneticbackground.
ThedataispresentedonlyforMAP(Additionalfile1,TableS4).
WenextcomparedthetranscriptomeandproteomesofCandSMAPstrainsunderiron-repleteandiron-limitingconditions.
Transcriptomeanalysisundertwoindependentobservationsidentifiedthat94and57geneswereconsistentlyexpressedbytheCandSMAPstrainrespectively.
Similarly,proteomedatarevealedaconsistentexpressionof64and60proteinsbythecattleandsheepMAPstrainsrespectively.
Acomparisonoftheseconsistentlydetectedtranscriptsandproteinsrevealedthat,inthepresenceofiron,onethirdofthedifferentiallyregulatedgenes(P95%confidencewereusedtoquantifytherelativeabundance(iron-repletev/siron-limitation)ofeachprotein.
ApeptidewithnohitsontheMAPgenomebutwithidentitieswithothermycobacterialproteinswasconsideredasunannotatedMAPprotein.
Proteinexpressionunderiron-limitingconditionsConsistentwiththetranscriptionprofile,theCstrainofMAPupregulatedproteinsbelongingtoSUFoperoninvolvedinFe-Sclusterassembly,fattyacidmetabolismandapyruvatedehydrogenase(MAP2307c).
Transporterproteins,twocomponentsystems,andcelldivisionasso-ciatedproteins(MAP1906c,MAP0448andMAP2997c)werealsoupregulatedbytheCstrain(Table1andAdditionalfile1,TableS8).
Thesheepstrainalsoupre-gulatedtransporterproteins,fattyacidbiosynthesis,DNAreplicationprotein(MAP3433),andstressresponseproteins(MAP3831c,MAP2764)(Table2,Additionalfile1,TableS9andFigureS3).
Figure1Transcriptomeandproteomecomparisons:Venndiagramshowingthecomparisonoftranscriptsandproteinsthatweredifferentiallyexpressedatafoldchangeof1.
5orgreaterincattleorsheepMAPstrainsinresponsetoiron.
Onethirdofthegenesdifferentiallyexpressedinresponsetoironwererepresentedinboththetranscriptomeandtheproteome.
Table1TranscriptandproteinexpressionincattleMAPunderiron-limiting(LI)conditionsMAPORFIDPredictedfunctionaFoldchangeProteinTranscriptMetabolismMAP1587calphaamylase2.
03±0.
22.
87±0.
7MAP1554cFadE33_2(acyl-coAsynthase)1.
79±0.
51.
88±0.
8MAP2307cpdhCalpha-ketoaciddehydrogenase1.
68±0.
32.
52±0.
4MAP3189FadE23(acyl-CoAdehydrogenase)2.
41±0.
23.
51±1.
0MAP3694cFadE5(acyl-CoAdehydrogenase)1.
87±0.
83.
15±0.
2CellularprocessesMAP3701cheatshockprotein2.
18±0.
62.
48±0.
3MAP1188FeSassemblyproteinSufD2.
23±1.
02.
73±0.
2MAP1189FeSassemblyATPaseSufC1.
78±0.
52.
03±0.
1MAP4059heatshockproteinHtpX1.
48±0.
11.
66±0.
5PoorlycharacterizedpathwaysMAP1012cpatatin-likephospholipase1.
67±0.
31.
56±0.
3MAP1944cironsuphurclusterbiosynthesis1.
56±0.
91.
66±0.
2MAP2482Glyoxalase/Bleomycinresistance1.
84±0.
32.
19±0.
8MAP3838cRESdomaincontainingprotein1.
50±0.
72.
40±0.
2aMAPoligoarraywasusedtomeasuregeneexpressionwhereasiTRAQwasusedtoquantitateproteinexpressionintheculturesofcattleMAPstraingrowniniron-replete(HI)oriron-limiting(LI)medium.
Foldchangeforeachtargetwascalculatedandrepresentedasalog2ratioofLI/HI.
ShownaretheMAPgenesthatdemonstratedthepresenceof1.
5timesormoreoftranscriptsandproteinsinLIcomparedtoHI.
GenesareannotatedbasedonthemotifsearchesinKEGGdatabase.
Janagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/268Page5of11Theiron-sparingresponsetoironstarvationoccurswhennon-essentialironutilizationproteinssuchasaco-nitaseandsuccinatedehydrogenasesarerepressedandintracellularironisusedtomaintainessentialcellularfunctions[34,35].
Interestingly,duringironlimitation,thecattlestrainbutnotsheepMAPdownregulatedexpressionofaconitase(MAP1201c)andsuccinatedehydrogenases(MAP3697c,MAP3698c)(Figure2).
Repressionofaconitaseinresponsetoironstarvationispost-transcriptionallymediatedviasmallRNAs[36].
Consistentwiththisfinding,ourresultsrevealanupre-gulationofaconitasetranscripts(bothbymicroarrayandQ-RTPCR)withaconcomitantdownregulationattheproteinlevelintheCMAPaloneunderiron-limit-ingconditions.
Proteinexpressionunderiron-repleteconditionsThesheepstrainupregulatedasmanyas13uniquepep-tides(>95%confidence)thatweremappedtoMAP2121c.
ArepresentativepeptidemapisshowninFigure3A.
Interestingly,noneoftheseweredifferentiallyregulatedinresponsetoironbyCstrainofMAP.
MAP2121cwasoriginallydescribedas35-kDaantigenandisanimmune-dominantproteininvolvedinMAPentryintobovineepithelialcells[37,38].
