competition257kk.com

257kk.com  时间:2021-04-06  阅读:()
TropicalforestresponsestoincreasingatmosphericCO2:currentknowledgeandopportunitiesforfutureresearchLucasA.
CernusakA,H,KlausWinterB,JamesW.
DallingC,JosephA.
M.
HoltumB,D,CarlosJaramilloB,ChristianKrnerE,AndrewD.
B.
LeakeyC,RichardJ.
NorbyF,BenjaminPoulterG,BenjaminL.
TurnerBandS.
JosephWrightBASchoolofMarineandTropicalBiology,JamesCookUniversity,Cairns,Qld4878,Australia.
BSmithsonianTropicalResearchInstitute,POBox0843-03092,Balboa,Ancon,RepublicofPanama.
CDepartmentofPlantBiology,UniversityofIllinois,Urbana-Champaign,Urbana,IL61801,USA.
DSchoolofMarineandTropicalBiology,JamesCookUniversity,Townsville,Qld4811,Australia.
EInstituteofBotany,UniversityofBasel,Basel,CH-4056,Switzerland.
FEnvironmentalSciencesDivisionandClimateChangeScienceInstitute,OakRidgeNationalLaboratory,OakRidge,TN37831,USA.
GLaboratoiredesSciencesduClimatetdel'Environnement,GifsurYvetteFrenchCentreNationaldelaRechercheScientique,theAtomicEnergyCommissionandtheUniversityofVersaillesSaint-Quentin,91191,France.
HCorrespondingauthor.
Email:lcernusak@gmail.
comAbstract.
ElevatedatmosphericCO2concentrations(ca)willundoubtedlyaffectthemetabolismoftropicalforestsworldwide;however,criticalaspectsofhowtropicalforestswillrespondremainlargelyunknown.
Here,wereviewthecurrentstateofknowledgeaboutphysiologicalandecologicalresponses,withtheaimofprovidingaframeworkthatcanhelptoguidefutureexperimentalresearch.
Modellingstudieshaveindicatedthatelevatedcacanpotentiallystimulatephotosynthesismoreinthetropicsthanathigherlatitudes,becausesuppressionofphotorespirationbyelevatedcaincreaseswithtemperature.
However,canopyleavesintropicalforestscouldalsopotentiallyreachahightemperaturethresholdunderelevatedcathatwillmoderatetheriseinphotosynthesis.
Belowgroundresponses,includingnerootproduction,nutrientforagingandsoilorganicmatterprocessing,willbeespeciallyimportanttotheintegratedecosystemresponsetoelevatedca.
Wateruseefciencywillincreaseascarises,potentiallyimpactinguponsoilmoisturestatusandnutrientavailability.
Recruitmentmaybedifferentiallyalteredforsomefunctionalgroups,potentiallydecreasingecosystemcarbonstorage.
Whole-forestCO2enrichmentexperimentsareurgentlyneededtotestpredictionsoftropicalforestfunctioningunderelevatedca.
Smallerscaleexperimentsintheunderstoreyandingapswouldalsobeinformative,andcouldprovidesteppingstonestowardsstand-scalemanipulations.
Additionalkeywords:carbonstorage,CO2enrichment,liana,phosphorus,succession,wateruseefciency.
Received20October2012,accepted21March2013,publishedonline16May2013IntroductionTheriseinatmosphericCO2concentration(ca)causedbyhumanindustrialisationisunprecedented,rapidandubiquitous.
Likeallvegetationonearth,tropicalforestsexistedunderacalessthan300partspermillion(ppm)foratleast800000yearsbeforethestartofthe20thcentury(Lüthietal.
2008).
Thecarosefrom300ppmearlyinthetwentiethcenturyto392ppmin2011,andprojectionsforintermediateemissionsscenariossuggestitcouldexceed800ppmbytheyear2100(IntergovernmentalPanelonClimateChange2011).
BecauseCO2istheprimarysubstrateforphotosynthesis,thisdramaticincreaseincawillundoubtedlyaffectthemetabolismoftropicalforestsworldwide.
Thequalitativeandquantitativeexpressionofsucheffects,however,islargelyunknownandrepresentsamajorsourceofuncertaintythatlimitsourcapacitytounderstandtropicalecosystemprocesses,assesstheirvulnerabilitiestoclimatechangeandimprovetheirrepresentationinEarthsystemmodels.
Tropicalforestsplayasignicantroleintheglobalcarboncycle.
Theycontainabouthalfthecarbonstoredinplantbiomassintheterrestrialbiosphereandaccountforaboutone-thirdofglobalterrestrialproductivity(Fieldetal.
1998;MalhiandGrace2000;Royetal.
2001;Beeretal.
2010;Panetal.
2011;Saatchietal.
2011).
Ingeneral,responsestoelevatedcahavebeenstudiedfarlessintropicalforeststhanintemperateforests(Hoganetal.
1991;Storketal.
2007;Krner2009;Luoetal.
2011;Leakeyetal.
2012).
Thisgapinresearcheffortmaypartlyreectthechallengesassociatedwithstudyingtropicalforestcommunities,giventheirlargestatureandbiologicalcomplexity,andlogisticalCSIROPUBLISHINGFunctionalPlantBiology,2013,40,531–551Reviewhttp://dx.
doi.
org/10.
1071/FP12309JournalcompilationCSIRO2013www.
publish.
csiro.
au/journals/fpbchallengesassociatedwithconductingresearchintropicalenvironments.
FreeairCO2enrichment(FACE)experimentsconductedintemperateforestsindicatedthatenrichingcato550ppmcauseda23%increaseinnetprimaryproductivity(NPP)comparedwiththatobservedatambientcaof~380ppm(Norbyetal.
2005),withoneexperimentshowingasubsequentdecreaseto9%NPPstimulationcausedbylimitednitrogenavailability(Norbyetal.
2010).
NoFACEexperimenthasbeenconductedinatropicalforestforcomparisonsofar.
Tropicalecosystemsdifferfromtemperateecosystemsinimportantclimatic,edaphic,oristicandecologicalattributes,andthesearelikelytoinuencehowtheyrespondtorisingca.
Hightropicaltemperaturesincreasethepotentialforstimulationofnetphotosynthesis(A)byelevatedcathroughsuppressionofphotorespirationcomparedwithpredictionsforcoolertemperateandborealecosystems(Farquharetal.
1980;Long1991).
Ontheotherhand,ithasbeenarguedthattropicalforestplantsmaybenearahightemperaturethreshold,beyondwhichAcoulddecline(DoughtyandGoulden2008;Doughty2011).
ItisnotknownhowthenegativeeffectsofhightemperatureonAwillinteractwiththepositiveeffectsofhighca.
Inaddition,itispossiblethatbiomassproductionandthecompetitiveabilityoftropicalcanopytreesarenotcarbon-limitedatthecurrentca,suchthatincreasingAmayhavelittleinuenceonoverallgrowthperformance(Krner2003,Krner2009).
FACEexperimentshaveindicatedthatnitrogenavailabilityplaysanimportantroleinconstrainingproductivityresponsestoelevatedcaintemperateforests(NorbyandZak2011).
However,nitrogenavailabilityishighinmanytropicalforests(Hedinetal.
2009;Brookshireetal.
2012).
Phosphorusorsomeotherrock-derivednutrient,ratherthannitrogen,couldpresenttheprimarynutritionalconstraintongrowthresponsestoelevatedcaintropicalecosystems(Quesadaetal.
2010;Vitouseketal.
2010).
Shiftsinoristiccompositionduetoelevatedcaexposuremayalsobemoreimportantintropicalecosystems.
Forexample,woodyclimbingplants(lianas)andpotentiallyN2-xinglegumesarefarmoreabundantintropicalforeststhanintemperateforests.
Functionaltype-specicresponsesinthesegroupscouldhavesignicantconsequencesfortropicalforeststructureandfunctionunderelevatedca,ascouldanincreasingabundanceoflight-woodedandrelativelyshort-livedpioneerspecies.
Weexploretheseissuesinmoredetailbelow,andhighlightthechallengesandopportunitiesassociatedwithtacklingthemexperimentally.
Ourgoalistoprovideaframeworkthatcanbeusedtoguidefutureexperimentalresearchaimedatunderstandinghowwoodyplantsintropicalforestswillrespondtorisingca.
Conjectureandspeculationarenecessaryingredientsinthisendeavour,duetotherelativelysmallamountofresearchthathasthusfarbeenconductedintotropicalforests'responsestoelevatedca.
EffectsofelevatedcaonleafgasexchangeInthissection,wediscusstheeffectsofelevatedcaonleaf-levelA,typicallyexpressedasCO2uptakeperunitleafareaperunitoftime.
Foraxedleafareaindex,anincreaseinAwillcauseaproportionalincreaseingrossprimaryproductivity(GPP).
GPPdescribestherateofphotosyntheticcarbonuptakefromtheatmospherebyaplantcanopy,typicallyexpressedperunitofgroundareaperunitoftime.
ElevatedcagenerallycausesAtoincreaseinplantsthatusetheC3photosyntheticpathway(LloydandFarquhar1996;Drakeetal.
1997).
Theoverwhelmingmajorityoftropicalwoodyplantsusethisphotosyntheticpathway,withnotableexceptionsinthegeneraEuphorbia(PearcyandTroughton1975)andClusia(Holtumetal.
2004).
Anexampleoftheshort-termresponseofAtocaisshowninFig.
1foraseedlingofaC3tropicalpioneertree,FicusinsipidaWilld.
(K.
Winter,unpublished).
ThemeasurementsweremadeundernearoptimalconditionsforphotosynthesisinatropicalC3plant.
Fig.
1clearlyshowsthepotentialforsignicantincreasesinAinresponsetorisingca.
Inprinciple,theAoftropicalwoodyplantshasgreaterpotentialtorespondpositivelytoelevatedcathanthatofplantsathigherlatitudes,asaresultofthehigherleaftemperaturesassociatedwithtropicalclimates.
RubiscoistheprimarycarboxylatingenzymeinC3plants.
CompetitionbetweenCO2andO2attheactivesitesofRubiscocausestheenzymetocatalysethexationofbothofthesesubstrates.
FixationofO2byRubiscoleadstothereleaseofCO2frommitochondriathroughtheprocessofphotorespiration.
Asleaftemperatureincreases,thespecicityofRubiscoforxingCO2insteadofO2decreasesandthesolubilityofCO2relativetoO2alsodecreases.
Therefore,photorespirationincreasesasaproportionofgrossphotosynthesiswithincreasingleaftemperature(Farquharetal.
1980;Long1991).
Ontheotherhand,photorespirationcanbesuppressedbyincreasingtheconcentrationofCO2relativetothatofO2aroundtheactivesitesofRubisco.
TheupshotisthatthereisgreateropportunitytoincreasenetCO2uptakebysuppressingphotorespirationathighertemperatures.
FurtherpredictionsresultingfromconsiderationofRubiscokineticsthatarerelevanttotropicalforestresponsestoelevatedcaare:(1)thetemperatureoptimum4030201000200400Ambient[CO2](ppm)6008001000PPFD1500molm–2s–1Netphotosynthesis(molm–2s–1)FicusinsipidaFig.
1.
NetphotosynthesisofaleafofaFicusinsipidaseedlinginresponsetovariationintheCO2concentration([CO2])oftheairsurroundingtheleaf.
Measurementsweremadeataleaftemperatureof30Candaphotosyntheticphotonuxdensity(PPFD)of1500mmolm–2s–1(K.
Winter,unpublished).
532FunctionalPlantBiologyL.
A.
Cernusaketal.
forAshouldincreasewithincreasingca;(2)theproportionalincreaseinthemaximumquantumyieldofCO2uptakecausedbyelevatedcashouldincreasewithincreasingleaftemperature;and(3)theproportionaldecreaseinthelightcompensationpointcausedbyelevatedcashouldbelargerathigherthanatlowerleaftemperatures(Farquharetal.
1980;Long1991).
ThesepredictionsoftheinteractionbetweenelevatedcaandtemperatureattheleaflevelarealsoapparentwhenAisscaleduptothecanopy(Long1991).
Asaresult,ecosystemmodelsgenerallypredictalargerproportionalstimulationofNPPinwarmtropicalclimates,comparedwithcooler,higherlatitudes.
Forexample,aglobaldynamicvegetationmodelemployingamodiedversionoftheFarquharetal.
photosynthesismodel(Farquharetal.
1980;Collatzetal.
1991)predicteda35%increaseinNPPfortropicalforestsatcaof550ppmrelativetothatatcaof370ppm,whereasthepredictedincreasefortemperateforestswas26%.
ThisgeographicdifferenceinthesimulatedproportionalstimulationofNPPwaslargelycausedbypredicteddifferencesinphotorespiration,assumingsufcientnutrientandwateravailabilitytosupportincreasedNPP(Hickleretal.
2008).
