Appl.
Phys.
A74,339–343(2002)/DigitalObjectIdentier(DOI)10.
1007/s003390201277AppliedPhysicsAMaterialsScience&ProcessingThermalpropertiesofcarbonnanotubesandnanotube-basedmaterialsJ.
Hone1,,M.
C.
Llaguno1,M.
J.
Biercuk1,A.
T.
Johnson1,B.
Batlogg2,Z.
Benes3,J.
E.
Fischer31DepartmentofPhysicsandAstronomyandLaboratoryforResearchontheStructureofMatter,UniversityofPennsylvania,PhiladelphiaPA19104-6272,USA2BellLaboratories,LucentTechnologies,MurrayHill,NJ079743,USA3DepartmentofMaterialsScienceandEngineeringandLaboratoryforResearchontheStructureofMatter,UniversityofPennsylvania,PhiladelphiaPA19104-6272,USAReceived:17October2001/Accepted:3December2001/Publishedonline:4March2002–Springer-Verlag2002Abstract.
Thethermalpropertiesofcarbonnanotubesaredi-rectlyrelatedtotheiruniquestructureandsmallsize.
Becauseoftheseproperties,nanotubesmayprovetobeanidealmate-rialforthestudyoflow-dimensionalphononphysics,andforthermalmanagement,bothonthemacro-andthemicro-scale.
Wehavebeguntoexplorethethermalpropertiesofnano-tubesbymeasuringthespecicheatandthermalconductivityofbulkSWNTsamples.
Inaddition,wehavesynthesizednanotube-basedcompositematerialsandmeasuredtheirther-malconductivity.
Themeasuredspecicheatofsingle-wallednanotubesdiffersfromthatofboth2Dgrapheneand3Dgraphite,es-peciallyatlowtemperatures,where1Dquantizationofthephononbandstructureisobserved.
Themeasuredspecicheatshowsonlyweakeffectsofintertubecouplinginnanotubebundling,suggestingthatthiscouplingisweakerthanex-pected.
Thethermalconductivityofnanotubesislarge,eveninbulksamples:alignedbundlesofSWNTsshowathermalconductivityof>200W/mKatroomtemperature.
AlinearK(T)uptoapproximately40Kmaybedueto1Dquantiza-tion;measurementofK(T)ofsampleswithdifferentaveragenanotubediameterssupportsthisinterpretation.
Nanotube–epoxyblendsshowsignicantlyenhancedthermalconductivity,showingthatnanotube-basedcompos-itesmaybeusefulnotonlyfortheirpotentiallyhighstrength,butalsofortheirpotentiallyhighthermalconductivity.
PACS:62.
25.
+g;63.
22.
+m;61.
46.
+w1SpecicHeatAcarbonnanotubecanbethoughtofasasinglegraphenesheetthatiswrappedintoacylinder.
Wrappingthesheethastwomajoreffectsonthephononbandstructure.
Firstly,the2DCorrespondingauthor.
Presentaddress:DepartmentofPhysics,CaliforniaInstituteofTechnology,PasadenaCA91125,USA(Fax:+1-626/683-9060,E-mail:hone@caltech.
edu)phononbandstructureofthesheet"folds"intothe1Dband-structureofthetube.
Secondly,thecylindricalshapeofthetuberendersitstifferthanthesheet,changingthedispersionofthelowest-lyingmodes.
Figure1showsthetheoreticallyderivedlow-energyphononbandstructureofanisolated(10,10)nanotube[1].
The1Dquantizednatureofthebandstructureisevident:thereareaseriesof1D"sub-bands"separatedatthezonecenterbyenergiesofafewmeV.
Therearefouracousticbands;onelongitudinal(LA),twodegeneratetransverse(TA),andone"twist",allofwhichhavelineardispersionatlowenergy.
Thehighphononbandvelocity(vLA=24km/s,vTA=15km/s,0510152000.
10.
20.
30.
4E(meV)k(1/)Fig.
1.
Low-energyphononbandstructureofa(10,10)carbonnanotube[1].
