fieldwww.gogo.com

www.gogo.com  时间:2021-03-20  阅读:()
NANOEXPRESSOpenAccessVanderWaalsepitaxyandcharacterizationofhexagonalboronnitridenanosheetsongrapheneYangxiSong1,ChangruiZhang1*,BinLi1,GuqiaoDing2,DaJiang2,HaominWang2andXiaomingXie2*AbstractGrapheneishighlysensitivetoenvironmentalinfluences,andthus,itisworthwhiletodepositprotectivelayersongraphenewithoutimpairingitsexcellentproperties.
Hexagonalboronnitride(h-BN),awell-knowndielectricmaterial,mayaffordthenecessaryprotection.
Inthisresearch,wedemonstratedthevanderWaalsepitaxyofh-BNnanosheetsonmechanicallyexfoliatedgraphenebychemicalvapordeposition,usingborazineastheprecursortoh-BN.
Theh-BNnanosheetshadatriangularmorphologyonanarrowgraphenebeltbutapolygonalmorphologyonalargergraphenefilm.
Theh-BNnanosheetsongraphenewerehighlycrystalline,exceptforvariousin-planelatticeorientations.
Interestingly,theh-BNnanosheetspreferredtogrowongraphenethanonSiO2/Siunderthechosenexperimentalconditions,andthisselectivegrowthspokeofpotentialpromiseforapplicationtothepreparationofgraphene/h-BNsuperlatticestructuresfabricatedonSiO2/Si.
Keywords:Hexagonalboronnitride;Nanosheets;Graphene;vanderWaalsepitaxy;ChemicalvapordepositionBackgroundGraphenehasattractedglobalresearchinterestsacrossawiderangeofapplications[1,2].
However,grapheneishighlysensitivetoextraneousenvironmentalinfluences.
Thus,itwasdeemedworthwhiletodepositprotectivelayersovergraphenewithoutimpairingitsproperties.
Hexagonalboronnitride(h-BN),awell-knowndielectricmaterial,mayaffordthenecessaryprotectionforgraphene[3,4].
Asananalogueofgraphene,h-BNshowsaminimallat-ticemismatchwithgrapheneofabout1.
7%,yethasawidebandgap[5-8]andlowerenvironmentalsensitivity[3,4].
Hence,h-BNprovestobeapromisingdielectricmaterial,orsubstrate,fortwo-dimensionalelectronicdevicesandespeciallyforthosebasedupontheuseofgraphene[9-13].
Graphene,partiallycoveredbyh-BNprotectivelayers,maydisplaypromisingelectroniccharacteristicsofgraphenewithmuchlowerenvironmentalsensitivity.
Recently,chemicalvapordeposition(CVD)synthesisofh-BNonNi[14-16]orCu[13,17-19]substrateshasbeenfurtherinvestigated.
Forthefollowingapplicationsingrapheneelectronicdevices,h-BNcanbeacquiredbyetchingofthecatalystsubstratesandatransfertechnique.
Nevertheless,thetransferprocessbringsinevitablecontam-inationorevendestruction,anditisdifficulttodeterminethepositionandthecoverageratioofh-BNongraphene.
Consideringthisproblem,wepayattentiontothecatalyst-freeCVDgrowthofh-BNongraphene,whichpromisesdirectapplicationingrapheneelectronicdevicesandmayobviatetheneedforatransferprocess.
IthasbeendemonstratedthatvanderWaalsepitaxybycatalyst-freeCVDcanbeapromisingrouteforthegrowthoftopologicalheterostructures[20-22].
More-over,thesurfaceofgrapheneisatomicallyflatandwith-outdanglingbonds,whichmakesgrapheneapromisingtemplateforthevanderWaalsepitaxyofothertwo-dimensionalmaterials.
Compoundswith1:1B/Nstoichi-ometryareoftenselectedash-BNprecursorsforCVD,andborazine(B3N3H6)couldbeapromisingchoiceasitwouldproduceBNandhydrogen,whicharebothenvir-onmentallyfriendly.
Inthisresearch,thevanderWaalsepitaxyofh-BNnano-sheetsonmechanicallyexfoliatedgraphenebycatalyst-freelow-pressureCVD,usingborazineastheprecursortoh-BN,wasdemonstrated.