Ontheotherhand,theproportionalincreaseinAinresponsetocamaybedampedifenvironmentalconditionsarenototherwisefavourableforphotosyntheticgasexchange.
Onereasonthismightoccurisifthestomataclosetoslowtherateofwaterlossfromleaves.
Stomatalconductance(gs)typicallydecreasesinresponsetoincreasingleaf-to-airvapourpressuredifference(VPD),andAtypicallyshowsalinearorcurvilinearrelationshipwithgs(Wongetal.
1979;CernusakandMarshall2001;Cernusaketal.
2011a;Medlynetal.
2011).
Thus,areductioningscausedbyincreasedVPDwillalsocauseareductioninA,withtheproportionalreductioninAlikelytobesomewhatlessthanthatings(FarquharandSharkey1982).
TheVPDcanvaryasafunctionofthevapourpressureoftheairsurroundingtheleaforasafunctionofthevapourpressureinsidetheleaf.
Becausethevapourpressureinsideleavesisassumedtobeatornearsaturation,itiseffectivelycontrolledbyleaftemperature.
Thus,foraxedvapourpressureoutsidetheleaf,theVPDincreasesexponentiallyasleaftemperatureincreases,andgsandAarelikelytodecreaseaccordingly(SageandKubien2007;LloydandFarquhar2008).
Leaftemperaturesintropicalforestsareexpectedtoincreasewithincreasingcaasaresultofincreasingairtemperatureandtheincreasingelevationofleaftemperatureaboveairtemperature.
AirtemperatureisexpectedtoincreaseduetotheradiativeeffectsofCO2andothergreenhousegasesintheatmosphere,andduetodecreasedevapotranspiration(Sellersetal.
1996).
Overthelastcentury,theglobalaveragesurfacetemperatureincreasedby0.
74C,accompanyinganincreaseincafrom280ppmto380ppmbetween1750and2005(Solomonetal.
2007).
Intropicalforestregions,therateofsurfacewarmingsincethemid-1970shasaveraged0.
26Cperdecade(MalhiandWright2004).
Attheleaflevel,gstypicallydeclinesinresponsetoelevatedca(Wullschlegeretal.
2002;AinsworthandRogers2007),althoughnotalways(KrnerandWürth1996;Keeletal.
2007).
Declininggsinresponsetoelevatedcahasbeenobservedinseedlingsandsaplingsoftropicaltreespecies(Berrymanetal.
1994;Goodfellowetal.
1997;Cernusaketal.
2011b).
AnexampleoftheresponseofgstogrowthatelevatedcomparedwithambientcaisshowninFig.
2afortheseedlingsof10tropicaltreespecies.
Here,itcanbeclearlyseenthatgsgenerallydecreasedinresponsetoelevatedcabuttheresponsewasvariableamongspecies.
Lowergsresultsinalowertranspirationrate(E),causinganincreaseinleaftemperature(Fig.
3a,b),withassociatedincreasesinVPD(Fig.
3c,d).
ManytropicalforesttreesdisplayapronouncedmiddaydepressioninbothgsandAonsunnydays(RoyandSalager1992;Kochetal.
1994;Zotzetal.
1995;Ishidaetal.
1999;Kosugietal.
2009).
Thishasalsobeendetectedatthecanopyscalewitheddycovariancemeasurements(Gouldenetal.
2004;DoughtyandGoulden2008;Kosugietal.
2008).
ItcoincideswiththehighVPDassociatedwithincreasingleaftemperaturesunderhighirradiance(Fig.
4).
ThemiddaydepressioningsandAoccursindependentlyofsoilmoisturestatus(Kosugietal.
2009).
Forexample,thedatashowninFig.
4wererecordedduringtherainyAlbiziaadenocephalaChrysophyllumcainitoCoccolobauviferaDalbergiaretusaHyeronimaalchorneoidesAmbient[CO2](400ppm)Elevated[CO2](700ppm)(a)(b)StomatalconductancetoH2O(molm–2s–1)IngapunctataOrmosiamacrocalyxPachiraquinataSchizolobiumparahybumSwieteniamacrophylla0.
00.
20.
40.
60.
80.
00.
51.
01.
52.
02.
5Whole-plantwater-useefficiency(gCkg–1H2O)Fig.
2.
(a)Stomatalconductanceand(b)whole-plantwateruseefciencyforseedlingsof10tropicaltreespeciesgrownatambientandelevatedCO2concentrations([CO2]).
DataaretakenfromCernusaketal.
(2011b).
Tropicalforestsandelevated[CO2]FunctionalPlantBiology533PPFD=2000molm–2s–1404550Airtemperature=40°CAirtemperature=35°CAirtemperature=30°CAirtemperature=25°C(a)PPFD=1000molm–2s–1(b)Leaftemperature(°C)202530354020PPFD=2000molm–2s–14567(c)PPFD=1000molm–2s–1(d)Leaf-to-airvapourpressuredifference(kPa)123Stomatalconductance(molH2Om–2s–1)0.
00.
10.
20.
30.
40.
50.
60.
10.
00.
20.
30.
40.
50.
60.
7Fig.
3.
(a,b)Predictedleaftemperatureand(c,d)leaf-to-airvapourpressuredifferenceasafunctionofstomatalconductanceatairtemperaturesrangingfrom25Cto40C.
(a,c)predictionsforanincidentphotosyntheticphotonuxdensity(PPFD)of2000mmolphotonsm–2s–1;(b,d)predictionsforaPPFDof1000mmolphotonsm–2s–1.
Calculationswereperformedusingleafenergybalance(CampbellandNorman1998),assumingarelativehumidityof50%,awindspeedof1.
5ms–1andaleafwidthof10cm.
seasoninPanama,whensoilmoisturewashigh.
Thus,ascacontinuestoriseoverthecomingcentury,higherVPDcausedbyhigherleaftemperaturescouldcausemiddaydepressionsofgsandAtooccurmorefrequentlyandforlongerperiodsduringtheday.
ThiswoulddampenthepositiveresponseofAtorisingca,althoughanoverallincreaseinAisstillpredicted(LloydandFarquhar2008).
NonstomataleffectscanalsolimitAathighleaftemperatures.
Thelight-saturatedpotentialelectrontransportrateappearstohaveatemperatureoptimumof~40Cintropicaltreeleaves(Lloydetal.
1995;Mercadoetal.
2006).
Thus,AwouldbeexpectedtodecreaseforagivenchloroplasticCO2concentrationatleaftemperatureshigherthan40C.
Exposuretoleaftemperatureshigherthan45CcancausedenaturationofRubiscoandotherphotosyntheticenzymes(BerryandBjrkman1980).
Necrosisandtissuedeathtypicallyoccurafterexposuretoleaftemperaturesbetween50and53C(Krauseetal.
2010).
Sun-exposedoutercanopyleavesinatropicalforestreachedtemperaturesbetween46Cand48C,suggestingtheymaybeoperatingneartheirlimitofheattoleranceundercurrentconditions(Krauseetal.
2010).
AninsituwarmingexperimentrecentlydemonstratedthatAintropicaltreeandlianaleaveswassignicantlyreducedbyawarmingof2–3Covera13-weekperiod,withtheleaftemperaturesofwarmedleavesreaching45C(Doughty2011).
Thisiswithintherangeofleafwarmingthatcouldbeexpectedtooccurinresponsetoelevatedcainthenextfewdecades.
ThereductioninAwasattributedmainlytononstomatallimitations.
Ithasbeensuggestedthatelevatedcacouldmitigatetheadverseeffectsofelevatedtemperaturesonthephotosyntheticperformanceoftropicaltreeleaves(Hoganetal.
1991)throughthesuppressionofphotorespirationandtheassociatedalleviationofphotoinhibitionunderhighirradiance(Kriedemannetal.
1976;Rasinenietal.
2011).
Furthermore,thegsoftropicaltreeseedlingswasobservedtodeclinelessinresponsetoincreasingleaftemperatureforseedlingsgrownunderelevatedcacomparedwiththosegrownunderambientca(Berrymanetal.
1994).
Thus,elevatedcahasthepotentialtoalleviateboththestomatalandnonstomatallimitationsonAassociatedwithhighleaftemperatures.
Futureexperimentsthatexposetropicaltreeleavestobothwarmingandelevatedcawillbecriticalfortestingthishypothesisfurther.
Growthunderelevatedcahasbeenshowntocauseacclimationofphotosyntheticcapacityinarangeofspecies,generallyexplainedbyreducedRubiscoactivity,whichisoftencorrelatedwithreducedleafnitrogenconcentrations(Drakeetal.
1997).
Ingeneral,thistypeofacclimationallowsplantstooptimiseoverallperformancebybalancingsinkandsourceactivity.
Forexample,whenRubiscoexpressionisreduced,nitrogencanbereallocatedawayfromthephotosynthetic534FunctionalPlantBiologyL.
A.
Cernusaketal.
2500200015001000500015105007911131517195Timeofday(hour)79111315171914534920.
332.
8(a)(b)(c)(d)9June199430June1994Netphotosynthesis(molm–2s–1)PPFD(molm–2s–1)PseudobombaxseptenatumFig.
4.
Netphotosynthesisandincidentphotosyntheticphotonuxdensity(PPFD)ofoutercanopyleavesofatallPseudobombaxseptenatum(Jacq.
)DugandtreeinParqueNaturalMetropolitano,RepublicofPanama,on(a,c)asunnydayand(b,d)onanovercastday.
(a,b)PPFDonthe2days;(c,d)netphotosynthesis.
Numbersinsidethepanelsshowthesummationsoftheshadedareasunderthecurvesinmolm–2day–1forPPFDandmmolm–2day–1fornetphotosynthesis(K.
Winter,unpublished).
apparatustostructuressuchasnerootsthatallowincreasednutrientforaging(Mooreetal.
1999;Longetal.
2004).
InFACEexperimentswithtemperateforesttrees,themaximumRubiscocarboxylationvelocitydecreasedby~7%inresponsetogrowthatcaelevatedto200ppmaboveambientCO2concentration(AinsworthandLong2005).
Withthisloweredphotosyntheticcapacity,light-saturatedphotosynthesiswasstillstimulatedby47%intheelevatedcatreatments.
Sofar,nocomparabledatahavebeencollectedintropicalforesttrees.
TheaboveconsiderationssuggestthatbothstomatalandnonstomatallimitationsonAwillincreasewithincreasingleaftemperaturesintropicalcanopies,andthereisfurtherpotentialforacclimationordownregulationofphotosyntheticcapacitytobalancesourceandsinkactivity.
ThenatureandextentoftheinteractionbetweentheselimitationsandthepositiveeffectsofelevatedcaonAandGPPintropicalforestswillhavefar-reachingconsequencesfortropicalforestfunctionunderelevatedca.
EffectsofelevatedcaongrowthNPPisthenetamountofcarbonxedintoorganicmatterinagiventimeafteraccountingforautotrophicrespiration(Eqn1):NPPGPPRa;1whereRaisautotrophic(plant)respiration.
NPPcanbecalculatedasthechangeinplantmassovertimeplusnonrespiratorycarbonlosses(i.
e.
tissueturnover,reproduction,herbivory,exudationoforganiccompoundsfromroots,biogenicvolatileemissions,etc.
),suchthatNPP=dM/dt+L,whereMisthemassofcarboninaplantoracommunityofplants,tistime,dM/dtischangeinmassoverchangeintime,andLisnonrespiratorycarbonlosses(LloydandFarquhar1996).
Thus,anincreaseinNPPmayormaynotleadtoanincreaseinecosystemcarbonstorageinplantbiomass(denotedbyM),dependingonhowNPPispartitionedbetweendM/dtandL.
Fromthefewdatasetssofarpublished,tropicalforestsappeartofunctionwitharelativelylowcarbonuseefciency(ChambersandSilver2004;Malhi2012),denedastheratioofNPPtoGPP.
ThisindicatesproportionallyhighRaandthepotentialforashiftinRatosignicantlyaffectNPP(Metcalfeetal.
2010).
Todate,littleisknownaboutwhetherorhowRawillbeaffectedbyelevatedcaintropicalforests.
Increasingtemperatureorincreasingsupplyofrespiratorysubstratesassociatedwithincreasingcacouldbeexpectedtocauseanincreaseinmaintenancerespiration(Leakeyetal.
2009;Clarketal.
2010).
Ontheotherhand,responsestotemperaturemaybetemperedbyacclimation,suchthatmaintenancerespirationratesareaffectedlittlebyagradualshiftintemperatureregime(Atkinetal.
2005).
Nitrogenallocationtotropicaltreeleaveswasobservedtodecreaseunderelevatedca(Berrymanetal.
1993;Winteretal.
2000;Cernusaketal.
2011b),andthiscouldcauseadecreaseinleafmaintenancerespirationatagiventemperature(Ryan1995;Gonzàlez-Meleretal.
2009).