Theinsetshowsthephonondensityofstates(PDOS)ofanisolatednano-tube(solidline)comparedtothePDOSofgraphene(dot–dashedline)andgraphite(dashedline)340vtwist=9km/s),coupledwiththesmalldiameterofthenano-tube,causestherelativelylargesub-bandsplitting.
Theinsetshowsthelow-energyphonondensityofstates(PDOS)ofa(10,10)nanotube(solidline)comparedtothatof2Dgraphene(dot-dashedline)and3Dgraphite(dashedline).
ThenanotubePDOSisconstantatthelowestenergies,andthenincreasesstepwisewiththeentryofhighersub-bands.
Asthesystemis1D,thereisavanHovesingularityateachbandedge.
ThegraphenePDOSislargeinthisenergyrangebecauseoftheexistenceofanout-of-planetransversemodewithquadraticdispersion.
ThePDOSofgraphite,how-ever,issignicantlyreducedbecauseoftheaddedcouplingbetweenneighboringlayers,whichrendersthesystem3Dratherthan2D,andshiftslow-energyspectralweightupwardinenergy.
Figure2showsthecalculatedlow-temperatureheatspe-cicheatofanisolatednanotube.
BecausethePDOSiscon-stantatlowenergy,thespecicheatdisplayslineartempera-turedependenceatlowtemperaturebecauseonlytheacousticmodesarepopulated[2].
Above6K,theslopeofC(T)increasesastheopticalsub-bandsbecomepopulated.
Thislinearbehavior,withanincreaseinslopenear6K,istheexpectedsignaturefora1Dquantizedphononspectruminsingle-wallednanotubes.
Ascanbeseeninthecaseofgrapheneandgraphite,changingthedimensionalityofasystemcangreatlyaffectthelow-energyPDOSandthereforethelow-temperaturespecicheat.
Ingraphite,therangeofthiseffectisrelatedtotheDe-byeenergyoftheinterlayermodes,approximately10meV.
Innanotubes,itmightbeexpectedthatbundlingtubesinto3Dcrystallinearrays("ropes")wouldreducethelow-energyPDOS.
Mizeletal.
[3]havecalculatedthelow-energyphononbandstructureofSWNTbundles,andndarelativelyhighintertubeDebyeenergyE⊥D,approximately5meV,forthecasewhereneighboringtubeshavegraphite-like("strong")coupling.
Figure3showsthepredictedspecicheatof2Dgraphene,3Dgraphite,1DisolatedSWNTsand3DSWNTropes,show-ingthedramaticeffectsofdifferinginterlayercoupling.
Athightemperatures,allofthespecicheatsareidenticalandmostlyreectthephononstructureoftheconstituent2DFig.
2.
Calculatedsingle-nanotubespecicheatC(mJ/gK)Fig.
3.
Predictedspecicheatofagraphenesheet,anisolatednanotube,graphite,andananotuberopegraphenesheets.
Comparing2Dgrapheneto3Dgraphite,wecanseethatbelowapproximately60K,interlayercouplingcausesC(T)todecreasemuchmorestronglywithtempera-ture.
TheisolatedSWNTdisplaysasmallerC(T)atlowtemperaturecomparedtothegraphenesheetduetotheab-senceofthequadraticout-of-planemode-tubes,whicharestiffertobendingthansheets.
Finally,thestronglycoupledropecurvedivergesbelowthesingle-tubeC(T)below30K,followingacurvesimilartothatofgraphite.
ItisclearfromFig.
3thatgraphite-likecouplingbetweenneighboringtubesinaSWNTbundleshouldcausethesignatureof1Dquan-tizationinthespecicheattobeobscured.
However,inthecaseofweakercoupling,single-tubebehaviormightpersisttolowertemperatures.
TheSWNTsamplesusedformeasurementofspe-cicheat[4]wereobtainedfrompuriedSWNTsuspen-sions(tubes@rice),andsubsequentlypuriedandvacuum-annealed.
ThesamplewascomposedoflargebundlesofSWNTswithanaveragetubediameterof1.
25nmandtheresidualcatalystconcentrationwasapproximately2at.