Althoughstatis-ticallynotsignificant,furthermicroarrayanalysisrevealedatwo-foldincreaseofMAP2121cinbothcattleandsheepstrainsunderiron-repleteconditions(datanotshown)suggestingapossibleposttranscriptionalrepressionofMAP2121cbythecattlestrainofMAP.
Asexpected,transcriptsidentifiedasupregulatedunderiron-repleteconditionsinCMAPstrainwerealsoupregulatedintheproteome(Table3,Additionalfile1,TableS10).
Therewasincreasedexpressionoffiveribosomalproteinsandaribosomereleasingfactor(MAP2945c)bycattleMAPunderiron-repletecondi-tions.
Aspreviouslyreported,BfrAwasupregulatedincattleMAP(Figure3B).
Antigen85AandMAP0467c(mycobacterialheme,utilizationanddegrader)werealsoupregulated.
However,MAP0467candotherstressresponseproteinsweredownregulatedintheSMAPstrain(Figure4).
IdentificationofunannotatedMAPproteinsWeidentifiedtwouniquepeptides(SSHTPDSPGQQPPKPTPAGKandTPAPAKE-PAIGFTR)thatoriginatedfromtheunannotatedMAPgenelocatedbetweenMAP0270(fadE36)andMAP0271Table2TranscriptandproteinexpressioninsheepMAPunderiron-limiting(LI)conditionsMAPORFIDPredictedfunctionaFoldchangeProteinTranscriptMetabolismMAP3564methyltransferase1.
54±0.
11.
58±0.
6MAP1942cCbhK,ribokinase1.
74±0.
32.
05±1.
0MAP2286cthioredoxindomaincontainingprotein1.
82±0.
12.
04±0.
3MAP1997acylcarrierprotein1.
90±0.
51.
68±0.
5CellularprocessesMAP4340TrxC,thioredoxin1.
50±0.
42.
29±0.
3MAP3840DnaKmolecularchaperone1.
63±0.
63.
52±0.
5InformationstorageandprocessingMAP4142FusA,elongationfactorG1.
52±0.
22.
58±0.
7MAP4268ctranscriptionalregulatoryprotein1.
52±0.
31.
50±0.
1MAP4233DNA-directedRNApolymerasealphasubunit1.
56±0.
11.
83±0.
3MAP3024cDNAbindingprotein,HU1.
60±0.
61.
81±0.
5MAP418430SribosomalproteinS51.
75±0.
11.
55±0.
3MAP3389cresponseregulator1.
94±0.
31.
59±0.
2MAP4111transcriptionantiterminationprotein,NusG1.
98±0.
31.
82±0.
5MAP4143elongationfactorTu2.
08±0.
42.
16±0.
1PoorlycharacterizedpathwaysMAP2844conservedalanineandargininerichprotein1.
54±0.
22.
27±0.
5MAP3433initiationofDNAreplication1.
63±0.
11.
91±0.
2MAP0126transcriptionalregulatorlikeprotein1.
75±0.
61.
50±0.
2MAP1065pyridoxoxidase1.
83±1.
01.
52±0.
5aMAPoligoarraywasusedtomeasuregeneexpressionwhereasiTRAQwasusedtoquantitateproteinexpressionintheculturesofsheepMAPstraingrowniniron-replete(HI)oriron-limiting(LI)medium.
Foldchangeforeachtargetwascalculatedandrepresentedasalog2ratioofLI/HI.
ShownaretheMAPgenesthatdemonstratedthepresenceof1.
5timesormoreoftranscriptsandproteinsinLIcomparedtoHI.
GenesareannotatedbasedonthemotifsearchesinKEGGdatabase.
Janagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/268Page6of11(ABCtypetransporter).
Wealsoidentifiedtwopeptides(DAVELPFLHKandEYALRPPK)thatdidnotmaptoanyoftheannotatedMAPproteinsbuttotheaminoacidsequenceofMAV_2400.
FurtherexaminationoftheMAPgenomerevealedthatthepeptidesmaptothereversedaminoacidsequenceofMAP1839.
Thesetwouniqueproteinswerenotdifferentiallyregulatedinresponsetoiron.
However,twomoreuniquepeptidesthatweretranslatedfromotherunannotatedMAPgeneswereupregulated(>1.
5fold)underiron-repleteconditionsinCMAPstrain(Figure3B).
DiscussionJohne'sdiseaseisamajoranimalhealthproblemofruminantspeciesworldwideandimposessignificanteconomiclossestotheindustry.
Ourabilitytoculturethecausativeagent–Mycobacteriumaviumsubsp.
para-tuberculosis(MAP)–andthereforeitsrapiddiagnosisandourunderstandingofitsvirulenceislimited.
MAPisdifficulttoculturebecauseofitsunusuallystrictironrequirements.
Foroptimalgrowthinlaboratorymedia,MAPrequiresasiderophore(mycobactin)supplementa-tionthatmakesMAPfastidious[39].
,oftenrequiringeighttosixteenweekstoproducecoloniesinculture-amajorhurdleinthediagnosisandthereforeimplementa-tionofoptimalcontrolmeasures.
Understandingironregulatorynetworksinthepathogeninvitroisthereforeofgreatimportance.
AtaleoftwostraintypesofMAP-AcasetostudyironregulationSeveralmicrobiologicalandgenotypingstudiesandclin-icalobservationssuggestthatJohne'sincertainhostssuchassheep,goats,deer,andbisoniscausedbyadis-tinctsetofstrainsthatshowarelativelyhighdegreeofhostpreference[18,40].