Theh-BNnanosheetspreferredtogrowongrapheneratherthanonSiO2/Siandtendedtoexhibitatriangularmorphologywhengrownonanarrow*Correspondence:crzhang12@gmail.
com;xmxie@mail.
sim.
ac.
cn1StateKeyLaboratoryofAdvancedCeramicFibersandComposites,CollegeofAerospaceScienceandEngineering,NationalUniversityofDefenseTechnology,109DeyaRoad,Changsha410073,People'sRepublicofChina2StateKeyLaboratoryofFunctionalMaterialsforInformatics,ShanghaiInstituteofMicrosystemandInformationTechnology,ChineseAcademyofSciences,865ChangningRoad,Shanghai200050,People'sRepublicofChina2014Songetal.
;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
Songetal.
NanoscaleResearchLetters2014,9:367http://www.
nanoscalereslett.
com/content/9/1/367graphenebelt.
Theh-BNnanosheetsgrownongraphenewerehighlycrystalline,albeitwithvariousin-planelatticeorientations.
Methodsh-BNnanosheetsweresynthesizedinafusedquartztubewithadiameterof50mm.
Graphenewastransferredontosiliconoxide/silicon(SiO2/Si)wafersbymechanicalexfoli-ationfromhighlyorientedpyrolyticgraphite(HOPG,AlfaAsear,WardHill,MA,USA).
Theh-BNprecursor(bora-zine)wassynthesizedbythereactionbetweenNaBH4and(NH4)2SO4andpurifiedaccordingtoourpreviousreports[23,24].
ThetemperaturefortheCVDgrowthofh-BNnanosheetswassetto900°C.
Beforethegrowthofh-BN,withthetubeheatedto900°C,graphenegrownonSiO2/Siwasfirstannealedfor60mininanargon/hydrogenflow(Ar/H2,5:1byvolume,bothgaseswereof99.
999%purityfromPujiangCo.
,Ltd,Shanghai,China)of180sccmtore-movepollutantsremainingonthegrapheneaftermechan-icalexfoliation.
Duringthegrowthprocess,borazine,inahomemadebubbler,wasintroducedtothegrowthcham-berbyanotherArflowof2sccm,whiletheAr/H2flowremainedunchanged.
Thetypicalgrowthtimewas5min,whilethepressurewas10to100Pa.
Afterthegrowthprocess,thetubewasrapidlycooledtoroomtemperature.
RamanspectroscopywasperformedinaThermoDXRwith532-nmlaserexcitation(ThermoFisherScientific,Waltham,MA,USA).
Atomicforcemicroscopy(AFM)(DimensionIcon,Bruker,Karlsruhe,Germany)andscan-ningelectronmicroscopy(SEM)(NovaNanoSEM320,FEICo.
,Hillsboro,OR,USA)wereusedtoobservethethicknessandmorphologyoftheh-BNnanosheets.
X-rayphotoelectronspectroscopy(XPS)(AXISUltra,Kra-tosAnalytical,Ltd,Manchester,UK)wasconductedtoanalyzethechemicalcompositionofthefilms.
Theh-BNnanosheetswiththegraphenesubstrateweretrans-ferredtotransmissionelectronmicroscopy(TEM)gridsforfurthercharacterization.
Bothmorphologyimagesandselectedareaelectrondiffraction(SAED)patternsoftheh-BNnanosheetswereobtainedbyfieldemissionhigh-resolutiontransmissionelectronmicroscopy(HRTEM)(TecnaiG220,FEICo.
).
ResultsanddiscussionAFMimages(Figure1)showthemorphologyandthick-nessoftheh-BNnanosheets.
Figure1ashowsthebound-aryregionofSiO2/Siandgraphenewithitsassociatedh-BNnanosheets.
Figure1bdisplaysthepolygonalmorphologyoftheh-BNnanosheets.
Itwasinterestingtonotethath-BNnanosheetspreferredtogrowongrapheneratherthanonSiO2/Si.
Thisresultpossiblyoriginatedfromtheminimallatticemismatchbetweenh-BNandgraphene,andthesmallamountofdefectsremaininginthegrapheneaftermech-anicalexfoliationandhightemperatureannealing,andthesewouldenabletheh-BNtonucleateongrapheneandgrowthereafter.
Thisselectivegrowthphenomenonprom-isespotentialapplicationsforgraphene/h-BNsuperlatticestructuresfabricatedonSiO2/Si.
ThissamephenomenonwasalsoseeninSEMimagesasshowninFigure2.