Tropicalforestsandelevated[CO2]FunctionalPlantBiology535LeafdarkrespirationcomprisesmorethanathirdoftotalRaintropicalforests(ChambersandSilver2004;Cavalerietal.
2008).
Notsurprisingly,thewayRaistreatedinecosystemmodelshasalargeimpactonpredictionsofthetropicalforestNPPresponsetorisingca,especiallywithregardtothetemperaturedependenceofRa(Galbraithetal.
2010).
Shiftingallocationpatternscouldaffecthowthechangeinbiomassovertime,dM/dt,respondstoelevatedcaintropicalforests.
Inarticialtropicalminiecosystems,itwasobservedthatAnearlydoubledunderelevatedca.
However,theextraphotosynthateproducedintheelevatedcatreatmentwasmostlyallocatedtoincreasednerootproductionandrootexudation,therebyincreasingL,ratherthantoabovegroundbiomassandcoarseroots,whichwouldhaveacceleratedtheincreaseinM(KrnerandArnone1992).
Similarresponseswerealsoobservedinsometemperateecosystems(Krneretal.
2005;Norbyetal.
2010),asoriginallyforeshadowedbyStrainandBazzaz(1983).
Acrossabroadrangeoftropicalforestplots,atradeoffwasobservedbetweenNPPallocationtonerootproductionversusallocationtowoodproduction,withallocationtothecanopyremainingrelativelyinvariant(Malhietal.
2011).
ThissuggeststhatincreasedallocationtonerootproductionunderelevatedcacouldcauseLtoincreaseattheexpenseofincreasedallocationtotheproductionoflong-livedwoodytissues,whichwouldcauseMtoincrease.
MuchofthecontroloverdM/dtinplantshastraditionallybeenattributedtochangesinA.
Thishasrecentlybeentermeda'carbon-centric'perspective(Salaetal.
2012).
Alternatively,ithasbeensuggestedthatdemandforphotosynthateatthesitesofnewtissuesynthesiscouldexertgreatercontroloverdM/dtthandoesA(Krner2003).
ThiswouldrequirethatthecarbohydratesproducedbyAinexcessoftheirconsumptionbyanabolicprocessesmustbelostfromtheplantthroughRaorL.
Undersuchascenario,itisalsolikelythatsomefractionoftheexcessphotosynthatewouldaccumulateasnonstructuralcarbohydrates(NSC).
Thus,analysisoftheNSCconcentrationsintreescouldprovideasensorthatindicatescarbonshortageorsurplusforfuellinganabolicmetabolism(Krner2003).
AsteadyandveryhighNSCconcentrationwouldindicatethatthecurrentlevelofAprovideseitherafullyadequatesupplyoranoversupplyofreducedcarboncompoundstotheplant.
InaseasonalforestinPanama,NSCconcentrationswereobservedtobesteadythroughtheyearortoincreaseduringthedryseason(Newelletal.
2002;Würthetal.
2005).
ThiswasinterpretedtosuggestthatdM/dtwasnotlimitedbyA(Krner2003;Würthetal.
2005).
IncreasingcaaroundthecanopyleavesatthesamesiteledtoincreasesinAandinNSCconcentrations(Würthetal.
1998b;Lovelocketal.
1999),butdidnotaffectthegrowthratesofbranches.
ThisfurtherreinforcedtheideathatgrowthwillnotrespondtoincreasedAinthesetrees,althoughincreasedgrowthintheseasonfollowingexposuretoelevatedcacouldnotberuledout(Lovelocketal.
1999).
Thisinterpretationwasnotsupportedbytheresultsofanotherexperimentatthesamesite,inwhichsupplementallightingwasprovidedtocanopytreesundercloudyskies.
Inthatcase,growthincreased,whichwasdrivenbyincreasesinA(Grahametal.
2003).
Adenitivetestofthehypothesiswillrequirelonger-termexperimentsonwoodyspeciesgrowingunderelevatedcaintropicalforests.
ItwasrecentlysuggestedthatNSCmayplayanimportantphysiologicalroleinmaintainingtheintegrityofthevascularsystemoflargewoodyplants(Salaetal.
2012).
ItwasalsosuggestedthatincreasedallocationtotheNSCpoolmaybeageneralresponsetostress,indicatingmoreseverecarbonlimitationtogrowth,ratherthanviceversa(WileyandHelliker2012).
Further,highsolublesugarconcentrationsintheleavesmayimprovetheirabilitytophotosynthesiseathightemperatures(Hüveetal.
2006).
Iftheseassertionsarecorrect,theremaynotbeadirectnegativerelationshipbetweenthesizeoftheNSCpoolandtheabilityoftropicaltreesandlianastoincreasegrowthinresponsetoelevatedca.
Ontheotherhand,ifNSCconcentrationsaregenerallyhigh,andthisreectsanoversupplyofcarbonforgrowthsuchthatgrowthwillnotrespondtoastimulationofA(KrnerandArnone1992;Baderetal.
2010),thisshouldbeincorporatedintocoupledclimate–carbonmodels,whichtreatcarbonreservepoolsverysimply,ifatall.
Growthatlownutrientavailabilityconsistentlyreducesthepercentagegrowthresponsetoelevatedca(McMurtrieetal.
2008).
Thispatternwasdemonstratedinexperimentswithseedlingsofmanytropicaltreespecies(Oberbaueretal.
1985;ReekieandBazzaz1989;Ziskaetal.
1991;Lovelocketal.
1998;Winteretal.
2000;Winteretal.
2001a,2001b;Cernusaketal.
2011b;deOliveiraetal.
2012),althoughsomeexceptionsalsooccurred(KrnerandArnone1992;ArnoneandKrner1995;Carswelletal.
2000).
Overall,itislikelythatnutrientavailabilitywillplayamajorroleindeterminingtheproductivityresponsesofwoodytropicalforestplantstorisingca.
Nitrogenappearstoberelativelyabundantintropicalforests,asindicatedbyhighratesofnitrogenloss(Hedinetal.
2009;Brookshireetal.
2012)andincreasingratesoflong-termatmosphericnitrogendeposition(Chenetal.
2010;Hietzetal.
2011).
However,vastareasoftropicalforestsoccuronold,stablelandscapes(e.
g.
largepartsofSouthAmerica,Africa,South-EastAsiaandAustralia).
Intheseregions,severelyphosphorus-impoverishedsoils,aresultofprolongedweatheringinmoistclimates(Lambersetal.
2008),presentamajorconstraintonplantgrowth(Vitouseketal.
2010).
ItwasrecentlydemonstratedthattotalsoilphosphorusstatuswasthemeasureofsoilfertilitythatbestpredictedvariationinproductivityacrossawiderangeofAmazonianforestplots(Quesadaetal.
2012).
Inadditiontolowphosphorusavailabilityintropicalsoils,anapparentlinkbetweentranspirationandphosphorusacquisitionmayfurtherdiminishtheconcentrationsofphosphorusinplanttissuesascarises(Cernusaketal.
2011c).
Ontheotherhand,ithasbeenarguedthatphosphorusavailabilityanduptakecouldbemaintainedunderrisingcabythestrongbufferpowerofsoilsforinorganicphosphorus,andbyincreasedcarbonallocationtomycorrhizalfungiandotherspecialisedmechanismsforphosphorusacquisition(Lovelocketal.
1996;Lloydetal.
2001;LloydandFarquhar2008;Turner2008).
Organicphosphorusisabundantintropicalforestsoils(Johnsonetal.
2003;Vincentetal.
2010;TurnerandEngelbrecht2011)andmayfurthersupportanyincreasedgrowthoftropicalforesttreesunderelevatedca.
Althoughphosphorusislikelytobethenutrientthatconstrainsproductivityintropicalforestsingeneral,itisalsoworthpointingoutthatconsiderableheterogeneityexistsacrossthetropicalbiomesuchthatothernutrientscanalsobelimiting.
For536FunctionalPlantBiologyL.
A.
Cernusaketal.
example,nitrogenappearedtolimitproductivityintropicalforestsonveryyoungandveryoldsoils(Fyllasetal.
2009;Mercadoetal.
2011),inrecentlyestablishedsecondaryforests(Davidsonetal.
2007)andintropicalmontaneforests(Tanneretal.
1998).
RecentresearchhasshownthatthecapacityfornitrateassimilationintheshootsofC3plantsdecreasesunderelevatedcaasaresultofdecreasedphotorespiration(Rachmilevitchetal.
2004;Bloometal.
2012).
Ifthispatternextendstowoodytropicalforestplants,thelimitationsimposedontropicalforestproductivitybynitrogenavailabilitycouldincrease.
Othernutrientsmayalsoplayimportantrolesinregulatingproductivityintropicalforests,forexample,calcium,molybdenumandpotassium(Vitousek1984;Barronetal.
2009;Wrightetal.
2011),andtheiravailabilitycouldalsoconstrainproductivityresponsestoelevatedca.
ItisclearthattherearemanyunresolvedissuesassociatedwithpredictingwhetherandtowhatextenttropicalforestNPPwillbestimulatedbyfutureincreasesinca.
Tropicaleldexperimentsareurgentlyneededtoaddresstheseissues(Leakeyetal.
2012).
EffectsofelevatedcaonresistancetodroughtBothseasonalandinterannualdroughtssignicantlyimpactupontheproductivityandspeciescompositionoftropicalforests(Conditetal.
1995;Engelbrechtetal.
2007;Nepstadetal.
2007;Brandoetal.
2008;Phillipsetal.
2009;daCostaetal.
2010).
Elevatedcacouldmakewoodytropicalforestplantsmoreabletowithstanddroughtintwoways.
First,elevatedcacouldincreasewateruseefciency(WUE),therebyallowingagreateramountofphotosynthesisforagivenamountofwatertranspiredtotheatmosphere(Eamus1991;Winteretal.
2001a;Battipagliaetal.
2013).
Thiscouldleadtoareductioninsoilwaterdepletionduetoreducedcanopy-scaletranspiration,whichcouldsustaintranspiration,andthereforephotosynthesis,foralongertimebetweenrainevents(Morganetal.
2004;Keeletal.
2007;LeuzingerandKrner2007;HoltumandWinter2010;LeuzingerandKrner2010;Macinnis-Ngetal.
2011).
Suchwatersavingscouldalsofacilitatemicrobialactivityandnutrientprovision,andenableturgorpressureinmeristemtissuestoremainabovethecriticalthresholdrequiredforcellexpansion(Boyer1968;Eamusetal.
1995),therebyfacilitatinggrowth.
Second,elevatedcacouldincreasetheNSCpool,which,inturn,couldbeusedtosustainplantmetabolismforlongerperiodsfollowingstomatalclosureandcessationofAinresponsetodrought,accordingtothecarbon-centricperspective(Salaetal.
2012).
BecauseAtendstoincreaseunderelevatedcaforagivengs,leaf-levelWUEtypicallyincreases.
Leaf-levelWUEcanbedenedastheratioofphotosynthesistotranspiration,A/E.
A/EcanbedenedastheratioofthediffusiongradientforCO2tothatforwatervapourbetweentheexternalairandtheintercellularairspacesintheleaf(FarquharandRichards1984):AEca1cica1:6VPD;2whereciistheintercellularCO2concentration.
Thefactor1.
6inthedenominatoristheratioofthediffusivityofwatervapourtothatofCO2inthestomatalpores.
Eqn(2)showsthatifci/caremainsconstant,A/Ewillincreaseproportionallywithincreasingca,solongasVPDisalsoconstant.
IfVPDalsoincreasesascaincreases,assuggestedabove,thiswilldamptheresponseofA/Etoincreasingca(Bartonetal.
2012).
Variationinci/cainresponsetoelevatedcacanbeassessedinstantaneouslybymeasuringchangesintheCO2andwatervapourconcentrationsofairpassingoveraleaf(vonCaemmererandFarquhar1981).
Inaddition,time-integratedassessmentsofci:cacanbeobtainedbymeasuringcarbon-isotopediscrimination(D13C)inplantbiomass(Farquharetal.
1982).
AlthoughEqn(2)appliesattheleaflevel,theincreaseinWUEunderelevatedcaisalsomanifestedatthewhole-plantlevel,asshowninFig.
2bforseedlingsof10tropicaltreespecies.
MeasurementofD13Cprovidesanopportunitytoexaminethehistoricalresponsesofci/catoincreasingcaintropicaltreessincepreindustrialtimes.
ThiscanbeaccomplishedbyanalysingD13Cintreeringsorinleafdrymatterpreservedinherbaria.
Thefewstudiesconductedsofarontropicaltreesshowthatci/catendedtoremainconstantascaincreasedfrompreindustrialtopresentconcentrations(Hietzetal.
2005;Nocketal.
2011;Bonaletal.
2011;Loaderetal.
2011),orthatci/cadecreasedinatropicaldryforesttreespecies(Brienenetal.
2011).