AtleasttwomicrobiologicallydistincttypesofMAPhavebeenrecognized.
Alessreadilycultivabletypeisthecommon,butnotinvari-able,causeofparatuberculosisinsheep(SMAP)[39,41,42],whileanotherreadilycultivabletypeisthemostcommoncauseofthediseaseincattle(CMAP).
CellinfectionstudieshavealsorevealeddistinctivehostresponsephenotypesbetweencattleandsheepMAPstrains-theformerelicitprimarilyapro-inflammatoryTable3TranscriptandproteinexpressionincattleMAPunderiron-replete(HI)conditionsMAPORFIDPredictedfunctionaFoldchangeProteinTranscriptMetabolismMAP0150cFadE25_2(acyl-coAdehydrogenase)1.
72±0.
11.
88±0.
2MAP0789acetyl-CoAacetyltransferase1.
73±0.
31.
56±0.
1MAP1846cATPphosphoribosyltransferase1.
69±0.
23.
68±0.
3MAP2332cFas(fattyacidsynthase)1.
61±0.
52.
28±0.
4MAP3404AccA3(acetyl-/propionyl-coenzymeA)1.
45±0.
12.
18±0.
2MAP3698csuccinatedehydrogenase1.
89±0.
34.
57±0.
5CellularprocessesMAP1339ironregulatedconservedprotein1.
62±0.
20.
78±0.
3MAP1653thiolperoxidase1.
79±0.
52.
29±0.
2InformationstorageandprocessingMAP2907ctranslationinitiationfactorIF-21.
57±0.
21.
89±0.
2MAP2945cribosomereleasingfactor1.
66±0.
32.
11±0.
5MAP411350SribosomalproteinL11.
61±0.
11.
57±0.
2MAP4125rplJ50SribosomalproteinL101.
52±0.
11.
66±0.
5MAP4142fusAelongationfactorG2.
13±0.
43.
05±0.
3MAP4160rpsJ30SribosomalproteinS101.
68±0.
32.
87±0.
4MAP4181rpsH30SribosomalproteinS81.
79±0.
52.
42±0.
1MAP4233rpoADNA-directedRNApolymerase1.
56±0.
11.
65±0.
4PoorlycharacterizedpathwaysMAP0216FbpAantigen85-A1.
87±0.
22.
16±0.
3MAP1122mycobacterialintegrationhostfactor1.
73±0.
32.
00±0.
5aMAPoligoarraywasusedtomeasuregeneexpressionwhereasiTRAQwasusedtoquantitateproteinexpressionintheculturesofcattleMAPstraingrowniniron-replete(HI)oriron-limiting(LI)medium.
Foldchangeforeachtargetwascalculatedandrepresentedasalog2ratioofHI/LI.
ShownaretheMAPgenesthatdemonstratedthepresenceof1.
5timesormoreoftranscriptsandproteinsinHIcomparedtoLI.
GenesareannotatedbasedonthemotifsearchesinKEGGdatabase.
Figure2Repressionofnon-essentialironusingproteinsunderiron-limitingconditionsbycattleMAPstrain:Reporterionregions(114-117m/z)ofpeptidetandemmassspectrumfromiTRAQlabeledpeptidesfromMAP3698c,MAP3697candMAP1201careshown.
Quantitationofpeptidesandinferredproteinsaremadefromrelativepeakareasofreporterions.
PeptidesobtainedfromcattleMAPculturesgrowniniron-repleteandiron-limitingmediumwerelabeledwith114and115reporterions,respectively.
.
PeptidesobtainedfromsheepMAPculturesgrowniniron-repleteandiron-limitingmediumwerelabeledwith116and117reporterions,respectively.
Thepeptidesequencesandshownintheparenthesisandthereddashedlineillustratesthereporterionrelativepeakintensities.
CattlestrainofMAPshowsanironsparingresponsebydownregulatingexpressionofironusingproteins.
Janagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/268Page7of11responsewhilelatterstrainssuppressinflammationandupregulateanti-apoptoticpathways[24,25].
Inaddition,sinceMAPgenomesequencewaspublishedin2005,verylittleresearchhasfocusedonironphysiologyanditscontributiontometabolicnetworksofthisfastidiousorganism.
Basedontheseclassicalmicrobiologic,genotypic,andclinicalobservations,weaddressedthehypothesisthattheirondependentgeneregulationisdifferentbetweencattleandsheepMAPstrainsusingasystemsapproach.
Iron-sparingresponsetoiron-limitationisuniquetocattleMAPstrainIronisacriticalcomponentofseveralmetabolicenzymes[43].
Mostbacteriarespondtoironstarvationwithauniqueregulatorymechanismcalledtheiron-sparingresponse[35].
Iron-sparingisaphysiologicalphenomenonusedbycellstoincreasetheintracellularironpoolbypost-transcriptionallyrepressingthesynth-esisofnon-essentialironusingproteinsandsparingironforessentialcellularfunctions[44].
Therefore,theparadigmistotranscriptionallyupregulateallironuptakesystemswhilerepressingnon-essentialenzymesviapost-transcriptionalregulatorymechanismstosur-viveiron-limitingconditions.
BothMAPstrainsupregu-latedgenesinvolvedinsiderophorebiosynthesis(mbt),abilitytoacquireironfromsynthesizedsiderophores(esx-3),andtotransportironboundsiderophores(irtAB)intothebacterium(Additionalfile1,TableS2).