%,asdeterminedbyX-raydiffraction(XRD),high-resolutiontransmissionelectronmicroscopy(HRTEM)andenergy-dispersiveX-rayspectroscopy(EDX)measurements.
Afteranalysis,thesampleswerebakedat300Cunderdynamicvacuumforthreedaystoremoveatmosphericcontaminants,andthenkeptundervacuumuntilminutesbeforethemeas-urementswerebegun.
Specicheatwasmeasuredfrom300Kto2Kusingarelaxationtechnique.
Figure4showsthemeasuredspecicheatofaSWNTsamplefrom2Kto300K.
Thehollowcirclesrepresenttherawdata.
Thesolidlinerepresentsthecontributionfromthecatalyst,basedontheknownspecicheatofNiandCo.
Fi-nally,thesolidcirclesrepresentthecorrectedspecicheatoftheSWNTs.
Figure5showsthemeasuredspecicheatonalogarithmicscale,comparedtothepredictedspecicheatofgraphene,graphite,isolatedSWNTsandstronglycoupledropes.
ThemeasureddatafollowstheisolatedSWNTcurveallthewaydownto4K.
Thus,existingmodelsofthephononbandstructureofSWNTsarelargelyconsistentwiththemeas-ureddata.
Thedatadivergebelowthesingle-tubecurveat4K,ratherthanat30K,asexpectedforthecaseofgraphite-341C(mJ/gK)Fig.
4.
MeasuredspecicheatofapuriedSWNTsample[4].
TherawdataiscorrectedforthecontributionfromthecatalystimpuritiestoobtainthecontributionfromtheSWNTs10C(mJ/gK)Fig.
5.
Measuredspecicheatcomparedtotheoreticalmodels[4].
ThedataagreewiththepredictedC(T)ofanisolatednanotubedownto4K,imply-ingaweakintertubeinteractionlikecoupling.
Therefore,weconcludethatSWNTsaremuchmoreweaklycoupledmechanicallythanmightbeexpected;itshouldbepossibletoobservethe1D–2Dtransitioncharacter-isticofsingletubes.
ThesolidpointsinFig.
6showthelow-temperaturemeas-uredspecicheatonalinearscale.
Thedataclearlyshowalineartemperaturedependencefrom2Kto8K,withanincreaseinslopeabove8K.
Thisbehaviorisdirectconrma-tionofa1D-quantizedphononspectruminSWNTs.
How-ever,thelinearslopedoesnotextrapolatetozeroatT=0,aswouldbeexpectedforisolatedSWNTs.
Weattributethisdis-crepancytointertubecoupling,whichshouldcauseT3-likebehavioratlowtemperature.
ThelinesinFig.
6showtheresultsofemployingasim-plemodeltosimulatethebehaviorofweaklycoupledSWNTropes.
Inthismodel,theacousticmodesarecollapsedontoasinglemodewithDebyeenergyEDintheon-tubedirection,andtransverseDebyeenergyE⊥D,withaspe-cicheatrepresentedbythedashedline.
AsingleopticalmodeentersatEsub,withspecicheatrepresentedbythe02468C(mJ/gK)Fig.
6.
Measuredspecicheatatlowtemperature;tusingasimplemodeltoaccountforweakintertubeinteractions[4]dot-dashedline;thesolidlinerepresentsthesumofthetwocontributions.
ED,E⊥D,andEsubaretakenasindepen-dentttingparameters,andadjustedtogivethebestttothemeasureddata.
ThevaluesobtainedareED=92meV,ED⊥=1.
4meV,andEsub=4.
1meV.
ThetheoreticalacousticmodevelocitiesforaSWNT[1]translateintoaneffectiveDebyeenergyof103meV,onlyslightlyhigherthanthetted92meV.
OurttedEsub(4.
1meV),however,isconsiderablylargerthanthetheoreticalsingle-tubevalueof2.
7meV.
Therstopticalsub-bandcor-respondstotubeattening,andshouldrequiresignicantlymoreenergyinaropesincetubesareconstrainedbytheirneighbors;theoreticalcalculations[5]thattakeradialtube-tubeinteractionsintoaccountshowexcellentagreementwiththeexperimentalvalue.