Bothtrends(constantci/caanddecreasingci/ca),wouldindicatelargeincreasesinA/Eascaincreasedfrom280ppmto380ppmifVPDalsoremainedconstant.
However,historicalchangesinVPDaremoredifculttodetermine.
Asnotedabove,decreasinggsinresponsetoincreasingcashouldleadtoanincreaseinleaftemperatureassociatedwithadecreaseinevaporativecoolingoftheleafbytranspiration(Fig.
3).
ThiscouldleadtoanincreaseinVPD,whichwouldthendampentheincreaseinA/Ecausedbyincreasingca.
Overall,itseemslikelythatA/Ehasincreasedoverthepastcenturyandwillcontinuetoincreaseascaincreases.
Thissuggestionisconsistentwiththeresponseofwhole-plantWUEtoelevatedca,asshowninFig.
2b,becausethewhole-plantresponseincorporatestheincreaseinVPDassociatedwithlowergs.
ItiscriticaltodeterminehowstomatalresponsestocaandVPDarelikelytoinuenceevapotranspiration,cloudformationandprecipitationpatternsintropicalregionsascarises.
Atthecontinentalscale,anincreaseinWUEintropicalforestscouldhaveimportantimplicationsforthehydrologicalcycle,includingincreasedrunoff(Gedneyetal.
2006).
IfWUEincreasesmorethanNPP,excesswaterislikelytoenterriverinesystems.
Thiscouldaccelerateweatheringprocessesandtheexportofsedimentsandassociatednutrientstotheocean.
Conversely,adecreaseintheamountofwaterreturnedtotheatmospherebytranspirationcouldcauseadecreaseincloudformationandprecipitation(Bettsetal.
2004).
Modelsprovideanopportunitytoinvestigatethiscomplexweboffeedbackoverdecadaltocentennialtimescales(Luoetal.
2011).
Assessmentofhistoricalchangesinci/cathroughanalysesofD13Candexperimentalinvestigationsoftheresponsesofgsandci/catoelevatedcaprovideameanstoparameteriseorconstrainsuchmodels(Buckley2008;deBoeretal.
2011;Prenticeetal.
2011).
GrowthunderwaterdecitgenerallycausesNSCconcentrationstoincrease,andthismaybebecausecellexpansionismoresensitivetowaterstressthanisA(Hsiao1973;Chavesetal.
2003;Mulleretal.
2011).
This,combinedwiththeconsiderationsdescribedabove,ledKrner(2009)topredictthatfortropicaltrees,'CO2wouldhavefewifanyeffectsTropicalforestsandelevated[CO2]FunctionalPlantBiology537underperiodicdrought,giventhetendencyforgrowthtobecontrolledbycarbonsinkswhenwaterisinshortsupply.
'ThispredictionisbasedontheideathattheNSCpoolrepresentsapassiveoveroworrepositoryforcarbonsupply.
However,ithasbeenshownexperimentallythatgrowthcanrespondtoelevatedcaunderwaterdecitintropicaltreeseedlings(Cernusaketal.
2011b).
Seedlingsoftwotropicaltreespeciesweregrownatambientandelevatedca,andatavolumetricsoilwatercontentof0.
27or0.
08m3m–3.
Thelowwatersupplywassufcienttoreducegstolessthanhalfthatobservedathighwatersupply.
Thepercentageincreaseinplantbiomasscausedbygrowthatelevatedcomparedwithambientcawaslargeronaveragefortheplantsgrownunderwaterdecitthanforthewell-wateredplants.
Thisagreeswiththeresultsobtainedfortemperatewoodyplantseedlingsandsaplings,whichalsoshowedpositivegrowthresponsestoelevatedcaunderwaterdecit(TolleyandStrain1984;Arpetal.
1998;Centrittoetal.
1999),althoughnotineverycase(Guehletal.
1994;Duursmaetal.
2011).
ThesizeoftheNSCpoolinplantsgenerallyincreasesinresponsetoelevatedca(Drakeetal.
1997;AinsworthandLong2005).
Therehasrecentlybeendebateaboutwhetherdrought-inducedtreemortalityintheabsenceofbioticagentsresultsfromcarbonstarvation,hydraulicfailure,impairedcarbontranslocationoracombinationoftheseprocesses(McDowelletal.
2008;Salaetal.
2010;Andereggetal.
2012).
Totheextentthatdrought-inducedmortalitycanbedelayedbyhavingalargerreserveofNSC,elevatedcashouldallowtropicalwoodyplantstosurviveforlongerperiodsunderdrought.
Ontheotherhand,thismaynotbethecaseintropicaltreeswithsunlitcanopiesifNSCstorageisalreadyhighunderpresent-dayca(Newelletal.
2002;Krner2003;Würthetal.
2005).
ThusitmaybetheheavilyshadedindividualsintheunderstoreythatbenetmostfromhigherNSCconcentrationsascarises(Würthetal.
1998a;LloydandFarquhar2008).
Theinteractionbetweenpotentiallyincreasingdroughtfrequencyandintensityintropicalforestsandpotentiallyincreasingabilitytowithstanddroughtunderelevatedcawillplayacriticalroleindeningtheoverallresponseofcarboncyclingintheseecosystemsascarises.
IncreasedWUEwasoneofthemostconsistentlyobservedresponsestoelevatedcainpottedtropicaltreeseedlings(Ziskaetal.
1991;Eamusetal.
1993;Winteretal.
2001a;HoltumandWinter2010;Cernusaketal.
2011b).
Experimentsarenowrequiredtobuildupontheseinitialresults,involvingwoodytropicalforestplantsgrowingintheirnativesoilenvironmentsandexposedtoeithernaturallyoccurringorexperimentallyimposeddroughtsincombinationwithelevatedca.
EffectsofelevatedcaonspeciescompositionMuchuncertaintysurroundingthefunctioningoftropicalforestsunderelevatedcaderivesfrompotentialshiftsinforestcomposition.
Althoughitiscurrentlyunknownhowchangesinspeciesregenerationsuccessunderelevatedcawillalterthefuturecarboncyclingoftropicalforests,thepotentialeffectsmaybelarge.
Forexample,spatialvariationinspeciescompositionwithinthesingleforesttypeofthe50-haplotonBarroColoradoIslandinPanamawasassociatedwithvariationinstandingdrybiomassrangingfrom180Mgha–1to440Mgha–1(Chaveetal.
2003).
Inafurtheranalysisofcompositionaleffectsonecosystemfunction,Bunkeretal.
(2005)showedthatarangeofpotentialextinctionscenariosinuencingtreespecieswithdifferentfunctionaltraitscouldresultindeclinesincarbonstorageofupto70%onBarroColoradoIsland.
Clearly,theimportanceofcaeffectsonspeciesregenerationsuccessshouldberecognisedandinvestigatedasacriticaldriveroffuturecarboncycling.
Thelargestimpactonforestcompositionandassociatedcarbonstoragewillariseifforestdisturbanceregimesarealtered.
Inmaturetropicalforests,typicaladulttreemortalityratesare1–2%oftreesdyingperyear(Lewisetal.
2004),withtheresultingdisturbancetotheforestcanopyrangingfromsingletreefallgapstolargecanopyopenings.
Tropicalforestplantspeciesliealongacontinuumfromextremelyshade-toleranttoabsolutelylight-demanding(Wrightetal.
2005).
Themostshade-tolerantrecruitandsurviveeverywhere.
Themostlight-demandingspecieswillonlyrecruitinlargeforestopenings.
Whereassmallforestdisturbancesoftenresultinthereplacementofcanopytreesbyslow-growingshade-tolerantjuvenilescharacterisedbyhighwooddensityandlargeadultstature,largerdisturbancesresultingfrommultipletreefallsfavourtheinitialrecruitmentoffast-growing,light-demandingpioneerspecies,generallycharacterisedbyalowwooddensityandashortlifespan(SwaineandWhitmore1988).
Elevatedcamayinuenceforestdisturbanceregimesinthreeways.
First,elevatedcamaycauseforestturnoverratestoincreaseifthereisanincreaseincompetitioncausedbyhigherresourceavailability(i.
e.
CO2)(Lewisetal.
2009a;BugmannandBigler2011).
Second,increasesinsurfacetemperatureareexpectedtoresultinstrongerconvectionalstorms,suchasthosethatpropagateacrosstheAmazonbasin(Nelsonetal.
1994;Garstangetal.
1998;Knutsonetal.
2010).
Eventhoughthesestormsarerareevents(Glooretal.
2009;Lloydetal.
2009),theycanproducecanopyblow-downsextendingoverhundredstothousandsofhectares,resultinginlargepatchesofearlysuccessionalvegetation(Negron-Juarezetal.
2010).
Third,moresevereorfrequentclimateanomalies(Timmermannetal.
1999;Neelinetal.
2006)canresultinbiome-wideincreasesinadulttreemortality.
ThesewereobservedintheAmazonbasinfollowingseveredroughtin1997(Williamsonetal.
2000)andin2005(Phillipsetal.
2009),andareinferredtohavealsooccurredin2010(Lewisetal.
2011).
Dependingonthespatialdistributionoftreemortalitywithinthestand,theseeventshavethepotentialtopromotethewidespreadrecruitmentofpioneerspecies.
Elevatedcamayalsopromotetheregenerationofpioneerspeciesintheabsenceofchangesinforestdisturbancebyinuencingthecompetitivebalancebetweenearlyandlatesuccessionalspeciesingaps.
Forsmall-seededpioneers,acriticalltertorecruitmentsuccessissurvivalthroughtheearlyestablishmentphase(DallingandHubbell2002).
Germinatingseedsandemergingseedlingsareparticularlysusceptibletodrought-inducedmortalityduringshortdryspells(Engelbrechtetal.
2006;Dawsetal.
2008),andsmallseedlingscanbesmotheredbyfallinglitter(DallingandHubbell2002).
Elevatedcamaypromoteseedlingestablishmentifitacceleratesseedlinggrowthandeffectivelyshortensthisvulnerableestablishmentperiodoramelioratestheeffectsofshort-termdroughtbyincreasingWUE.
538FunctionalPlantBiologyL.
A.
Cernusaketal.
Seedlingsestablishinginnewlyformedgapsalsofacecompetitionfrompre-existingrecruitsofshade-tolerantspecies(advanceregeneration)andpotentiallyfromadulttreesthatsurroundthegapandcontributetothelateralin-llingofthecanopy.
Ifseedlinggrowthratesarenotconstrainedbynutrientavailability,thehighermaximalassimilationratesofpioneersrelativetoshade-tolerantspeciesshouldtranslatetoagreatergrowthstimulationandcompetitiveadvantage(Oberbaueretal.
1985).
Thismaybeampliedbygreaterstimulationofphotosynthesisduringsunecks,whichdominateunderstoreylightenvironments(Leakeyetal.
2002).
Conversely,elevatedcamayintensifycompetitionbetweenpioneerrecruitsandtheadvanceregeneration.
Elevatedcahasbeenshowntosignicantlyenhancethegrowthofshade-tolerantseedlingsunderverylowlightconditions(Würthetal.
1998a)andmaybeexpectedtoalsoenhanceseedlingsurvival.
Growthenhancementsarealsolikelytobestrongforshade-tolerantlianaspeciesthatawaitgapformationtorecruittothecanopy(Krner2009).
Lianasappeartobeincreasingintropicalforestsoverrecentdecades(Phillipsetal.
2002;Wrightetal.
2004;SchnitzerandBongers2011).
Thischangeinthefunctionalcompositionoftropicalforestsmaybetheresultofrisingca(Lewisetal.
2009a;SchnitzerandBongers2011)orotherprocessessuchasshiftingdynamicsofseeddispersalcausedbyhuntingthatfavourspredominantlywind-dispersedlianasoverpredominantlyanimal-dispersedtrees(Wrightetal.
2007).
BothlianaandtreeseedlingshavebeenshowntoprotfromelevatedCO2whengrownindeepshade(Krner2009).
Beneaththecanopy,lianasarelikelytoexhibitbetterlightforagingperunitofcarbongainedthantreesaplings,duetotheirexiblegrowthstrategy.
Thisprovidesahypothesisedmechanismbywhichlianascouldbenetmorefromelevatedcathantrees(Krner2009).
Shouldlianasbecomemorevigorousduetoafunctionaltype-specicbenetfromelevatedca,thiswouldhavefar-reachingconsequencesforcarbonstorage(Phillipsetal.
2002).
Lianainfestationsincreasetreemortalityandsuppresstreegrowth,whereaslianasthemselvesallocaterelativelylittlebiomasstowood.
Woodylegumesarebothabundantanddiverseintropicalforests,especiallyintheNeotropicsandAfrica(Gentry1988;LososandLeigh2004;terSteegeetal.
2006).
SomeoftheseleguminoustreeandlianaspecieshavetheabilitytoformbacterialnodulesontheirrootsthatcanxatmosphericN2(deSouzaMoreiraetal.