Furthermore,cattleMAPstrainunderiron-limitingcon-ditionsupregulatedtranscriptionofaconitase(Addi-tionalfile1,TableS4)whiledownregulatingitsproteinexpression(Figure2).
Itislikelythattargetsforpost-transcriptionalrepressionofthesenon-essentialironusingproteinsaremediatedviasmallRNAs[34].
Stu-diestotestthishypothesisinthetwoMAPstraintypesareunderway.
DifferentialmetabolicresponsesofcattleandsheepMAPstrainstoiron-limitationUnderiron-limitingconditionsmostotherbacteriaincludingM.
tuberculosis(MTB)upregulateSUFoperon[26,45].
SUFsynthesizes[Fe-S]clustersandtransportsthemtoiron-sulfurcontainingproteinsinvolvedindiversecellularfunctionssuchasredoxbalanceandgeneregulation[46].
ThisiscriticalbecauseunlikeE.
coli,MTBandMAPgenomesencodeforonlyonesuchsystemtosynthesizeallthe[Fe-S]neededbythecellandfreeironandsulfideatomsaretoxictocells[47].
Ourdatarevealedthatcattlestrain,butnotSstrainFigure3PeptidequantitationofproteinsexpressedbyCandSMAPstrainsunderiron-repleteconditions:Reporterionregions(114-117m/z)ofpeptidetandemmassspectrumfromiTRAQlabeledpeptidesfromthe(A)35-kDamajormembraneprotein(MAP2121c)and(B)BfrA,andtheintergenicregionsofMAP1508-1509andMAP2566-2567c.
Quantitationofpeptidesandinferredproteinsaremadefromrelativepeakareasofreporterions.
Severaluniquepeptides(>95%confidence)weremappedtoeachprotein.
However,onlyonerepresentativepeptideisshownforeachprotein.
PeptidesobtainedfromcattleMAPculturesgrowniniron-repleteandiron-limitingmediumwerelabeledwith114and115reporterions,respectively.
PeptidesobtainedfromsheepMAPculturesgrowniniron-repleteandiron-limitingmediumwerelabeledwith116and117reporterions,respectively.
Thepeptidesequencesandshownintheparenthesisandthereddashedlineillustratesthereporterionrelativepeakintensities.
MAP2121calonewasupregulatedinthesheepMAPstrainunderiron-repleteconditions.
Figure4ProteinsexpressedbytypeIIMAPunderiron-repleteconditions:ProteinsupregulatedincattleMAPstrainwhereasdownregulatedinsheepstraininthepresenceofiron.
Foldchangeforeachtargetiscalculatedandrepresentedasaratioofiron-replete/iron-limitation.
Anegativefoldchangerepresentsrepressionandapositivefoldchangeindicatesde-repressionofthatparticulartargetgeneinthepresenceofiron.
MhuD=mycobacterialhemeutilization,degrader;USP=universalstressprotein;CHP=conservedhypotheticalprotein;MIHF=mycobacterialintegrationhostfactor;CsbD=generalstressresponseproteinJanagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/268Page8of11upregulatedSUFoperonatthetranscriptandproteinlevelunderiron-limitingconditions(Table1).
CattleMAPstrainupregulatedpyruvatedehydrogen-aseoperoninvolvedincatabolismofpropionateakeycomponentoflipidbiosynthesisunderlimitingironcon-ditions[48].
Incontrast,sheepstrainupregulatedisopre-noidsynthesisgenesinvolvedincellwallbiogenesis[49].
Thesheepisolatealsoupregulatedoxidoreductaseandstressresponsesinitstranscriptomeandproteomeduringiron-limitation(Table2).
CarDandtoxin-anti-toxinsystemsprimarilyfunctionduringunfavorableconditionssuchasstarvationoroxidativestressbyarrestingcellgrowth[50,51].
Sheepstrainupregulatedtranscriptsoftoxin-antitoxinsysteminvolvedinarrest-ingcellgrowth,suggestingatrendtowardstringencyresponse(Additionalfile1,TableS6).
Takentogether,ourdatasuggeststhatcattlestrainisabletoefficientlymodulateitsmetabolismduringiron-limitation-prob-ablyasurvivaladvantage.
MAP2325,ahypotheticalproteindeletedinthesheepstrainwasfoundtobeupregulatedunderiron-limitingconditionsbytheCstrain(Additionalfile1,TableS5).
ThisisinterestingbecauseanorthologofMAP2325inMTBcalledenhancedintracellularsurvival(eis)interactswithhostTcells.
StimulationofrecombinantEisfromMTBresultsinincreasedproductionofIL-10anddecreasedproductionofTNF-athuscontributingtomycobacterialsurvivalinsidemacrophages[52].
WehavealsodemonstratedasimilarresultinbovineorhumanmacrophagesstimulatedwithdiverseMAPstrains.
CattlestrainsproducedrelativelymoreIL-10andlessTNF-aandpersistedforlongerperiodsoftimeinsidemacrophages[24,25].
ThereisincreasedproteinsynthesisandturnoverinresponsetoironinMTB[31].
Similarly,weobservedanincreasedexpressionofribosomalproteinsinthetran-scriptomeandproteomeinCMAPunderiron-repleteconditions.
Instrikingcontrast,iron-limitationinducedasimilarthemeinsheepstrain.
Hemedegradationisasignificantphysiologicalphenomenonwhereinpatho-gensrecycleironandgainasurvivaladvantageinsidethehost[53].
RecentlythecrystalstructureofRv3592ofMTBwassolvedanddemonstrateditsabilityashemedegrader[54].