Figure2ashowsgrapheneonSiO2/SibeforeCVD,whileFigure2b,cshowsh-BN/grapheneonSiO2/SiafterCVD.
IttooktimetodistinguishgraphenefromSiO2/SiduetotheirlowcontrastundertheSEMasshowninFigure2a,bwheretheboundariesofgraphenezonesontheSiO2/Sisubstrateareindicatedbyarrows.
ThewrinklesinthegrapheneinFigure2a,coriginatedfromthemechanicalexfoliationprocessandcouldalsoactasmarkersindicatingthepresenceofgraphene.
Theh-BNnanosheetsexhibitedapolygonalmorphologywithsomenanosheetsbecomingisolatedislandsonthegraphene,whileotherswithdifferentthicknessesjoinedandbecamestacked,asshowninFigure2c.
Moreover,theh-BNnanosheetstendedtoexhibitatriangularmorph-ologyonthemuchnarrowergraphenebelt,asshowninFigure2b.
ThisresultissimilartovanderWaalsepitaxialgrowthofMoS2ongraphene[21]andperhapsoriginatesfromthehigherboundaryeffectofthenarrowergrapheneFigure1AFMimagesofh-BN/grapheneonSiO2/Si.
(a)Boundaryregionofh-BN/grapheneandSiO2/Si.
(b)h-BNnanosheetsongraphene.
Songetal.
NanoscaleResearchLetters2014,9:367Page2of7http://www.
nanoscalereslett.
com/content/9/1/367beltaftermechanicalexfoliation[25].
Besides,thetriangularh-BNnanosheetsongrapheneshoweddifferentin-planeorientationsfromeachother.
Ramanspectroscopyprovidedausefulmeansofglean-inginformationaboutthelatticevibrationmodesofgra-pheneandh-BN.
AfterbeingtransferredtoSiO2/SibytheScotchtapemechanicalexfoliationmethod,thegra-phenewasgenerallyalignedwiththe(002)latticeplaneparalleltothesurfaceoftheSiO2/Siwafer[1,2].
TheexistenceofgraphenewasshownbyRamanspectrainFigure3,inwhichtheI2D/IGratioofgraphenewaslessthan0.
5,indicatingthemultilayerstructureofthegra-phene.
Moreover,aweakDpeakofgrapheneat1,350cm1wasobservedfromtheRamanspectra(Figure3),indicat-ingasmallnumberofdefectsinthegraphene,whichmayhaveoriginatedfromtheoriginalHOPGorthemechan-icalexfoliationprocess.
ForthesampleexaminedafterCVD,apeakmuchstrongerthantheDpeakofgrapheneappearedat1,367cm1,indicatingtheE2gvibrationmodeofh-BN,whichwasconsistentwiththereportedvalues[5,6,13-19].
Interestingly,the2DandGpeaksforgra-phenediminishedinintensityafterCVD,andthismayhaveoriginatedfromthepartialcoverageofthegraphenebyh-BN.
AsshowninFigure3b,c,theGpeaksofgra-pheneforthegraphenesubstrateandh-BN/graphenewerefittedwithLorentzcurves(solidlines).
Thefittingdatawerewellfittedwiththerawdata,whiletheRamanfrequencyandfullwidthathalfmaximum(FWHMs)forGbandswerealmostequaltoeachother.
Theseresultsarecomparablewiththereportedvaluesofgraphene[26]andgraphite[27,28],showingthehighqualityofgraphenebeforeandafterCVDandindicatingthatthesynthesisofh-BNnanosheetsongrapheneinourmanuscriptdoesnotcauseadegradationofgraphene.
Accordingtopreviousreports[29],thegas-phasenu-cleationforh-BNwasabsentatgrowthtemperatureslowerthan1,000°C;hence,thegrowthofh-BNnano-sheetsongraphenewasdominatedbythesurfacenucle-ationduringourCVDprocessat900°C.
Moreover,thesurfacetopographyofthesubstrateisvitaltothesurfacenucleation[30].
Consequently,thenucleationoftheh-BNnanosheetsonthegraphenesubstratewasregulatedbythesurfacemorphologyofgrapheneinourwork.
Additionally,theatomicscaledefects,dislocations,andFigure2SEMimagesofgrapheneandh-BN/grapheneonSiO2/Si.
(a)MultilayergrapheneonSiO2/SibeforeCVD,withthegrapheneboundary,andwrinkling,indicatedbyarrows.