1992;Sprent2009).
Suchspeciesmaybeabletorespondmorestronglytoelevatedcathannonxingspecies,especiallyinnitrogen-poorsoils(Thomasetal.
1991;Tissueetal.
1997;Cernusaketal.
2011b).
Anabilitytoacquirenitrogenfromtheatmospheremayalsoprovideanadvantageforphosphorusacquisitionbypromotingproductionofnitrogen-richphosphataseenzymesinroots(Houltonetal.
2008).
Suchenzymescanbeboundtorootsurfacesorreleasedintotherhizospheretohydrolyseorganically-boundphosphorus,makingitavailableforplantuptake(Richardsonetal.
2005;Turner2008).
Ontheotherhand,apan-tropicalincreaseinnitrogendeposition(Chenetal.
2010;Hietzetal.
2011)mightlimittherelativeadvantageoflegumesoverplantspeciesthatareincapableofN2xation.
Inaninsituexperimentinatropicalforestunderstorey,anodulatedlegume,TachigaliversicolourStandl.
&L.
O.
Williams,hadagrowthresponsetoelevatedcasimilartothatofnonlegumes(Würthetal.
1998a).
However,demandfornitrogenislowinplantsindeepshadeandthebenetofN2xationmaythereforebegreatestinagapenvironment(McHargue1999;Barronetal.
2011).
Futureexperimentsontheresponsesofnodulatedlegumestoelevatedcashouldconsiderinteractionswithirradiance.
IncreasedcarbonallocationtoreproductionwasobservedfortemperatetreesexposedtoFACE(LadeauandClark2006;Wayetal.
2010).
Increasedreproductiveeffortunderelevatedcaintropicalforestscouldhaveimportantconsequencesforlong-termpopulationdynamics.
Inaddition,increasedcarbonallocationtoshort-livedtissues,suchasowersandfruits,wouldnotleadtothesameincreaseincarbonstorageasincreasedallocationtowood.
Asignicantincreaseinowerproductionhasbeenobservedover18yearsinatropicalforestinPanama(WrightandCalderon2006).
Ifthispatternisrelatedtoincreasingca,thismayportendfurtherincreasesincarbonallocationtoreproductionascacontinuestorise.
TheLatePaleocene–EoceneThermalMaximum(PETM)wasaglobalwarmingeventthatoccurred~56millionyearsago,inwhichtheglobalmeantemperaturerapidlyincreasedby~5Cin~10000years(Zachosetal.
2003).
Thisglobalwarmingeventwasassociatedwithalargeinjectionofgreenhousegasesintotheatmosphereandariseincato~1000ppm.
ThePETMmayprovideahistoricanalogueforanthropogenicclimatechange,althoughthelatterisoccurringatamuchfasterrate.
PollenassemblagesinthreestratigraphicsectionsineasternColombiaandwesternVenezuelademonstratedanincreaseinthediversityoftropicalwoodyplantsinresponsetothePETM(Jaramilloetal.
2010).
Importantly,thePETMwasassociatedwithanintensicationofthehydrologicalcycle,whichprobablyresultedineitherincreasedprecipitationinthetropicsoratleastnoincreaseinaridity(Jaramilloetal.
2010;ClementzandSewall2011).
Itisnotknowntowhatextentsimilarconditionswillprevailasanthropogenicclimatechangeunfolds.
Nevertheless,thediversicationoftropicalwoodyplantsinresponsetothePETMprovidesanextremelyvaluableinsightintopotentialresponsesoftropicalforeststoelevatedcaandclimatechange.
Currently,ourabilitytopredictchangesinthespeciescompositionoftropicalforestsunderelevatedcaispoorforatleastfourreasons:(1)temperateecosystemshavebeenthefocusofmostofresearchefforttodate;(2)elevatedcaeldstudieshavefocussedoneven-agedstandswheregapdynamicsandgapregenerationwereabsent;(3)manystudiesofseedlingshavefeaturedplantsthatwereisolatedfromecologicalinteractionsorgrownwithadisturbedsoil–microbe–plantcomplex;and(4)thetraitsthatdrivevariationinresponsetoelevatedcaarenotwellunderstoodingeneral,particularlyintropicalspecies(Leakeyetal.
2012;LeakeyandLau2012).
EffectsofelevatedcaonecosystemcarbonstorageForestshavebeenasignicantcarbonsinkinrecentdecades,bothgloballyandinthetropics(Lewisetal.
2009b;Panetal.
2011).
Althoughitislikelythatrisingcahasplayedatleastsomeroleindrivingtheincreaseintropicalforestbiomass(Lewisetal.
2009a),severalothermechanismsmayalsohavecontributed.
ThesepossibilitiesincludesecondarysuccessionTropicalforestsandelevated[CO2]FunctionalPlantBiology539onabandonedagriculturallands,recoveryfromotheranthropogenicuses,includingtimberandrewoodextraction,andincreaseddepositionoflimitingnutrientsresultingfromanthropogenicactivities.
Ofthecarbonstoredintropicalforests,morethanhalfisinlivebiomass(Panetal.
2011).
Repeatedcensusesofforestinventoryplotsovertimehaveindicatedthatlivebiomassisincreasinginsomeold-growthtropicalforests.
Theaverageannualisedchangeinabovegroundbiomass(AGB)in79plotsinAfricantropicalforestswasabout+0.
6MgCha–1peryearduringtheperiod1968–2007(Lewisetal.
2009b).
Similarly,theaverageAGBchangeacross59Amazonianplotswasabout+0.
6MgCha–1peryearfromthe1980suntiltheearly2000s(Bakeretal.
2004).
Theglobalterrestrialcarbonsinkof~2PgCperyearforthe1990s(Solomonetal.
2007)impliesanincreaseinecosystemcarbonstorageof~0.
2MgCha–1peryear,ifitwerespreadevenlyovertheglobalvegetatedlandsurface.
Krner(2009)suggestedonecouldoptimisticallyallowforthreetimesmoremissingcarbontobelocatedintropicalforeststhaninextratropicalregions.
Thus,forarstapproximation,theestimatedincreaseinAGBof0.
6MgCha–1peryearisseeminglyconsistentwiththecarbonbalanceoftheEarthsystem.
Aboutone-thirdofcarbonstoredintropicalforestsisinsoilorganicmatter(Panetal.
2011).
Themeanresidencetimeforsoilorganicmatterissimilartothatforlivebiomassintropicalforests,ontheorderof10–15years(Malhietal.
1999).
Thisdiffersmarkedlyfromhighlatitudeforests,wherethemeanresidencetimeforsoilorganicmattercanbe10timeslongerthanthatforlivebiomass.
Littleisknownabouthowelevatedcawillaffectsoilcarbonstorageintropicalforestsascarises.
IncreasedNPPunderelevatedcacouldacceleratethedecompositionofsoilorganicmatterthroughaprimingeffect,inwhichincreasedlitterfallprovidesthecarbonthatfuelsthemicrobialdecompositionofsoilorganicmatter(Sayeretal.
2011).
However,likeotherresponsesoftropicalforeststoelevatedCO2,soilprimingeffectsappeartoberegulatedbynutrientavailability(Nottinghametal.
2013).
Ingeneral,smallchangesinsoilcarbonaredifculttodetect,andeventhelongestmanipulativeexperimentsmaynotprovidesufcienttimefordirectionalchangestobedetected.
FACEexperimentsconductedwithtemperateforesttreesprovideanimportantsourceofinformationtodrawuponwhenconsideringthelikelyresponsesofecosystemcarbonstorageintropicalforestsinresponsetorisingca.
Inexperimentsconductedinyoungforeststands,therewaseitherasustainedincreaseinAGBthroughthefullcourseoftheexperiment(McCarthyetal.
2010);ortherewasatransitoryincreaseinAGB,withtheincreaserestrictedtotherstfewyearsoftheexperiment,andanincreasedallocationtonerootproductionandincreasedcarboninthesoil(Norbyetal.
2010).
Ina100-year-olddeciduousforest35mtall,therewasnoincreaseinbasalareaincrementduring8yearsofFACE(Krneretal.
2005).
Theseexperimentsdemonstratenoconsistentevidenceforsustainedincreasesintemperateecosystemcarbonstorageunderelevatedca(NorbyandZak2011).
IncreasedNPPcausedbyelevatedcacouldpotentiallybeassociatedwithlesscarbonstorageintropicalforestsifspeciescompositionshiftsinfavouroflianasandshorter-lived,fastergrowingtreespecieswithlowerwooddensity(Phillipsetal.
2002;Krner2004;Lauranceetal.
2004;Krner2009).
ThecurrentdistributionofAGBandNPPacrossAmazoniaindicatesanegativerelationshipbetweenthetwo,suchthatmoreproductiveforeststendbeofalowerbiomass(Malhietal.
2006;Saatchietal.
2011).
HighermortalityratesandlowerwooddensitybothcontributetothelowerAGBintheAmazoniansiteswithhigherNPP(Malhietal.
2006).
Lianainfestationsincreasetreemortality(Putz1984;Ingwelletal.
2010),especiallyoflatesuccessionaltreespecies(SchnitzerandBongers2011),whichhavehighwooddensitycomparedwithearlysuccessionaltreespecies(Wrightetal.
2010).
Thus,iflianaabundancecontinuestoincreaseandtropicalforestscontinuetobecomemoredynamicunderelevatedca,theymaystorelesscarbonasaresult.
Interestingly,AmazonianforestplotsappeartobeincreasingindynamismwhileincreasinginAGB(Bakeretal.
2004;Lewisetal.
2004;Phillipsetal.
2004).
ContinuedmonitoringisrequiredtodeterminewhetherthisisatransientresponsethatwilleventuallygivewaytodecliningAGBfollowingashifttowardsamoregap-dominatedstructure(Malhi2012).
Thefutureoftropicalforestcarbonstorageunderclimatechangeremainsalargesourceofuncertaintyinglobalclimatesimulations.
FortheAmazonBasin,uncertaintyinfuturecarbonstorageresultsbothfromvariabilityinclimateprojections(Salazaretal.
2007;Poulteretal.
2010b)andfromuncertaintyassociatedwithdirecteffectsofelevatedcaontheproductivityandWUEoftropicalforests(Lapolaetal.
2009;Rammigetal.
2010).
Insimulationswiththedirecteffectsofincreasingcaonplantphysiologicalprocessesturnedoff,bothrisingtemperatureandprecipitationreductioncauseddeclinesinAmazonianforestbiomass.
However,withdirecteffectsofelevatedcaonplantphysiologyturnedon,risingcamitigatedmuchoftheclimate-drivendeclineinforestbiomass(Galbraithetal.
2010).
Thesemodellingstudieshighlightthecriticalrolethatexperimentalresearchcanplayinreducingtheuncertaintyassociatedwiththedirecteffectsofelevatedcaonthephysiologyofwoodytropicalforestplants.
ChallengesandopportunitiesfortropicalCO2enrichmentexperimentsFACEstudieswerehelpfulforextendingobservationsintemperateforeststotheforeststandscale,butcompromisesinexperimentaldesignwerenecessarybecausethesystemswereexpensivetoconstructandoperate(NorbyandZak2011).
Forexample,althoughthereismuchinterestinunderstandingthecarboncyclingresponsesofintactmatureforests,mostoftheFACEexperimentswereconductedinyoungmonocultureplantations.
AnexampleisshowninFig.
5a,b.
Theoneexception,inwhichmature,temperateforesttreeswereexposedtoelevatedca(Krneretal.
2005),necessarilyrequiredadifferentcompromise:afocusonindividualtreesratherthanthewholeecosystem(Fig.
5c,d).
Tropicalforestscontainlargetreesandarespecies-rich.
Instudiesofforestdynamics,representativeplotsconsequentlytendtobe1haorlargertoadequatelycapturetheabundanceofco-occurringspecies.
Giventhegreaterstature,diversityandcomplexityoftropicalforests,aswellasmanyinfrastructureconstraints(e.
g.
roads,power,CO2supply),aFACEexperimentwillbeevenmorechallengingtoimplementinatropicalforest.
Thismay540FunctionalPlantBiologyL.
A.
Cernusaketal.
requirethedevelopmentofnewapproaches,differentfromthosedeployedinpreviousexperimentsintemperateforests.
Despitethesechallenges,investigatingstand-levelresponsestoelevatedcaintropicalforestsmustremainalong-termgoal,asthisisthescalerelevanttopredictingglobalclimatechangefeedbackoverthecomingcentury.
web-FACEattheSwissCanopyCranesiteGasanalysisGascontrolCO2+13CtracerCO2(f)(e)(c)(d)(a)(b)Fig.
5.