WeobservedanupregulationofMAP0467cprotein(orthologofRv3592)underiron-repleteconditionsinCMAPwhileitwasdownregulatedinthesheepstrain(Figure4).
Similartoourpreviousreports,ironstorageprotein,BfrAwasupregulatedonlyFigure5IrondependentmetabolicprogrammingincattleandsheepMAP:Underiron-repleteconditions,thereisupregulationofribosomalproteins,bacterioferritin,mycobacterialheme,utilizationanddegraderproteinsincattlestrainalone.
Underironlimitingconditions,siderophoresynthesisandtransportgenesareupregulatedinbothcattleIandsheepMAPstrains.
However,underironlimitationthereisdownregulationofaconitase,succinatedehydrogenasesandsuperoxidedismutaseincattleMAPstrainalone.
Thissuggestsaniron-sparingresponseexclusivelyincattlebutnotsheepstrain.
Janagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/268Page9of11byCMAPunderiron-repletion(Figure3)[4].
AlthoughthereasonsfordifferentialironstoragemechanismsinsheepcomparedtocattlestrainsofMAParecurrentlyunknown,differentialroleofferritinsinbacterialpatho-gensisnotuncommon[55].
ConclusionsOurdatarevealedstrikingdifferencesinmetabolicpath-waysusedbycattleandsheepstrainsofMAPtoadapttoironstarvation(Figure5).
WehaveidentifiedandcharacterizedkeyirondependentpathwaysofMAP.
Sinceironmetabolismiscriticalfortheinvivoandinvi-trosurvivalofthebacterium,ourcurrentstudiesareexpectedtoimproveourabilitytoprovidebetterinvitroculturemethodsforMAPandprovideanunderstandingofironregulationasakeyvirulencedeterminantofMAP.
AdditionalmaterialAdditionalfile1:Descriptiveandpathwayanalysisoftranscriptomeandproteomedata.
Thisfilecontainstheexperimentaldesign,additionalmicroarray,proteomicandQ-RTPCRdataalongwithpathwayanalysisofironstressresponseproteinsofCandSMAPstrains.
AcknowledgementsThisworkwassupportedinpartbyaUSDA-NRIgrant(2005-35204-16106)andJohne'sdiseaseIntegratedProgram(USDA-CSREES2008-55620-18710)awardedtoSS.
WewouldliketothankMicrobialandPlantGenomicsInstitute,BiomedicalGenomicsCenterandComputationalGeneticsLaboratoryattheUniversityofMinnesotaforprovidingresourcesandservicestoperformthesestudies.
WewouldalsoliketothankJCVIforprovidingM.
smegmatismicroarrays.
Authordetails1DepartmentofVeterinaryPopulationMedicine,UniversityofMinnesota,SaintPaulMN,USA.
2DepartmentofVeterinaryandBiomedicalSciences,UniversityofMinnesota,SaintPaulMN,USA.
3NationalAnimalDiseaseCenter,AgriculturalResearchService,UnitedStatesDepartmentofAgriculture,Ames,IA,USA.
4MinnesotaSupercomputingInstituteforAdvancedComputationalResearch,UniversityofMinnesota,MinneapolisMN,USA.
5DepartmentofBiochemistry,MolecularBiologyandBiophysics,UniversityofMinnesota,MinneapolisMN,USA.
6DepartmentofAnimalBiotechnology,MadrasVeterinaryCollege,Chennai,India.
Authors'contributionsSSdesignedthestudy.
HKJparticipatedintheexperimentaldesignwithSSandperformedmostoftheexperiments.
SKandAKhelpedinsomeexperiments.
JBPcontributedtonewreagents.
BAWperformedmassspectrometry.
PJandLAHhelpediniTRAQdataanalysis.
HKJandSSanalyzedthedataandwrotethemanuscript.
Allauthorsreadandapprovedthemanuscript.
Received:23May2010Accepted:22October2010Published:22October2010References1.
LambrechtRS,CollinsMT:Mycobacteriumparatuberculosis.
Factorsthatinfluencemycobactindependence.
DiagnMicrobiolInfectDis1992,15(3):239-246.
2.
LambrechtRS,CollinsMT:Inabilitytodetectmycobactininmycobacteria-infectedtissuessuggestsanalternativeironacquisitionmechanismbymycobacteriainvivo.
MicrobPathog1993,14(3):229-238.
3.
SnowGA:Mycobactins:iron-chelatinggrowthfactorsfrommycobacteria.
BacteriolRev1970,34(2):99-125.
4.
JanagamaHK,SenthilkumarTM,BannantineJP,RodriguezGM,SmithI,PaustianML,McGarveyJA,SreevatsanS:Identificationandfunctionalcharacterizationoftheiron-dependentregulator(IdeR)ofMycobacteriumaviumsubsp.
paratuberculosis.
Microbiology2009,155(Pt11):3683-3690.
5.
WaddellSJ,ButcherPD:MicroarrayanalysisofwholegenomeexpressionofintracellularMycobacteriumtuberculosis.
CurrMolMed2007,7(3):287-296.
6.
RaoPK,LiQ:Proteinturnoverinmycobacterialproteomics.
Molecules2009,14(9):3237-3258.
7.
RaoPK,RoxasBA,LiQ:Determinationofglobalproteinturnoverinstressedmycobacteriumcellsusinghybrid-lineariontrap-fouriertransformmassspectrometry.
AnalChem2008,80(2):396-406.
8.