(b)h-BNnanosheetsonanarrowgraphenebeltonSiO2/Si,withthegrapheneboundaryindicatedbyarrows.
(c)h-BNnanosheetsonalargergraphenefilm,withwrinklesindicatedbyarrows.
Figure3Ramanspectra.
(a)RamanspectraofgraphenebeforeCVD(lowerplot)andh-BN/grapheneafterCVD(upperplot).
GpeaksfittingwithLorentzcurves(solidlines)forgraphenesubstrate(b)andh-BN/graphene(c)areshownwiththeirFWHMs,respectively.
Songetal.
NanoscaleResearchLetters2014,9:367Page3of7http://www.
nanoscalereslett.
com/content/9/1/367stepsforthegraphenesubstratewereinevitableduringthemechanicalexfoliationprocessduetothestronginterlayerbindingofgraphite[31],andtheatomic-leveldefects,dislocations,andstepsofthesubstrateswouldserveasthenucleationcentersforCVDgrowth,forthecurvedsp2πbondsinthegraphenedefects,dislocations,andstepsweremorereactivethantheplanargraphenere-gions[21,32].
Inourwork,asmallnumberofdefectsforthegraphenesubstrateswereprovedbytheweakDpeakofRamanspectrainFigure3.
Theatomicdefectsofferadditionalbondsitestothecarbonatoms,makingthemenergeticallypreferredfornucleation.
DuringtheCVDgrowth,theatomic-leveldefectsofgraphenecouldeffect-ivelycausenucleationoftheh-BNonthegraphene.
Subsequently,withanincreasedamountofprecursor,theh-BNnanosheetscouldgrowonthesurfaceofgraphenethroughweakvanderWaalsinteractions.
XPSwasusedtoanalyzethechemicalcompositionoftheh-BN/grapheneonthesurfaceoftheSiO2/Si,asshowninFigure4.
TherawXPSdatawerecorrectedusingthebindingenergyoftheC-Cbondat284.
5eV.
TheSiandOpeaksinFigure4arosefromtheSiO2/Sisubstrate,whiletheCpeakarosefromthepresenceofgra-phene.
ThebindingenergiesofB1sandN1sfromtheXPSspectrawere191.
0and398.
5eV,respectively,whichwereingoodagreementwithreportedvalues[14,16,18,19,33,34]forh-BN.
TheB/Nratioofthesample,astakenfromtheXPSmeasurement,was1.
01,indicatingthenearlystoichio-metriccompositionofthesynthesizedh-BNnanosheetsongraphene.
AsshowninFigure4b,c,d,theXPSpeaksofB1s,N1s,andC1scorelevelswerefittedwithGaussiancurves(redpeaks).
Thefittingdatawerewellfittedwiththerawdata,andnoshoulderpeakscouldbeobservedfromthefittingcurves.
Hence,thesinglepeaksoffittingdataindicatethattheC-BorC-Nbondsdonotexistinourh-BN/graphenesystem,comparedwiththereportedresultsofBCNfilms[35,36].
Theseresultsshowthatthesynthesisofh-BNnanosheetsongrapheneinourmanu-scriptdoesnotcauseadegradationofgraphene.
Wehavepointedoutthereasonforthenucleationoftheh-BNongraphene.
Infact,thedepositionofh-BNnanosheetsongraphenewasperformedasinstantaneousnucleationfollowedbythree-dimensionalgrowthinourcatalyst-freeCVDgrowth.
Similarresultsofthree-dimensionalgrowthincertainsituationshavebeenprovedbypreviousreports[21,32].
Asdiscussedabove,energyoptimizationisofgreatimportancetothenucleationofh-BN,andthede-fects,dislocations,andstepsofgrapheneareenergeticallypreferred.
DuringtheCVDgrowthofh-BNongraphene,theaboveenergeticallypreferredregionsofgraphenewouldbecoveredorremediedbyh-BNlayerswithacertaindo-mainsize.
Asanalternative,theedgesoftheas-grownh-BNlayersandtheregionsnearthedefectsofgrapheneturnedenergeticallypreferredfornucleationofnewh-BNlayers,whichbothfavortheverticalorthree-dimensionalgrowthofh-BNnanosheetsonthegraphene.