Theexperimentaltube–tubecoup-ling,measuredbyED⊥=1.
2meV,issignicantlysmallerthanthetheoreticalvalueofapproximately5meV[3]ob-tainedusingcouplingconstantsderivedfromgraphite.
Thedifferencemayberelatedtothelackofcommensurabilitybetweenneighboringtubes,whichwouldimplyadramaticweakeningofthecorrugationintheintertubepotential,sothattubesinarealropemayslideortwistmorefreelythanexpected.
Themeasuredhighon-tubeDebyeenergyconrms,inabulksample,thehighYoung'smoduluspreviouslyobservedforindividualtubes[6].
Theweaktube–tubecoupling,how-ever,impliesthatthemechanicalstrengthofSWNTropeswillberelativelypoor.
Itmaybenecessarytocrosslinktubeswithinarope,ortoseparatethemcompletely,inordertore-alizetheirnear-idealpropertiesinhigh-strengthcomposites.
However,weakcouplingmaybeanadvantageforhighther-malconductivity.
Berberetal.
[7]ndthatstrongtube–tubecouplingdecreasesthehigh-temperaturethermalconductiv-ityofSWNTbundlesbyanorderofmagnituderelativetoisolatedtubes;weakcouplingmayimplynosignicantre-ductioninthethermalconductivitywhentubesarebundledintoropes.
Similarly,incomposites,theinnertubesinaropeshouldberelativelyunperturbedbythesurroundingmatrix,whichcouldalsobeanadvantageforhighthermalconduc-tivity.
Theissuesofcommensurabilitythatwereraisedasanexplanationfortheweaktube–tubemechanicalcouplingalso342haveimplicationsfortheelectroniccouplingbetweenneigh-boringSWNTsinarope[8].
2ThermalconductivityAsdiamondandgraphitedisplaythehighestknownther-malconductivityatmoderatetemperatures,itislikelythatnanotubesshouldbeoutstandinginthisregardaswell.
In-deed,recenttheoreticalwork[7]haspredictedthattheroom-temperaturethermalconductivityofnanotubesisashighas6600W/mK.
Inaddition,atlowtemperature,thethermalconductivityshouldshowtheeffectsof1Dquantizationjustasisseeninthespecicheat.
Thethermalconductivityinahighlyanisotropicmaterialismostsensitivetothehigh-velocityandhigh-scattering-lengthphonons.
Therefore,itislikelythateveninnanotubebundles,thethermalconductiv-ityshoulddirectlyprobeon-tubephononsandbeinsensitivetointer-tubecoupling.
Figure7showsthemeasuredtemperature-dependentther-malconductivityofbulksamplesofSWNTsthathavebeenalignedbyltrationinahighmagneticeld[9].
Inthealign-mentdirection,theroom-temperaturethermalconductivityisgreaterthan200W/mK,whichiscomparabletoagoodmetalandwithinanorderofmagnitudeofthatofhighlycrys-tallinegraphiteordiamond.
Thethermalconductivityofun-alignedsamplesisaboutoneorderofmagnitudesmaller[10].
However,thetemperaturedependenceofthethermalcon-ductivityisroughlythesameinbothtypesofsample.
Also,inbothtypesofsample,simultaneousmeasurementoftheelectricalandthermalconductivityshowsthattheelectroniccontributiontoK(T)isnegligibleatalltemperatures.
Belowapproximately40K,thethermalconductivitydis-playsastrictlylineartemperaturedependenceinallsamples.
Thistemperaturedependenceislikelytobedueto1Dquan-K(W/m-K)Fig.
7.
ThermalconductivityofabulksampleofSWNTsinwhichthetubesarealignedbyltrationinastrongmagneticeld[9].
Themeasurementistakeninthedirectionparalleltothetubestization,inwhichonlytheacousticmodesofthetubecarryanyheatow.
However,theroleofintertubecontactsonthetemperaturedependenceofK(T)isunknown.
InordertomoredenitivelydeterminewhetherthelinearK(T)isdueto1Dquantization,wehavemeasuredK(T)forsampleswithdifferentnanotubediameters.