RaoPK,LiQ:PrincipalComponentAnalysisofProteomeDynamicsinIron-starvedMycobacteriumTuberculosis.
JProteomicsBioinform2009,2(1):19-31.
9.
HindreT,BruggemannH,BuchrieserC,HechardY:TranscriptionalprofilingofLegionellapneumophilabiofilmcellsandtheinfluenceofirononbiofilmformation.
Microbiology2008,154(Pt1):30-41.
10.
GumberS,WhittingtonRJ:Analysisofthegrowthpattern,survivalandproteomeofMycobacteriumaviumsubsp.
paratuberculosisfollowingexposuretoheat.
VetMicrobiol2009,136(1-2):82-90.
11.
GumberS,TaylorDL,MarshIB,WhittingtonRJ:GrowthpatternandpartialproteomeofMycobacteriumaviumsubsp.
paratuberculosisduringthestressresponsetohypoxiaandnutrientstarvation.
VetMicrobiol2009,133(4):344-357.
12.
WuCW,SchmollerSK,ShinSJ,TalaatAM:DefiningthestressomeofMycobacteriumaviumsubsp.
paratuberculosisinvitroandinnaturallyinfectedcows.
JBacteriol2007,189(21):7877-7886.
13.
RodriguezGM:ControlofironmetabolisminMycobacteriumtuberculosis.
TrendsMicrobiol2006,14(7):320-327.
14.
MotiwalaAS,StrotherM,AmonsinA,ByrumB,NaserSA,StabelJR,ShulawWP,BannantineJP,KapurV,SreevatsanS:MolecularepidemiologyofMycobacteriumaviumsubsp.
paratuberculosis:evidenceforlimitedstraindiversity,strainsharing,andidentificationofuniquetargetsfordiagnosis.
JClinMicrobiol2003,41(5):2015-2026.
15.
MotiwalaAS,StrotherM,TheusNE,StichRW,ByrumB,ShulawWP,KapurV,SreevatsanS:RapiddetectionandtypingofstrainsofMycobacteriumaviumsubsp.
paratuberculosisfrombrothcultures.
JClinMicrobiol2005,43(5):2111-2117.
16.
MarshIB,BannantineJP,PaustianML,TizardML,KapurV,WhittingtonRJ:GenomiccomparisonofMycobacteriumaviumsubsp.
paratuberculosissheepandcattlestrainsbymicroarrayhybridization.
JBacteriol2006,188(6):2290-2293.
17.
MarshIB,WhittingtonRJ:GenomicdiversityinMycobacteriumavium:singlenucleotidepolymorphismsbetweentheSandCstrainsofM.
aviumsubsp.
paratuberculosisandwithM.
a.
avium.
MolCellProbes2007,21(1):66-75.
18.
PaustianML,ZhuX,SreevatsanS,Robbe-AustermanS,KapurV,BannantineJP:ComparativegenomicanalysisofMycobacteriumaviumsubspeciesobtainedfrommultiplehostspecies.
BMCGenomics2008,9:135.
19.
PaustianML,KapurV,BannantineJP:ComparativegenomichybridizationsrevealgeneticregionswithintheMycobacteriumaviumcomplexthataredivergentfromMycobacteriumaviumsubsp.
paratuberculosisisolates.
JBacteriol2005,187(7):2406-2415.
20.
TurenneCY,CollinsDM,AlexanderDC,BehrMA:Mycobacteriumaviumsubsp.
paratuberculosisandM.
aviumsubsp.
aviumareindependentlyevolvedpathogenicclonesofamuchbroadergroupofM.
aviumorganisms.
JBacteriol2008,190(7):2479-2487.
21.
TurenneCY,SemretM,CousinsDV,CollinsDM,BehrMA:Sequencingofhsp65distinguishesamongsubsetsoftheMycobacteriumaviumcomplex.
JClinMicrobiol2006,44(2):433-440.
22.
AlexanderDC,TurenneCY,BehrMA:InsertionanddeletioneventsthatdefinethepathogenMycobacteriumaviumsubsp.
paratuberculosis.
JBacteriol2009,191(3):1018-1025.
Janagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/268Page10of1123.
WuCW,GlasnerJ,CollinsM,NaserS,TalaatAM:Whole-genomeplasticityamongMycobacteriumaviumsubspecies:insightsfromcomparativegenomichybridizations.
JBacteriol2006,188(2):711-723.
24.
MotiwalaAS,JanagamaHK,PaustianML,ZhuX,BannantineJP,KapurV,SreevatsanS:ComparativetranscriptionalanalysisofhumanmacrophagesexposedtoanimalandhumanisolatesofMycobacteriumaviumsubspeciesparatuberculosiswithdiversegenotypes.
InfectImmun2006,74(11):6046-6056.
25.
JanagamaHK,JeongK,KapurV,CoussensP,SreevatsanS:CytokineresponsesofbovinemacrophagestodiverseclinicalMycobacteriumaviumsubspeciesparatuberculosisstrains.
BMCMicrobiol2006,6:10.
26.
RodriguezGM,VoskuilMI,GoldB,SchoolnikGK,SmithI:ideR,Anessentialgeneinmycobacteriumtuberculosis:roleofIdeRiniron-dependentgeneexpression,ironmetabolism,andoxidativestressresponse.
InfectImmun2002,70(7):3371-3381.
27.
SethM,LamontEA,JanagamaHK,WiddelA,VulchanovaL,StabelJR,WatersWR,PalmerMV,SreevatsanS:Biomarkerdiscoveryinsubclinicalmycobacterialinfectionsofcattle.