Aftertheh-BNnanosheetsongrapheneweretrans-ferredtoTEMgridsaftertheetchingofSiO2/Si,atomicresolutionHRTEMwasusedtostudythecrystallinestructureoftheaforementionedh-BNnanosheetsonFigure4XPSspectraofh-BN/grapheneonSiO2/Si.
(a)Surveyspectrum.
(b-d)XPSspectraofB1s,N1s,andC1scorelevels,respectively.
Thepeaksof(b-d)werefittedwithGaussiancurves(redpeaks),andgoodfitscouldbeobservedfortherawdataandthefittingdata.
Songetal.
NanoscaleResearchLetters2014,9:367Page4of7http://www.
nanoscalereslett.
com/content/9/1/367theirrespectivegraphenesubstrates.
Figure5ashowsaTEMimageoftheh-BNnanosheetsongraphene,withthearrowsindicatingtheedgeofthegraphene.
Thepol-ygonalobjectsonthegrapheneindicatedtheexistenceofh-BNnanosheets.
Thenumbers'1'to'4'indicatetypicalregionsofFigure5a.
Region1referstoaregionofgraphenewithoutanyh-BNnanosheetthereon,whileregions2to4refertoisolatedh-BNnanosheetsonthegraphene.
Figure5b,c,dshowstheatomicimagescorre-spondingtoregions2to4,whilethecorrespondingSAEDpatternsforregions1to4areshowninFigure5e,f,g,h,respectively.
Theregular,periodicSAEDspotsevincedthehighdegreeofcrystallinityofboththegrapheneandh-BNnanosheets.
Figure5bshowsthattheh-BNnanosheetinregion2hadthesamein-planelatticeorientationasthegraphenesubstrate.
However,theh-BNnanosheetsandgrapheneinregions3and4wererotationallydisplaced,accordingtotheirMoirépatterns(seeinsetsofFigure5c,d,re-spectively).
Theh-BNnanosheetsongraphenehadvari-ousin-planelatticeorientations,whichwereconsistentwiththeSAEDpatternsofFigure5f,h.
TheseresultswerealsoevincedbytheSEMimage(Figure2b),asthetriangularh-BNnanosheetsonthenarrowgraphenebeltalsolayinvariousdirections.
ConclusionsInsummary,wehavedemonstratedthevanderWaalsepitaxyofh-BNnanosheetsongraphenebycatalyst-freeCVD,whichmaymaintainthepromisingelectronicchar-acteristicsofgraphene.
Theh-BNnanosheetstendedtohaveatriangularmorphologyonanarrowgraphenebelt,whereastheyhadapolygonalmorphologyonamuchlar-gergraphenefilm.
TheB/Nratiooftheh-BNnanosheetsFigure5Imagesofh-BN/graphenetransferredontoTEMgrids.
(a)Alow-magnificationTEMimageofh-BNnanosheetsongraphene,withthearrowsshowingthegrapheneboundary.
(b-d)HRTEMatomicimagescorrespondingtoregions2,3,and4in(a),withtheinsetsshowingFFT-filteredimages,respectively.
(e-h)SAEDpatternscorrespondingtoregions1to4.
Songetal.
NanoscaleResearchLetters2014,9:367Page5of7http://www.
nanoscalereslett.
com/content/9/1/367ongraphenewas1.
01,indicativeofanalmoststoichiomet-riccompositionofh-BN.
Theh-BNnanosheetspreferredtogrowongrapheneratherthanonSiO2/Si,whichof-feredthepromiseofpotentialapplicationsfortheprepar-ationofgraphene/h-BNsuperlatticestructures.
Theh-BNnanosheetsongraphenehadahighdegreeofcrystallin-ity,exceptforvariousin-planelatticeorientations.
Thesynthesisofh-BNnanosheetsonmultilayergraphenehasbeenstudied,andh-BNnanosheetsonfew-layerandevenmonolayergraphenewillbesynthesizedinfuturework.
Thismaysatisfycertainapplicationrequirementsfortopologicalheterostructuresandgraphene-relatedelec-tronicdevices.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsYS,CZ,BL,andXXdesignedtheexperiments,andYScarriedoutmostoftheexperimentalworkandmaterialcharacterizations.
CZandBLsynthesizedtheborazine.
YS,CZ,BL,GD,andXXdiscussedtheresults,andYSdraftedthemanuscript.
Allauthorshavereadandapprovedthefinalmanuscript.
AcknowledgementsThisworkwasfinanciallysupportedbyprojectsfromtheNaturalScienceFoundationofChina(GrantNos.