Somepossibilitiesforstand-scaleCO2enrichmentexperiments:(a,b)freeairCO2enrichment(FACE)atOakRidgeNationalLaboratory;(c,d)webFACEattheSwissCanopyCranesite;(e)theEdenProject(2013)asanexampleofalarge,naturally-litenclosurethatcouldaccommodatetallforesttreesforglobalchangeexperiments,constructedofethylenetetrauoroethylene(ETFE)cushions(credit:JürgenMatern/WikimediaCommons,CC-BY-3.
0);(f)atestoftheperformanceofETFEcushionsinthehumidtropicsattheSantaCruzExperimentalFieldFacility,SmithsonianTropicalResearchInstitute,Panama.
Theredarrowin(d)pointstothetubingusedtoemitCO2inthewebFACEexperiment.
Tropicalforestsandelevated[CO2]FunctionalPlantBiology541Fieldexperimentstoexplorehowelevatedcawillaffectestablishmentofearlyandlatesuccessionaltreespeciescouldprovideatractablealternativeinthenearterm,becausecompositionalshiftsintropicalforestcanopiesarelikelytobedrivenbychangesinseedlingestablishmentsuccess.
BecauseFACEsystemsrequirewindtodisperseCO2andbecausewindvelocitiesareoftenlowinforestgaps,CO2enrichmentsystemswithforcedventilation,suchassimpleopen-topchambers,wouldbeasuitabletoolforthestudyofgapdynamics,particularlyinsmalltreefallgaps.
Anysuchexperimentshouldpaycarefulattentiontosoilconditionsinordertoensureundisturbed,intactplant–soilinteractions.
Wenotethattheairwithin1–2moftheforestoorintropicalforeststendstobenaturallyenrichedinCO2comparedwithairabovethecanopy.
However,duringtheday,whenphotosynthesisispossible,thisnaturalCO2enrichmentrarelyexceeds50ppm(Lloydetal.
1996;Buchmannetal.
1997;Würthetal.
1998a;HoltumandWinter2001).
Lianaresponsestoelevatedcaintheunderstoreycouldbesuccessfullystudiedusingopen-topchambersorsimilarsystemsforCO2augmentation.
Thistypeofexperimentwouldfurtherlenditselftodifferentialtestsacrossotherplantfunctionaltypes,forexample,comparisonsofN2-xingtreeandlianaspecieswithnonxingspecies.
Multifactorexperimentsunderelevatedcacouldalsobeimplementedintheunderstorey,includingvariableintensityofdrought,irradianceorboth.
Interactionswithirradiancemaybeparticularlyimportant,becauseelevatedcacanlowerthelightcompensationpointindeepshade,withpotentiallylargeeffectsonplantcarbonbalanceunderextremephotonshortage.
Treeandlianabranchesintropicalforestcanopiescanbeexposedtoelevatedcawithlow-costinstallations(KrnerandWürth1996;Würthetal.
1998b;Lovelocketal.
1999)andaccessedforphysiologicalmeasurementsusinganexistingnetworkoftropicalforestcanopycranes(Bassetetal.
2003).
Inaddition,individualleavesorbranchescanbewarmedinsituinordertoexamineresponsestobothelevatedcaandelevatedtemperature.
Lianaresponsestoelevatedcaalongtheirgrowthtrajectoriesfromtheforestoortothecanopycouldbesuccessfullystudiedinthisway(Zotzetal.
2006).
Experimentsexposingonlyapartoftheplanttoelevatedcashouldfocusonshort-termresponses,asinteractionsatthewhole-plantscalewillnotbepresentinsuchexperiments.
Inaddition,thedegreetowhichbranchesbehaveautonomouslyintheircarbonrelationswithotherpartsoftheplantcouldinuencephysiologicalresponses,andthisshouldbetakenintoaccountinexperimentaldesignandinterpretationoftheresults(Sprugeletal.
1991;Lovelocketal.
1999).
Thestudyofforestsegmentscontainingtalltreesshouldbefeasibleinclosedsystems,apossibilitythathasbeentrialledbutnotextensivelyexploitedinreplicatedexperiments(Osmondetal.
2004).
Examplesofmodern,large,naturally-litenclosuresthatwouldaccommodatetallforesttreesincludehighlytransparentethylenetetrauoroethylenecovereddomes(Fig.
5e,f)suchasthoseintheEdenProject(EdenProject2013).
Closedsystemswouldrequiretemperaturecontrol,butuserelativelylittleCO2foraugmentationcomparedwithFACEsystems.
Moreover,plantscanbemaintainedataboveorbelowcurrentambientCO2conditions.
Temperaturecanalsobemanipulated.
UnlikeopenCO2enrichmentsystemsinwhichCO2concentrationsexhibitpronouncedshort-termuctuationsaroundthetargetconcentration(HoltumandWinter2003;Bunce2012),relativelystableCO2concentrationscanbemaintainedinenclosedsystems.
Althoughenclosedsystemshavedisadvantagesintermsofarticialrainandrequiresustainedairmixing,thistechnologyopensexcitingpossibilitiesforexperimentalecosystemscience,includingthemeasurementofecosystemgasexchange(Osmondetal.
2004),eitherbyplacingpremanufacturedenclosuresoverexistingtropicalvegetationorbyestablishingtreestandsinpurpose-builtenclosures.
Belowgroundresponses,includingrootdeploymentandfunction,nutrientturnoverandsoilorganicmatterprocessing,areespeciallyimportanttotheintegratedecosystemresponsetoelevatedCO2.
Belowgroundprocessesaredifculttomeasureandarestillpoorlyquantied.
Forexample,becauseofthepastfocusontemperateforests,inwhichnitrogenisbelievedtobethemajorlimitingnutrient,therehasbeenlittleresearchontheeffectsofelevatedcaonphosphoruscycling,andphosphoruscyclingispoorlyrepresentedinmodels.
Experimentalapproachesandsiteselectionmustcarefullyconsidertheimportanceofthebelowgroundenvironmentbyavoidingartefactsassociatedwithsoildisturbanceandincludethecapabilityforsufcientbelowgroundmeasurements.
Manyofthecriticalquestionsabouttheroleoftropicalforestsinglobalcarboncyclingareinherentlylong-termquestions(e.
g.
50–100years).
Furthermore,noexperimentorsmallsetofexperimentscaneverrepresentthefulldiversityofthetropicalbiome.
Modelsthatarewellinformedbyexperimentalobservationsofferanopportunitytoextrapolatethroughspaceandtime.
Henceanimportantstrategyfordesigningexperimentsthatwillprovidethemostusefulandneededdataandthegreatestunderstandingofprocessesistoengageamodellingperspectivefromthestart.
OpportunitiesforreducinguncertaintyinmodelsThecurrentgenerationofecosystemmodelsdemonstratesthepotentialforelevatedcatomitigatemuchoftheclimate-drivenlossoftropicalforestbiomassthatmightotherwiseoccurbytheyear2100(Lapolaetal.
2009;Galbraithetal.
2010;Poulteretal.
2010a;Rammigetal.
2010).
However,modelpredictionsarecurrentlybasedonverylimitedinformationandomitwhatarelikelytobecriticalmodifyingprocesses.
Uncertaintiesintherepresentationofelevatedcaeffectsontropicalforestvegetationincludethepotentialforelevatedcatorelievethelimitationsoncanopyphotosynthesiscausedbyhigh-temperaturestress,nutrientlimitationsonNPPresponsestoelevatedca,theeffectsofelevatedcaondroughtinducedtreemortalityandtheeffectsofelevatedcaonspeciescomposition.
Theresultsofexistingecosystemmodelsrepresenttestablehypothesesthatcanguideexperimentaldesign,andunderstandingthecriticalpointsofuncertaintyinthemodelswithregardtorepresentationofelevatedcaresponsescanhelptoidentifythehighestpriorityresearchneeds.
Progresscanbeachievedintherepresentationofleafandcanopyresponsestohightemperaturebycomparingmodelledresponsecurveswiththoseobservedinleafcuvettesandbyeddycovariance(Lloydetal.
1995;DoughtyandGoulden2008;542FunctionalPlantBiologyL.
A.
Cernusaketal.
Verbeecketal.
2011).
Forexample,observationsinatropicalforestinAmazoniaindicatedthata3Criseinbulkairtemperatureabove28.
5C,causedbyanincreaseinirradiance,resultedina40%reductioninwhole-canopygrossgasexchange(DoughtyandGoulden2008).
Thiswascausedbyincreasesinleaftemperaturesof5–8Cinthesunlitfractionofthecanopy,andsubsequentdeclinesingsandAinsunlitleaves.
Fig.
6showsanexampleofmodelledresponsecurvesforcanopyphotosynthesisfortwodynamicglobalvegetationmodels,Lund-Potsdam-Jena(LPJ)andOrganizingCarbonandHydrologyinDynamicEcosystems(ORCHIDEE),whichdifferintheirtreatmentoflightdiffusionthroughacanopy,gs,parameterisationoftheFarquharetal.
(1980)photosynthesismodelandsoil–waterbalance(Sitchetal.
2003;Krinneretal.
2005).
Althoughtemperatureandradiationresponsesdifferbetweenthetwomodels,neitherappearscapableofcapturingthepatternobservedintheAmazonianforest,namelyanalmostlineardeclineincanopyphotosynthesisbetweenbulkairtemperaturesof28.
5and31.
5C.
Inordertoextendtherepresentationoftemperatureresponsestoelevatedcaconditions,validationdatafromexperimentalmanipulationexperimentsareessential.
Recentprogresshasbeenmadetowardsincludingtheeffectsofphosphorusavailabilityinecosystemmodels(Lloydetal.
2001;Wangetal.
2007;Mercadoetal.
2011;Golletal.
2012).
However,therepresentationofphosphorusdynamicsinmodelsisalsolimitedbyuncertaintyabouttheextenttowhichtropicalwoodyplantscanaccessorganicphosphorus,andthemobilityoforganicphosphoruscompoundsintropicalforestsoils(Turner2008;Cernusaketal.
2011c;TurnerandEngelbrecht2011).
Animprovedunderstandingofphosphoruscyclingintropicalforestsisneeded.
Furthermore,theeffectsofphosphorusavailabilityontheresponsivenessoftropicalvegetationtoelevatedcahavenotbeentestedexperimentally.
Suchexperimentsshouldbegivenahighpriority.
Predictingdrought-inducedvegetationmortalityremainsasignicantchallenge(Nepstadetal.
2007;McDowelletal.
2011).
Itwasrecentlyshownthathydraulicimpairmentwasabetterpredictorofdrought-inducedmortalitythanwasthesizeoftheNSCpoolinatemperatedeciduoustreespecies(Andereggetal.
2012).
Carbonstarvationthusdidnotappeartobeausefulpredictor.
However,ifitisshownthattheNSCpoolplaysasignicantroleinembolismrepair(Salaetal.
2012),thiscouldhaveimplicationsforrecoveryfromdroughtunderelevatedca,becauseNSCconcentrationsarelikelytoincrease.
Furtherexperimentationisrequiredtodevelopamechanisticmodelofmortalitymechanismsandplantagestructurethatcanaccountfortheeffectsofelevatedca.
Atthecommunityscale,incorporatingpredictionsregardingtheeffectsofelevatedcaoncompositionalchangeintoecosystemmodelsrepresentsafurtherchallenge.
Ifexperimentalmanipulationsofcaintropicalforestsarelimitedtotargetingjuvenilestages,thenmodelswillneedtoupscaleobservedshiftsintherecruitmentsuccessofplantfunctionaltypestothedynamicsofentireforestassemblages.
Thedevelopmentofmodels,suchastheEcosystemDemographymodel(Moorcroftetal.
2001;Medvigyetal.
2009;Fisheretal.
2010),whichlinkmechanisticrepresentationsofecophysiologyandbiogeochemistrytothesize-structuredcompetitionandsuccessionfoundinforestgapmodelswillprovideapotentialtooltoachievethisintegration.
Inaddition,anewapproachtorepresentingfunctionaldiversityindynamicglobalvegetationmodelswasrecentlydeveloped,basedongeneratingplanttraitsfromdistributionsofgrowthstrategiesratherthanfromxedtraits(Pavlicketal.
2012).
Thisapproachcouldproveusefulforsimulatingtropicalforests,allowingforamoreexiblerepresentationoftheirstructureandfunctionthroughspaceandtime.
Modelvalidationunderambientcausingexistinglong-termtropicalforestdynamicsdatafromlargeplots(Condit1995)willbeessential.
ConclusionsModelsimulationssuggestthattropicalforestNPPwillrespondmorestronglytoelevatedcathanthatoftemperateandborealforests.
Thishypothesiscouldhavesignicantimplicationsfortheglobalcarboncycleandforclimatechangepredictions.
500wm–2750ppm750ppm450ppm300ppm450ppm300ppm250wm–2100wm–2020040060080010001002003004005001560402002025303540Anet(molCm–2s–1)@25°CAmbientCO2(ppm)Shortwaveradiation(Wm–2)Airtemperature(°C)Anet(molCm–2s–1)@400Wm–2(a)(b)(c)Fig.