PLoSOne2009,4(5):e5478.
28.
AkkinaSK,ZhangY,NelsestuenGL,OettingWS,IbrahlmHN:Temporalstabilityoftheurinaryproteomeafterkidneytransplant:moresensitivethanproteincompositionJProteomeRes2009,8(1):94-103.
29.
ShilovIV,SeymourSL,PatelAA,LobodaA,TangWH,KeatingSP,HunterCL,NuwaysirLM,SchaefferDA:TheParagonAlgorithm,anextgenerationsearchenginethatusessequencetemperaturevaluesandfeatureprobabilitiestoidentifypeptidesfromtandemmassspectra.
MolCellProteomics2007,6(9):1638-1655.
30.
SiegristMS,UnnikrishnanM,McConnellMJ,BorowskyM,ChengTY,SiddiqiN,FortuneSM,MoodyDB,RubinEJ:MycobacterialEsx-3isrequiredformycobactin-mediatedironacquisition.
ProcNatlAcadSciUSA2009,106(44):18792-18797.
31.
RaoPK,RodriguezGM,SmithI,LiQ:Proteindynamicsiniron-starvedMycobacteriumtuberculosisrevealedbyturnoverandabundancemeasurementusinghybrid-lineariontrap-Fouriertransformmassspectrometry.
AnalChem2008,80(18):6860-6869.
32.
SinghA,GuidryL,NarasimhuluKV,MaiD,TrombleyJ,ReddingKE,GilesGI,LancasterJRJr,SteynAJ:MycobacteriumtuberculosisWhiB3respondstoO2andnitricoxideviaits[4Fe-4S]clusterandisessentialfornutrientstarvationsurvival.
ProcNatlAcadSciUSA2007,104(28):11562-11567.
33.
AbdallahAM,VerboomT,HannesF,SafiM,StrongM,EisenbergD,MustersRJ,Vandenbroucke-GraulsCM,AppelmelkBJ,LuirinkJ,etal:AspecificsecretionsystemmediatesPPE41transportinpathogenicmycobacteria.
MolMicrobiol2006,62(3):667-679.
34.
GaballaA,AntelmannH,AguilarC,KhakhSK,SongKB,SmaldoneGT,HelmannJD:TheBacillussubtilisiron-sparingresponseismediatedbyaFur-regulatedsmallRNAandthreesmall,basicproteins.
ProcNatlAcadSciUSA2008.
35.
JacquesJF,JangS,PrevostK,DesnoyersG,DesmaraisM,ImlayJ,MasseE:RyhBsmallRNAmodulatesthefreeintracellularironpoolandisessentialfornormalgrowthduringironlimitationinEscherichiacoli.
MolMicrobiol2006,62(4):1181-1190.
36.
MasseE,GottesmanS:AsmallRNAregulatestheexpressionofgenesinvolvedinironmetabolisminEscherichiacoli.
ProcNatlAcadSciUSA2002,99(7):4620-4625.
37.
BannantineJP,HuntleyJF,MiltnerE,StabelJR,BermudezLE:TheMycobacteriumaviumsubsp.
paratuberculosis35kDaproteinplaysaroleininvasionofbovineepithelialcells.
Microbiology2003,149(Pt8):2061-2069.
38.
BannantineJP,RadosevichTJ,StabelJR,BergerS,GriffinJF,PaustianML:ProductionandcharacterizationofmonoclonalantibodiesagainstamajormembraneproteinofMycobacteriumaviumsubsp.
paratuberculosis.
ClinVaccineImmunol2007,14(3):312-317.
39.
MerkalRS,CurranBJ:GrowthandmetaboliccharacteristicsofMycobacteriumparatuberculosis.
ApplMicrobiol1974,28(2):276-279.
40.
MotiwalaAS,LiL,KapurV,SreevatsanS:CurrentunderstandingofthegeneticdiversityofMycobacteriumaviumsubsp.
paratuberculosis.
MicrobesInfect2006,8(5):1406-1418.
41.
HarrisNB,Robbe-AustermanS,PayeurJB:EffectofeggyolkonthedetectionofMycobacteriumaviumsubsp.
paratuberculosisusingtheESPIIliquidculturesystem.
JVetDiagnInvest2005,17(6):554-560.
42.
WhittingtonRJ,SergeantES:Progresstowardsunderstandingthespread,detectionandcontrolofMycobacteriumaviumsubspparatuberculosisinanimalpopulations.
AustVetJ2001,79(4):267-278.
43.
WandersmanC,DelepelaireP:Bacterialironsources:fromsiderophorestohemophores.
AnnuRevMicrobiol2004,58:611-647.
44.
MasseE,SalvailH,DesnoyersG,ArguinM:SmallRNAscontrollingironmetabolism.
CurrOpinMicrobiol2007,10(2):140-145.
45.
Runyen-JaneckyL,DaughertyA,LloydB,WellingtonC,EskandarianH,SagranskyM:Roleandregulationofiron-sulfurclusterbiosynthesisgenesinShigellaflexnerivirulence.
InfectImmun2008,76(3):1083-1092.
46.
FontecaveM,ChoudensSO,PyB,BarrasF:Mechanismsofiron-sulfurclusterassembly:theSUFmachinery.
JBiolInorgChem2005,10(7):713-721.
47.
HuetG,DaffeM,SavesI:IdentificationoftheMycobacteriumtuberculosisSUFmachineryastheexclusivemycobacterialsystemof[Fe-S]clusterassembly:evidenceforitsimplicationinthepathogen'ssurvival.