11104303,11274333,11204339,61136005,and50902150),ChineseAcademyofSciences(GrantNos.
KGZD-EW-303,XDA02040000,andXDB04010500),theOpenFoundationofStateKeyLaboratoryofFunctionalMaterialsforInformatics(GrantNo.
SKL201309),theNationalHigh-techR&DProgramme(GrantNo.
2012AA7024034),andtheNationalScienceandTechnologyMajorProjectsofChina(GrantNo.
2011ZX02707).
Wethanktheanonymousreviewersfortheirhelpfulsuggestionswhichhaveimprovedthemanuscript.
Received:9May2014Accepted:21July2014Published:28July2014References1.
NovoselovKS,GeimAK,MorozovSV,JiangD,ZhangY,DubonosSV,GrigorievaIV,FirsovAA:Electricfieldeffectinatomicallythincarbonfilms.
Science2004,306:666–669.
2.
NovoselovKS,JiangD,SchedinF,BoothTJ,KhotkevichVV,MorozovSV,GeimAK:Two-dimensionalatomiccrystals.
ProcNatlAcadSciUSA2005,102:10451–10453.
3.
WangL,ChenZ,DeanCR,TaniguchiT,WatanabeK,BrusLE,HoneJ:Negligibleenvironmentalsensitivityofgrapheneinahexagonalboronnitride/graphene/h-BNsandwichstructure.
ACSNano2012,6:9314–9319.
4.
HanQ,YanB,GaoT,MengJ,ZhangY,LiuZ,WuX,YuD:Boronnitridefilmasabufferlayerindepositionofdielectricsongraphene.
Small2014,10:2293–2299.
5.
WatanabeK,TaniguchiT,KandaH:Direct-bandgappropertiesandevidenceforultravioletlasingofhexagonalboronnitridesinglecrystal.
NatMater2004,3:404–409.
6.
KubotaY,WatanabeK,TsudaO,TaniguchiT:Deepultravioletlight-emittinghexagonalboronnitridesynthesizedatatmosphericpressure.
Science2007,317:932–934.
7.
GuoN,WeiJ,JiaY,SunH,WangY,ZhaoK,ShiX,ZhangL,LiX,CaoA,HongweiZ,KunlinW,DehaiW:Fabricationoflargeareahexagonalboronnitridethinfilmsforbendablecapacitors.
NanoRes2013,6:602–610.
8.
MengX-L,LunN,QiY-X,ZhuH-L,HanF-D,YinL-W,FanR-H,BaiY-J,BiJ-Q:Simplesynthesisofmesoporousboronnitridewithstrongcathodoluminescenceemission.
JSolidStateChem2011,184:859–862.
9.
KimKK,HsuA,JiaX,KimSM,ShiY,DresselhausM,PalaciosT,KongJ:Synthesisandcharacterizationofhexagonalboronnitridefilmasadielectriclayerforgraphenedevices.
ACSNano2012,6:8583–8590.
10.
SachdevH,MüllerF,HüfnerS:BNanaloguesofgraphene:ontheformationmechanismofboronitrenelayers-solidswithextremestructuralanisotropy.
DiamRelatMater2010,19:1027–1033.
11.
GannettW,ReganW,WatanabeK,TaniguchiT,CrommieMF,ZettlA:Boronnitridesubstratesforhighmobilitychemicalvapordepositedgraphene.
ApplPhysLett2011,98:242105.
12.
DeanCR,YoungAF,MericI,LeeC,WangL,SorgenfreiS,WatanabeK,TaniguchiT,KimP,ShepardKL,HoneJ:Boronnitridesubstratesforhigh-qualitygrapheneelectronics.
NatNanotechnol2010,5:722–726.
13.
LeeKH,ShinHJ,LeeJ,LeeIY,KimGH,ChoiJY,KimSW:Large-scalesynthesisofhigh-qualityhexagonalboronnitridenanosheetsforlarge-areagrapheneelectronics.
NanoLett2012,12:714–718.
14.
ShiY,HamsenC,JiaX,KimKK,ReinaA,HofmannM,HsuAL,ZhangK,LiH,JuangZY,DresselhausMS,LiL-J,KongJ:Synthesisoffew-layerhexagonalboronnitridethinfilmbychemicalvapordeposition.
NanoLett2010,10:4134–4139.
15.