Becausethephononsub-bandsplittingincreaseswithdecreasingtubediameter,weexpectthatthelinearK(T)shouldextendtohighertemperaturesinsampleswithasmalleraveragetubediameter.
Figure8showsthethermalconductivitydividedbytem-peratureforfourSWNTsamples[11].
Thesamplesweresynthesizedbylaserablationatdifferingoventemperaturesinordertoproducedifferentaveragenanotubediameters.
Twosamplessynthesizedat1100C,withanaveragediameterof1.
4nm,andtwosamplessynthesizedat1200C,withanaveragediameterof1.
2nm,weremeasured.
Allfoursam-plesshowalinearK(T)atlowtemperature,asshownbytheconstantvalueofK/T(normalizedto1hereforallsam-ples).
Forthe1.
4nmdiametersamples(opensymbols),K/Tbeginstoincreaseatapproximately35K,whileasimilarin-creaseisnotseenforthe1.
2nmsamples(lledsymbols)untilapproximately40K.
Thisbehaviorisconsistentwithourexpectationsfora1Dquantizedthermalconductivity.
Apuz-zlinginconsistency,however,isthatthelinearK(T)extendstoapproximately40KwhilethelinearC(T)extendsonlytoapproximately8K.
Ifthephononscatteringtimeisrela-tivelyconstantforallmodes,thesetemperaturesshouldberoughlyequal.
Onepossibleexplanationforthisdiscrepancyisthattheopticalsub-bandsofthenanotubescattermuchmorestronglythantheacousticsub-bands,sothattheirin-uenceonthethermalconductivityissuppresseduntilhighertemperaturesarereached.
Clearly,moreexperimentalandtheoreticalworkisnecessaryinordertofullyunderstandthisbehavior.
Compositematerialshavinghighthermalconductivityhaveanumberofpotentialapplications,particularlyinheatsinkingforelectronicsandmotors.
ToexplorethepotentialK/T(arb.
units)Fig.
8.
Thermalconductivitydividedbytemperature,K/T,ofSWNTsam-pleswithdifferentaveragediameters[11].
TherangeoflinearK(T),i.
e.
constantK/T,extendstohighertemperaturesinsampleswithasmallerdiameter,aswouldbeexpectedforascenarioof1Dquantizationofthephononstructure343Fig.
9.
ThermalconductivityenhancementforepoxysampleswithvaryingloadingofSWNTsandvapor-growncarbonbers(VGCF)[12]ofusingnanotubesforsuchapplications,wehavesynthe-sizednanotube-basedcompositesbymixingas-grownnano-tubesootintoindustrialepoxy(ShellChemicalsEpon862epoxyresin)[12].
Asacomparison,highlygraphiticvapor-growncarbonbers(VGCF)weremixedintothesameresin.
Figure9showsthemeasuredroom-temperaturethermalcon-ductivityenhancementforsampleswith0–1wt%nanotubes,and0–2wt%VGCF.
Thenanotubesamplesshowanincreas-ingthermalconductivityenhancementwithincreasingload-ing,witha120%enhancementat1%loading.
Inaddition,nanotubesseemtobesuperiortoVGCFasallermaterial.
Thisinitialresultdemonstratesthatnanotubesare,infact,anexcellentllerformakinghigh-thermal-conductivitycom-posites.
Acknowledgements.
ThisworkwassupportedbyNSFGrantNo.
DMR-9802560,DOEGrantNo.
DEFG02-98ER45701andtheLaboratoryforResearchontheStructureofMatterMRSEC,No.
DMR00-79909.
References1.
R.
Saito,G.
Dresselhaus,M.
S.
Dresselhaus:PhysicalPropertiesofCarbonNanotubes(ImperialCollegePress,London1998)2.
L.
X.
Benedict,S.
G.
Louie,M.
L.
Cohen:SolidStateComm.
100,177(1996)3.
A.
Mizel,L.
X.
Benedict,M.
L.
Cohen,S.
G.
Louie,A.
Zettl,N.
K.
Bu-draa,W.