6.
Theoreticalresponsecurvesforwhole-canopyphotosynthesisversus(a)ambientCO2,(b)shortwaveradiationand(c)airtemperatureusingthemodiedFarquharetal.
formulationintheLPJandORCHIDEEdynamicglobalvegetationmodels(Farquharetal.
1980;Collatzetal.
1991;Sitchetal.
2003;Krinneretal.
2005).
Simulationsareforatropicalevergreenplantfunctionaltype,assuminganondroughtratioofintercellularCO2concentrationtoambientCO2concentrationof0.
80(LPJ)or0.
67(ORCHIDEE).
BlacklinesrefertopredictionsofLPJandredlinestopredictionsofORCHIDEE.
Panel(a)showsresponsesatthreedifferentirradiances.
(b)and(c)showresponsesatthreedifferentatmosphericCO2concentrations.
Tropicalforestsandelevated[CO2]FunctionalPlantBiology543Itissufcientlycompellingtojustifylarge-scaleinvestmentinexperimentaltesting.
Ultimately,wewouldliketoknowwhetherandtowhatextentelevatedca-inducedincreasesinNPPintropicalforestswillresultinincreasedcarbonstorageandnegativefeedbacktoca.
Addressingthisquestionwillrequireacombinationofexperimentalandmodel-basedapproaches.
Additionalsupportinghypothesesthatshouldalsohaveahighpriorityforexperimentalresearcharethefollowing:(1)elevatedcawillincreasethehightemperaturetoleranceofphotosynthesisintropicaltreeleaves;(2)phosphorusavailabilitywilllimittropicalforestNPPresponsestoelevatedca;(3)elevatedcawillincreasethedroughtresistanceoftropicalforests;and(4)elevatedca-inducedchangesinspeciescompositionwillcausedirectionalchangesincarbonstorageintropicalforests.
Carefullyconsideredexperimentsthatneednotnecessarilytakeplaceatthestandscalecouldmakeimportantcontributionstowardstestingtheselatterhypotheses.
Understoreyexperimentsthatquantifythepotentialforelevatedcatoaltertheregenerationsuccessofspeciesrepresentingimportantfunctionalgroups,andaccountforinteractionswithsoilnutrientandwaterstatus,wouldbeachievableintheneartermandcost-effective.
Open-topchambersandbranchbagsinstalledinthecanopytoelevateca,incombinationwithinsituwarming,couldprovideausefulmethodforansweringquestionsaboutcanopyleafphysiologyinrelationtotemperatureanddrought.
Theseexperimentsshouldnotbeviewedasreplacementsforstand-levelexperiments,butratherastractablerststeps.
Stand-levelCO2enrichmentexperimentswillprovideinvaluableresults,andshouldbevigorouslypursued.
ThecriticalroleoftropicalforestsintheterrestrialcarboncycleandthepaucityofexperimentaldatasofaravailabletogethershouldmaketropicalforestCO2enrichmentexperimentsaveryhighpriorityforglobalclimatechangeresearch.
AcknowledgementsThisreviewresultedfromasymposiumheldattheSmithsonianTropicalResearchInstituteon31Marchand1April2011.
FundingforthesymposiumwasprovidedbytheSmithsonianTropicalResearchInstitute.
LACwassupportedbyaFutureFellowshipfromtheAustralianResearchCouncil(FT100100329).
ReferencesAinsworthEA,LongSP(2005)Whathavewelearnedfrom15yearsoffree-airCO2enrichment(FACE)Ameta-analyticreviewoftheresponsesofphotosynthesis,canopypropertiesandplantproductiontorisingCO2.
NewPhytologist165,351–372.
doi:10.
1111/j.
1469-8137.
2004.
01224.
xAinsworthEA,RogersA(2007)Theresponseofphotosynthesisandstomatalconductancetorising[CO2]:mechanismsandenvironmentalinteractions.
Plant,Cell&Environment30,258–270.
doi:10.
1111/j.
1365-3040.
2007.
01641.
xAndereggWRL,BerryJA,SmithDD,SperryJS,AndereggLDL,FieldCB(2012)Therolesofhydraulicandcarbonstressinawidespreadclimate-inducedforestdie-off.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica109,233–237.
doi:10.
1073/pnas.
1107891109ArnoneJA,KrnerC(1995)SoilandbiomasscarbonpoolsinmodelcommunitiesoftropicalplantsunderelevatedCO2.
Oecologia104,61–71.
doi:10.
1007/BF00365563ArpWJ,VanMierloJEM,BerendseF,SnijdersW(1998)InteractionsbetweenelevatedCO2concentration,nitrogenandwater:effectsongrowthandwateruseofsixperennialplantspecies.
Plant,Cell&Environment21,1–11.
doi:10.
1046/j.
1365-3040.
1998.
00257.
xAtkinOK,BruhnD,HurryVM,TjoelkerMG(2005)Thehotandthecold:unravellingthevariableresponseofplantrespirationtotemperature.
FunctionalPlantBiology32,87–105.
doi:10.
1071/FP03176BaderMKF,SiegwolfR,KrnerC(2010)Sustainedenhancementofphotosynthesisinmaturedeciduousforesttreesafter8yearsoffreeairCO2enrichment.
Planta232,1115–1125.
doi:10.
1007/s00425-010-1240-8BakerTR,PhillipsOL,MalhiY,AlmeidaS,ArroyoL,DiFioreA,ErwinT,HiguchiN,KilleenTJ,LauranceSGLewisSL,MonteagudoA,NeillDA,NúezVargasP,PitmanNCA,SilvaJNM,VásquezMartinezR(2004)IncreasingbiomassinAmazonianforestplots.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences359,353–365.
doi:10.
1098/rstb.
2003.
1422BarronAR,WürzburgerN,BellengerJP,WrightSJ,KraepielAML,HedinLO(2009)Molybdenumlimitationofasymbioticnitrogenxationintropicalforestsoils.
NatureGeoscience2,42–45.
doi:10.
1038/ngeo366BarronAR,PurvesDW,HedinLO(2011)Facultativenitrogenxationbycanopylegumesinalowlandtropicalforest.
Oecologia165,511–520.
doi:10.
1007/s00442-010-1838-3BartonCVM,DuursmaRA,MedlynBE,EllsworthDS,EamusD,TissueDT,AdamsMA,ConroyJ,CrousKY,LiberlooM,LwM,LinderS,McMurtrieRE(2012)EffectsofelevatedatmosphericCO2oninstantaneoustranspirationefciencyatleafandcanopyscalesinEucalyptussaligna.
GlobalChangeBiology18,585–595.
doi:10.
1111/j.
1365-2486.
2011.
02526.
xBassetY,HorlyckV,WrightSJ(Eds)(2003)'Studyingforestcanopiesfromabove:theinternationalcanopycranenetwork.
'(SmithsonianTropicalResearchInstitute,PanamaandtheUnitedNationsEnvironmentalProgramme:Balboa)BattipagliaG,SaurerM,CherubiniP,CalfapietraC,McCarthyHR,NorbyRJ,CotrufoMF(2013)ElevatedCO2increasestree-levelintrinsicwateruseefciency:insightsfromcarbonandoxygenisotopeanalysesintreeringsacrossthreeforestFACEsites.
NewPhytologist197,544–554.
doi:10.
1111/nph.
12044BeerC,ReichsteinM,TomelleriE,CiaisP,JungM,CarvalhaisN,RdenbeckC,ArainMA,BaldocchiD,BonanGB,BondeauA,CescattiA,LasslopG,LindrothA,LomasM,LuyssaertS,MargolisH,OlesonKW,RoupsardO,VeenendaalE,ViovyN,WilliamsC,WoodwardFI,PapaleD(2010)Terrestrialgrosscarbondioxideuptake:globaldistributionandcovariationwithclimate.
Science329,834–838.
doi:10.
1126/science.
1184984BerryJ,BjrkmanO(1980)Photosyntheticresponseandadaptationtotemperatureinhigherplants.
AnnualReviewofPlantPhysiologyandPlantMolecularBiology31,491–543.
doi:10.
1146/annurev.
pp.
31.
060180.
002423BerrymanCA,EamusD,DuffGA(1993)TheinuenceofCO2enrichmentongrowth,nutrientcontentandbiomassallocationofMaranthescorymbosa.
AustralianJournalofBotany41,195–209.
doi:10.
1071/BT9930195BerrymanCA,EamusD,DuffGA(1994)StomatalresponsestoarangeofvariablesintwotropicaltreespeciesgrownwithCO2enrichment.
JournalofExperimentalBotany45,539–546.
doi:10.
1093/jxb/45.
5.
539BettsRA,CoxPM,CollinsM,HarrisPP,HuntingfordC,JonesCD(2004)Theroleofecosystem–atmosphereinteractionsinsimulatedAmazonianprecipitationdecreaseandforestdiebackunderglobalclimatewarming.
TheoreticalandAppliedClimatology78,157–175.
doi:10.
1007/s00704-004-0050-yBloomAJ,Rubio-AsensioJS,RandallL,RachmilevitchS,CousinsAB,CarlisleEA(2012)CO2enrichmentinhibitsshootnitrateassimilationinC3butnotC4plantsandslowsgrowthundernitrateinC3plants.
Ecology93,355–367.
doi:10.
1890/11-0485.
1BonalD,PontonS,LeThiecD,RichardB,NingreN,HéraultB,OgéeJ,GonzalezS,PignalM,SabatierD,GuehlJ-M(2011)Leaffunctional544FunctionalPlantBiologyL.
A.
Cernusaketal.
responsetoincreasingatmosphericCO2concentrationsoverthelastcenturyintwonorthernAmazoniantreespecies:anhistoricald13Candd18Oapproachusingherbariumsamples.
Plant,Cell&Environment34,1332–1344.
doi:10.
1111/j.
1365-3040.
2011.
02333.
xBoyerJS(1968)Relationshipofwaterpotentialtogrowthofleaves.
PlantPhysiology43,1056–1062.
doi:10.
1104/pp.
43.
7.
1056BrandoPM,NepstadDC,DavidsonEA,TrumboreSE,RayD,CamargoP(2008)Droughteffectsonlitterfall,woodproductionandbelowgroundcarboncyclinginanAmazonforest:resultsofathroughfallreductionexperiment.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences363,1839–1848.
doi:10.
1098/rstb.
2007.
0031BrienenRJW,WanekW,HietzP(2011)Stablecarbonisotopesintreeringsindicateimprovedwateruseefciencyanddroughtresponsesofatropicaldryforesttreespecies.
Trees25,103–113.
doi:10.
1007/s00468-010-0474-1BrookshireENJ,GerberS,MengeDNL,HedinLO(2012)Largelossesofinorganicnitrogenfromtropicalrainforestssuggestalackofnitrogenlimitation.
EcologyLetters15,9–16.
doi:10.
1111/j.
1461-0248.
2011.
01701.
xBuchmannN,GuehlJM,BarigahTS,EhleringerJR(1997)InterseasonalcomparisonofCO2concentrations,isotopiccomposition,andcarbondynamicsinanAmazonianrainforest(FrenchGuiana).
Oecologia110,120–131.
doi:10.
1007/s004420050140BuckleyTN(2008)TheroleofstomatalacclimationinmodellingtreeadaptationtohighCO2.
JournalofExperimentalBotany59,1951–1961.
doi:10.
1093/jxb/erm234BugmannH,BiglerC(2011)WilltheCO2fertilizationeffectinforestsbeoffsetbyreducedtreelongevityOecologia165,533–544.
doi:10.
1007/s00442-010-1837-4BunceJA(2012)Responsesofcottonandwheatphotosynthesisandgrowthtocyclicvariationincarbondioxideconcentration.
Photosynthetica50,395–400.
doi:10.
1007/s11099-012-0041-7BunkerDE,deClerckF,BradfordJC,ColwellRK,PerfectoI,PhillipsOL,SankaranM,NaeemS(2005)Specieslossandabovegroundcarbonstorageinatropicalforest.
Science310,1029–1031.
doi:10.
1126/science.
1117682CampbellGS,NormanJM(1998)'Anintroductiontoenvironmentalbiophysics.
'(Springer-Verlag:NewYork)CarswellFE,GraceJ,LucasME,JarvisPG(2000)InteractionofnutrientlimitationandelevatedCO2concentrationoncarbonassimilationofatropicaltreeseedling(Cedrelaodorata).
TreePhysiology20,977–986.
doi:10.
1093/treephys/20.
14.
977CavaleriMA,OberbauerSF,RyanMG(2008)Foliarandecosystemrespirationinanold-growthtropicalrainforest.
Plant,Cell&Environment31,473–483.
doi:10.
1111/j.
1365-3040.
2008.