AuwrterW,SuterHU,SachdevH,GreberT:SynthesisofonemonolayerofhexagonalboronnitrideonNi(111)fromB-trichloroborazine(ClBNH)3.
ChemMater2004,16:343–345.
16.
LeeY-H,LiuK-K,LuA-Y,WuC-Y,LinC-T,ZhangW,SuC-Y,HsuC-L,LinT-W,WeiK-H,ShiY,LiL-J:Growthselectivityofhexagonal-boronnitridelayersonNiwithvariouscrystalorientations.
RSCAdv2012,2:111–115.
17.
KimKK,HsuA,JiaX,KimSM,ShiY,HofmannM,NezichD,Rodriguez-NievaJF,DresselhausM,PalaciosT,KongJ:SynthesisofmonolayerhexagonalboronnitrideonCufoilusingchemicalvapordeposition.
NanoLett2012,12:161–166.
18.
SongL,CiL,LuH,SorokinPB,JinC,NiJ,KvashninAG,KvashninDG,LouJ,YakobsonBI,AjayanPM:Largescalegrowthandcharacterizationofatomichexagonalboronnitridelayers.
NanoLett2010,10:3209–3215.
19.
GuoN,WeiJ,FanL,JiaY,LiangD,ZhuH,WangK,WuD:Controllablegrowthoftriangularhexagonalboronnitridedomainsoncopperfoilsbyanimprovedlow-pressurechemicalvapordepositionmethod.
Nanotechnology2012,23:415605.
20.
YanK,PengH,ZhouY,LiH,LiuZ:FormationofbilayerBernalgraphene:layer-by-layerepitaxyviachemicalvapordeposition.
NanoLett2011,11:1106–1110.
21.
ShiY,ZhouW,LuAY,FangW,LeeYH,HsuAL,KimSM,KimKK,YangHY,LiLJ,IdroboJC,KongJ:VanderWaalsepitaxyofMoS2layersusinggrapheneasgrowthtemplates.
NanoLett2012,12:2784–2791.
22.
HwangJ,KimM,CampbellD,AlsalmanHA,KwakJY,ShivaramanS,WollAR,SinghAK,HennigRG,GorantlaS:VanderWaalsepitaxialgrowthofgrapheneonsapphirebychemicalvapordepositionwithoutametalcatalyst.
ACSNano2012,7:385–395.
23.
J-sL,C-rZ,LiB,CaoF,WangSQ:Aninvestigationonthesynthesisofborazine.
InorgChimActa2011,366:173–176.
24.
J-sL,C-rZ,LiB,CaoF,WangSQ:Animprovedsynthesisofborazinewithaluminumchlorideascatalyst.
EurJInorgChem2010,2010:1763–1766.
25.
LimaMP,FazzioA,daSilvaAJR:Edgeeffectsinbilayergraphenenanoribbons:abinitiototal-energydensityfunctionaltheorycalculations.
PhysRevB2009,79:153401.
26.
CalizoI,BalandinA,BaoW,MiaoF,LauC:TemperaturedependenceoftheRamanspectraofgrapheneandgraphenemultilayers.
NanoLett2007,7:2645–2649.
27.
TanPH,DimovskiS,GogotsiY:Ramanscatteringofnon-planargraphite:archededges,polyhedralcrystals,whiskersandcones.
PhilTransRSocLondA2004,362:2289–2310.
28.
TanPH,DengYM,ZhaoQ,ChengWC:TheintrinsictemperatureeffectoftheRamanspectraofgraphite.
ApplPhysLett1999,74:1818.
29.
LiJS,ZhangCR,LiB:Preparationandcharacterizationofboronnitridecoatingsoncarbonfibersfromborazinebychemicalvapordeposition.
ApplSurfSci2011,257:7752–7757.
30.
ZhangXW,BoyenHG,DeynekaN,ZiemannP,BanhartF,SchreckM:Epitaxyofcubicboronnitrideon(001)-orienteddiamond.
NatMater2003,2:312–315.
31.
AllenMJ,TungVC,KanerRB:Honeycombcarbon:areviewofgraphene.
ChemRev2009,110:132–145.
32.
TangS,DingG,XieX,ChenJ,WangC,DingX,HuangF,LuW,JiangM:Nucleationandgrowthofsinglecrystalgrapheneonhexagonalboronnitride.
Carbon2012,50:329–331.
33.