P.
Beyermann:Phys.
Rev.
B60,3264(1999)4.
J.
Hone,B.
Batlogg,Z.
Benes,A.
T.
Johnson,J.
E.
Fischer:Science289,1730(2000)5.
D.
Kahn,J.
P.
Lu:Phys.
Rev.
B60,6535(1999)6.
W.
Teizer,R.
B.
Hallock,E.
Dujardin,T.
W.
Ebbesen:Phys.
Rev.
Lett.
82,5305(1999)7.
S.
Berber,Y.
K.
Kwon,D.
Tomanek:Phys.
Rev.
Let.
84,4613(2000)8.
A.
A.
Maarouf,C.
L.
Kane,E.
J.
Mele:Phys.
Rev.
B61,11156(2000)9.
J.
Hone,M.
C.
Llaguno,N.
M.
Nemes,A.
T.
Johnson,J.
E.
Fischer,D.
A.
Walters,M.
J.
Casavant,J.
Schmidt,R.
E.
Smalley:Appl.
Phys.
Lett.
77,666(2000)10.
J.
Hone,M.
Whitney,C.
Piskoti,A.
Zettl:Phys.
Rev.
B59,R2514(1999)11.
M.
C.
Llaguno,J.
Hone,J.
E.
Fischer,A.
T.
Johnson:inpress12.
M.
J.
Biercuk,M.
C.
Llaguno,M.
Radosavljevic,J.
K.
Hyun,A.
T.
John-son,J.
E.
Fischer:inpress
wordpress简洁英文主题,wordpress简洁通用大气的网站风格设计 + 更适于欧美国外用户操作体验,完善的外贸企业建站功能模块 + 更好的移动设备特色模块支持,更高效实用的后台自定义设置 + 标准高效的代码程序功能结构,更利于Goolge等国际搜索引擎的SEO搜索优化和站点收录排名。点击进入:wordpress简洁通用型高级外贸主题主题价格:¥3980 特 惠 价:¥1280安装环境:运...
Friendhosting发布了今年黑色星期五促销活动,针对全场VDS主机提供45折优惠码,虚拟主机4折,老用户续费可获9折加送1个月使用时长,优惠后VDS最低仅€14.53/年起,商家支持PayPal、信用卡、支付宝等付款方式。这是一家成立于2009年的老牌保加利亚主机商,提供的产品包括虚拟主机、VPS/VDS和独立服务器租用等,数据中心可选美国、保加利亚、乌克兰、荷兰、拉脱维亚、捷克、瑞士和波...
totyun,新公司,主要运作香港vps、日本vps业务,接入cn2网络,不限制流量!VPS基于KVM虚拟,采用系统盘和数据盘分离,从4G内存开始支持Windows系统...大家注意下,网络分“Premium China”、“Global”,由于站长尚未测试,所以也还不清楚情况,有喜欢吃螃蟹的尝试过不妨告诉下站长。官方网站:https://totyun.com一次性5折优惠码:X4QTYVNB3P...
1100lu.com为你推荐
哈利波特罗恩升级当爸电影哈利波特中罗恩一家的红头发为什么后来变成金色的了摩拜超15分钟加钱首次 微信扫 摩拜单车 需要 付压金吗www.jjwxc.net有那个网站可以看书?seo优化工具SEO优化神器有什么比较好的?103838.com39052.com这电影网支持网页观看吗?抓站工具公司网站要备份,谁知道好用的网站抓取工具,能够抓取bbs论坛的。推荐一下,先谢过了!广告法新修订的《广告法》有哪些内容555sss.com不能在线播放了??555www.toutoulu.com安装好派克滤芯后要检查其是否漏气www.1diaocha.com哪个网站做调查问卷可以赚钱 啊
lamp 罗马假日广场 photonvps hawkhost dreamhost iisphpmysql lamp配置 免费网络电视 帽子云 169邮箱 腾讯实名认证中心 能外链的相册 网站在线扫描 上海电信测速网站 丽萨 免费的域名 免费asp空间申请 lamp的音标 乐视会员免费领取 七十九刀 更多