JBacteriol2005,187(17):6137-6146.
48.
SavviS,WarnerDF,KanaBD,McKinneyJD,MizrahiV,DawesSS:FunctionalcharacterizationofavitaminB12-dependentmethylmalonylpathwayinMycobacteriumtuberculosis:implicationsforpropionatemetabolismduringgrowthonfattyacids.
JBacteriol2008,190(11):3886-3895.
49.
EohH,BrownAC,BuetowL,HunterWN,ParishT,KaurD,BrennanPJ,CrickDC:CharacterizationoftheMycobacteriumtuberculosis4-diphosphocytidyl-2-C-methyl-D-erythritolsynthase:potentialfordrugdevelopment.
JBacteriol2007,189(24):8922-8927.
50.
MiallauL,FallerM,ChiangJ,ArbingM,GuoF,CascioD,EisenbergD:StructureandproposedactivityofamemberoftheVapBCfamilyoftoxin-antitoxinsystems.
VapBC-5fromMycobacteriumtuberculosis.
JBiolChem2009,284(1):276-283.
51.
StallingsCL,StephanouNC,ChuL,HochschildA,NickelsBE,GlickmanMS:CarDisanessentialregulatorofrRNAtranscriptionrequiredforMycobacteriumtuberculosispersistence.
Cell2009,138(1):146-159.
52.
LellaRK,SharmaC:Eis(enhancedintracellularsurvival)proteinofMycobacteriumtuberculosisdisturbsthecrossregulationofT-cells.
JBiolChem2007,282(26):18671-18675.
53.
Frankenberg-DinkelN:Bacterialhemeoxygenases.
AntioxidRedoxSignal2004,6(5):825-834.
54.
ChimN,IniguezA,NguyenTQ,GouldingCW:Unusualdihemeconformationoftheheme-degradingproteinfromMycobacteriumtuberculosis.
JMolBiol395(3):595-608.
55.
BoughammouraA,MatzankeBF,BottgerL,ReverchonS,LesuisseE,ExpertD,FranzaT:Differentialroleofferritinsinironmetabolismandvirulenceoftheplant-pathogenicbacteriumErwiniachrysanthemi3937.
JBacteriol2008,190(5):1518-1530.
doi:10.
1186/1471-2180-10-268Citethisarticleas:Janagamaetal.
:Iron-sparingResponseofMycobacteriumaviumsubsp.
paratuberculosisisstraindependent.
BMCMicrobiology201010:268.
SubmityournextmanuscripttoBioMedCentralandtakefulladvantageof:ConvenientonlinesubmissionThoroughpeerreviewNospaceconstraintsorcolorgurechargesImmediatepublicationonacceptanceInclusioninPubMed,CAS,ScopusandGoogleScholarResearchwhichisfreelyavailableforredistributionSubmityourmanuscriptatwww.
biomedcentral.
com/submitJanagamaetal.
BMCMicrobiology2010,10:268http://www.
biomedcentral.
com/1471-2180/10/268Page11of11

香港云服务器最便宜价格是多少钱一个月、一年?

香港云服务器最便宜价格是多少钱一个月/一年?无论香港云服务器推出什么类型的配置和活动,价格都会一直吸引我们,那么就来说说香港最便宜的云服务器类型和香港最低的云服务器价格吧。香港云服务器最便宜最低价的价格是多少?香港云服务器只是服务器中最受欢迎的产品。香港云服务器有多种配置类型,如1核1G、2核2G、2核4G、8到16核32G等。这些配置可以满足大多数用户的需求,无论是电商站、视频还是游戏、小说等。...

spinservers($179/月),1Gbps不限流量服务器,双E5-2630Lv3/64GB/1.6T SSD/圣何塞机房

中秋节快到了,spinservers针对中国用户准备了几款圣何塞机房特别独立服务器,大家知道这家服务器都是高配,这次推出的机器除了配置高以外,默认1Gbps不限制流量,解除了常规机器10TB/月的流量限制,价格每月179美元起,机器自动化上架,一般30分钟内,有基本自助管理功能,带IPMI,支持安装Windows或者Linux操作系统。配置一 $179/月CPU:Dual Intel Xeon E...

HostKvm5.95美元起,香港、韩国可选

HostKvm发布了夏季特别促销活动,针对香港国际/韩国机房VPS主机提供7折优惠码,其他机房全场8折,优惠后2GB内存套餐月付仅5.95美元起。这是一家成立于2013年的国外主机服务商,主要提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。下面分享几款香港VPS和韩国VPS的配置和价格信息。...

www.kanav001.com为你推荐
游戏用户超6亿有谁知道118070是什么号码网络访问无法连接到internet是什么情况酒店回应名媛拼单泰国酒店写错入住人姓名有影响吗?网红名字被抢注谁知道这个网红叫什么名字?求帮助!硬盘工作原理数据存储的原理是什么云计算什么叫做“云计算”?杰景新特我准备在网上买杰普特711RBES长笛,10700元,这价格合理吗?还有,这是纯银的吗,是国内组装的吗?www.yahoo.com.hk香港的常用网站avtt4.comCOM1/COM3/COM4是什么意思??/抓站工具抓鸡要什么工具?
美国vps 万网域名解析 greengeeks 日本软银 z.com cpanel主机 缓存服务器 表单样式 xfce 免空 jsp空间 789电视网 me空间社区 个人免费主页 东莞idc 江苏徐州移动 ssl加速 汤博乐 密钥索引 开心online 更多