NagashimaA,TejimaN,GamouY,KawaiT,OshimaC:ElectronicdispersionrelationsofmonolayerhexagonalboronnitrideformedontheNi(111)surface.
PhysRevB1995,51:4606–4613.
Songetal.
NanoscaleResearchLetters2014,9:367Page6of7http://www.
nanoscalereslett.
com/content/9/1/36734.
WangW-L,BiJ-Q,SunW-X,ZhuH-L,XuJ-J,ZhaoM-T,BaiY-J:Facilesynthesisofboronnitridecoatingoncarbonnanotubes.
MaterChemPhys2010,122:129–132.
35.
CiL,SongL,JinC,JariwalaD,WuD,LiY,SrivastavaA,WangZF,StorrK,BalicasL,LiuF,AjayanPM:Atomiclayersofhybridizedboronnitrideandgraphenedomains.
NatMater2010,9:430–435.
36.
YueJ,ChengW,ZhangX,HeD,ChenG:TernaryBCNthinfilmsdepositedbyreactivesputtering.
ThinSolidFilms2000,375:247–250.
doi:10.
1186/1556-276X-9-367Citethisarticleas:Songetal.
:VanderWaalsepitaxyandcharacterizationofhexagonalboronnitridenanosheetsongraphene.
NanoscaleResearchLetters20149:367.
Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comSongetal.
NanoscaleResearchLetters2014,9:367Page7of7http://www.
nanoscalereslett.
com/content/9/1/367

HyperVMart:加拿大vps,2核/3G/25G NVMe/G口不限流量/季付$10.97,免费Windows系统

hypervmart怎么样?hypervmart是一家成立了很多年的英国主机商家,上一次分享他家还是在2年前,商家销售虚拟主机、独立服务器和VPS,VPS采用Hyper-V虚拟架构,这一点从他家的域名上也可以看出来。目前商家针对VPS有一个75折的优惠,而且VPS显示的地区为加拿大,但是商家提供的测速地址为荷兰和英国,他家的优势就是给到G口不限流量,硬盘为NVMe固态硬盘,这个配置用来跑跑数据非常...

DediPath($1.40),OpenVZ架构 1GB内存

DediPath 商家成立时间也不过三五年,商家提供的云服务器产品有包括KVM和OPENVZ架构的VPS主机。翻看前面的文章有几次提到这个商家其中机房还是比较多的。其实对于OPENVZ架构的VPS主机以前我们是遇到比较多,只不过这几年很多商家都陆续的全部用KVM和XEN架构替代。这次DediPath商家有基于OPENVZ架构提供低价的VPS主机。这次四折的促销活动不包括512MB内存方案。第一、D...

RackNerd:便宜vps补货/1核/768M内存/12G SSD/2T流量/1G带宽,可选机房圣何塞/芝加哥/达拉斯/亚特拉大/荷兰/$9.49/年

RackNerd今天补货了3款便宜vps,最便宜的仅$9.49/年, 硬盘是SSD RAID-10 Storage,共享G口带宽,最低配给的流量也有2T,注意,这3款补货的便宜vps是intel平台。官方网站便宜VPS套餐机型均为KVM虚拟,SolusVM Control Panel ,硬盘是SSD RAID-10 Storage,共享G口带宽,大流量。CPU:1核心内存:768 MB硬盘:12 ...

www.gogo.com为你推荐
沙滩捡12块石头价值近百万朋友从内蒙古阿拉善那边的戈壁捡了很多石头,求大神们鉴定一下,据说那边产玛瑙。谢谢大神们,大大的悬赏bbs.99nets.com做一款即时通讯软件难吗 像hi qq这类的同ip网站一个域名能对应多个IP吗同ip站点同IP做同类站好吗?haokandianyingwang有什么好看的电影网站www.gegeshe.com《我的电台fm》 she网址是多少?www.niuav.com给我个看电影的网站www.bbb551.com100bbb网站怎样上不去了bbs2.99nets.com西安论坛、西安茶馆网、西安社区、西安bbs 的网址是多少?baqizi.cc汉字的故事100字
域名邮箱 什么是域名 域名出售 怎么申请域名 enzu 海外服务器 火车票抢票攻略 国外空间 lamp配置 中国智能物流骨干网 电子邮件服务器 七夕促销 双11秒杀 中国电信宽带测速网 1美金 外贸空间 监控服务器 杭州电信 闪讯网 免费获得q币 更多