01775.
xCentrittoM,LeeHSJ,JarvisPG(1999)InteractiveeffectsofelevatedCO2anddroughtoncherry(Prunusavium)seedlingsI.
Growth,whole-plantwateruseefciencyandwaterloss.
NewPhytologist141,129–140.
doi:10.
1046/j.
1469-8137.
1999.
00326.
xCernusakLA,MarshallJD(2001)Responsesoffoliard13C,gasexchange,andleafmorphologytoreducedhydraulicconductivityinPinusmonticolabranches.
TreePhysiology21,1215–1222.
doi:10.
1093/treephys/21.
16.
1215CernusakLA,HutleyLB,BeringerJ,HoltumJAM,TurnerBL(2011a)Photosyntheticphysiologyofeucalyptsalongasub-continentalrainfallgradientinnorthernAustralia.
AgriculturalandForestMeteorology151,1462–1470.
doi:10.
1016/j.
agrformet.
2011.
01.
006CernusakLA,WinterK,MartinezC,CorreaE,ArandaJ,GarciaM,JaramilloC,TurnerBL(2011b)ResponsesoflegumeversusnonlegumetropicaltreeseedlingstoelevatedCO2concentration.
PlantPhysiology157,372–385.
doi:10.
1104/pp.
111.
182436CernusakLA,WinterK,TurnerBL(2011c)Transpirationmodulatesphosphorusacquisitionintropicaltreeseedlings.
TreePhysiology31,878–885.
doi:10.
1093/treephys/tpr077ChambersJQ,SilverWL(2004)Someaspectsofecophysiologicalandbiogeochemicalresponsesoftropicalforeststoatmosphericchange.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences359,463–476.
doi:10.
1098/rstb.
2003.
1424ChaveJ,ConditR,LaoS,CaspersenJP,FosterRB,HubbellSP(2003)Spatialandtemporalvariationofbiomassinatropicalforest:resultsfromalargecensusplotinPanama.
JournalofEcology91,240–252.
doi:10.
1046/j.
1365-2745.
2003.
00757.
xChavesMM,MarocoJP,PereiraJS(2003)Understandingplantresponsestodrought–fromgenestothewholeplant.
FunctionalPlantBiology30,239–264.
doi:10.
1071/FP02076ChenY,RandersonJT,vanderWerfGR,MortonDC,MuMQ,KasibhatlaPS(2010)Nitrogendepositionintropicalforestsfromsavannaanddeforestationres.
GlobalChangeBiology16,2024–2038.
doi:10.
1111/j.
1365-2486.
2009.
02156.
xClarkDB,ClarkDA,OberbauerSF(2010)AnnualwoodproductioninatropicalrainforestinNECostaRicalinkedtoclimaticvariationbutnottoincreasingCO2.
GlobalChangeBiology16,747–759.
doi:10.
1111/j.
1365-2486.
2009.
02004.
xClementzMT,SewallJO(2011)Latitudinalgradientsingreenhouseseawaterd18O:evidencefromEocenesireniantoothenamel.
Science332,455–458.
doi:10.
1126/science.
1201182CollatzGJ,BallJT,GrivetC,BerryJA(1991)Physiologicalandenvironmentalregulationofstomatalconductance,photosynthesisandtranspiration:amodelthatincludesalaminarboundarylayer.
AgriculturalandForestMeteorology54,107–136.
doi:10.
1016/0168-1923(91)90002-8ConditR(1995)Researchinlarge,long-termtropicalforestplots.
TrendsinEcology&Evolution10,18–22.
doi:10.
1016/S0169-5347(00)88955-7ConditR,HubbellSP,FosterRB(1995)Mortalityratesof205neotropicaltreeandshrubspeciesandtheimpactofaseveredrought.
EcologicalMonographs65,419–439.
doi:10.
2307/2963497daCostaACL,GalbraithD,AlmeidaS,PortelaBTT,daCostaM,deAthaydesSilvaJuniorJ,BragaAP,deGoncalvesPHL,deOliveiraAAR,FisherR,PhillipsOL,MetcalfeDB,LevyP,MeirP(2010)Effectof7yrofexperimentaldroughtonvegetationdynamicsandbiomassstorageofaneasternAmazonianrainforest.
NewPhytologist187,579–591.
doi:10.
1111/j.
1469-8137.
2010.
03309.
xDallingJW,HubbellSP(2002)Seedsize,growthrateandgapmicrositeconditionsasdeterminantsofrecruitmentsuccessforpioneerspecies.
JournalofEcology90,557–568.
doi:10.
1046/j.
1365-2745.
2002.
00695.
xDavidsonEA,deCarvalhoCJR,FigueiraAM,IshidaFY,OmettoJPHB,NardotoGB,SabáRT,HayashiSN,LealEC,VieiraICG,MartinelliLA(2007)RecuperationofnitrogencyclinginAmazonianforestsfollowingagriculturalabandonment.
Nature447,995–998.
doi:10.
1038/nature05900DawsMI,CrabtreeLM,DallingJW,MullinsCE,BurslemD(2008)Germinationresponsestowaterpotentialinneotropicalpioneerssuggestlarge-seededspeciestakemorerisks.
AnnalsofBotany102,945–951.
doi:10.
1093/aob/mcn186deBoerHJ,LammertsmaEI,Wagner-CremerF,DilcherDL,WassenMJ,DekkerSC(2011)ClimateforcingduetooptimizationofmaximalleafconductanceinsubtropicalvegetationunderrisingCO2.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica108,4041–4046.
doi:10.
1073/pnas.
1100555108deOliveiraEAD,ApprobatoAU,LegracieJR,MartinezCA(2012)Soil-nutrientavailabilitymodiestheresponseofyoungpioneerandlatesuccessionaltreestoelevatedcarbondioxideinaBraziliantropicalenvironment.
EnvironmentalandExperimentalBotany77,53–62.
doi:10.
1016/j.
envexpbot.
2011.
11.
003Tropicalforestsandelevated[CO2]FunctionalPlantBiology545deSouzaMoreiraFM,daSilvaMF,deFariaSM(1992)OccurenceofnodulationinlegumespeciesintheAmazonregionofBrazil.
NewPhytologist121,563–570.
doi:10.
1111/j.
1469-8137.
1992.
tb01126.
xDoughtyCE(2011)AninsituleafandbranchwarmingexperimentintheAmazon.
Biotropica43,658–665.
doi:10.
1111/j.
1744-7429.
2010.
00746.
xDoughtyCE,GouldenML(2008)AretropicalforestsnearahightemperaturethresholdJournalofGeophysicalResearch113,–G00B07.
doi:10.
1029/2007JG000632DrakeBG,Gonzàlez-MelerMA,LongSP(1997)Moreefcientplants:aconsequenceofrisingatmosphericCO2AnnualReviewofPlantPhysiologyandPlantMolecularBiology48,609–639.
doi:10.
1146/annurev.
arplant.
48.
1.
609DuursmaRA,BartonCVM,EamusD,MedlynBE,EllsworthDS,ForsterMA,TissueDT,LinderS,McMurtrieRE(2011)RootingdepthexplainsCO2droughtinteractioninEucalyptussaligna.
TreePhysiology31,922–931.
doi:10.
1093/treephys/tpr030EamusD(1991)TheinteractionofrisingCO2andtemperatureswithwateruseefciency.
Plant,Cell&Environment14,843–852.
doi:10.
1111/j.
1365-3040.
1991.
tb01447.
xEamusD,BerrymanCA,DuffGA(1993)Assimilation,stomatalconductance,specicleafareaandchlorophyllresponsestoelevatedCO2ofMaranthescorymbosa,atropicalmonsoonrainforestspecies.
AustralianJournalofPlantPhysiology20,741–755.
doi:10.
1071/PP9930741EamusD,BerrymanCA,DuffGA(1995)TheimpactofCO2enrichmentonwaterrelationsinMaranthescorymbosaandEucalyptustetrodonta.
AustralianJournalofBotany43,273–282.
doi:10.
1071/BT9950273EdenProject2013EdenProjecthomepage.
(EdenProject:BodelvaUK)Availableonlineat:www.
edenproject.
com[Veried8April2013]EngelbrechtBMJ,DallingJW,PearsonTRH,WolfRL,GalvezDA,KoehlerT,TyreeMT,KursarTA(2006)Shortdryspellsinthewetseasonincreasemortalityoftropicalpioneerseedlings.
Oecologia148,258–269.
doi:10.
1007/s00442-006-0368-5EngelbrechtBMJ,ComitaLS,ConditR,KursarTA,TyreeMT,TurnerBL,HubbellSP(2007)Droughtsensitivityshapesspeciesdistributionpatternsintropicalforests.
Nature447,80–82.
doi:10.
1038/nature05747FarquharGD,RichardsRA(1984)Isotopiccompositionofplantcarboncorrelateswithwater-useefciencyinwheatgenotypes.
AustralianJournalofPlantPhysiology11,539–552.
doi:10.
1071/PP9840539FarquharGD,SharkeyTD(1982)Stomatalconductanceandphotosynthesis.
AnnualReviewofPlantPhysiology33,317–345.
doi:10.
1146/annurev.
pp.
33.
060182.
001533FarquharGD,vonCaemmererS,BerryJA(1980)AbiochemicalmodelofphotosyntheticCO2assimilationinleavesofC3species.
Planta149,78–90.
doi:10.
1007/BF00386231FarquharGD,O'LearyMH,BerryJA(1982)Ontherelationshipbetweencarbonisotopediscriminationandtheintercellularcarbondioxideconcentrationinleaves.
AustralianJournalofPlantPhysiology9,121–137.
doi:10.
1071/PP9820121FieldCB,BehrenfeldMJ,RandersonJT,FalkowskiP(1998)Primaryproductionofthebiosphere:integratingterrestrialandoceaniccomponents.
Science281,237–240.
doi:10.
1126/science.
281.
5374.
237FisherR,McDowellN,PurvesD,MoorcroftP,SitchS,CoxP,HuntingfordC,MeirP,WoodwardFI(2010)Assessinguncertaintiesinasecond-generationdynamicvegetationmodelcausedbyecologicalscalelimitations.
NewPhytologist187,666–681.
doi:10.
1111/j.
1469-8137.
2010.
03340.
xFyllasNM,PatinoS,BakerTR,NardotoGB,MartinelliLA,QuesadaCA,PaivaR,SchwarzM,HornaV,MercadoLM(2009)Basin-widevariationsinfoliarpropertiesofAmazonianforest:phylogeny,soilsandclimate.
Biogeosciences6,2677–2708.
doi:10.
5194/bg-6-2677-2009GalbraithD,LevyPE,SitchS,HuntingfordC,CoxP,WilliamsM,MeirP(2010)MultiplemechanismsofAmazonianforestbiomasslossesinthreedynamicglobalvegetationmodelsunderclimatechange.
NewPhytologist187,647–665.
doi:10.
1111/j.
1469-8137.
2010.
03350.
xGarstangM,WhiteS,ShugartHH,HalversonJ(1998)ConvectiveclouddowndraftsasthecauseoflargeblowdownsintheAmazonrainforest.
MeteorologyandAtmosphericPhysics67,199–212.
doi:10.
1007/BF01277510GedneyN,CoxPM,BettsRA,BoucherO,HuntingfordC,StottPA(2006)Detectionofadirectcarbondioxideeffectincontinentalriverrunoffrecords.
Nature439,835–838.
doi:10.
1038/nature04504GentryAH(1988)Changesinplantcommunitydiversityandoristiccompositiononenvironmentalandgeographicalgradients.
AnnalsoftheMissouriBotanicalGarden75,1–34.
doi:10.
2307/2399464GloorM,PhillipsOL,LloydJJ,LewisSL,MalhiY,BakerTR,López-GonzalezG,PeacockJ,AlmeidaS,AlvesdeOliveiraAC,AlvarezE,AmaralI,ArroyoL,AymardG,BankiO,BlancL,BonalD,BrandoP,ChaoKJ,ChaveJ,DávilaN,ErwinT,SilvaJ,DiFioreA,FeldpauschTR,FreitasA,HerreraR,HiguchiN,HonorioE,JiménezE,KilleenT,LauranceW,MendozaC,MonteagudoA,AndradeA,NeillD,NepstadD,NúezVargasP,PeuelaMC,PeaCruzA,PrietoA,PitmanN,QuesadaC,SalomoR,SilveiraM,SchwarzM,StroppJ,RamírezF,RamírezH,RudasA,TerSteegeH,SilvaN,TorresA,TerborghJ,VasquézR,VanDerHeijdenG(2009)Doesthedisturbancehypothesisexplainthebiomassincreaseinbasin-wideAmazonforestplotdataGlobalChangeBiology15,2418–2430.
doi:10.
1111/j.
1365-2486.
2009.
01891.
xGollDS,BrovkinV,ParidaBR,ReickCH,KattgeJ,ReichPB,vanBodegomPM,NiinemetsU(2012)Nutrientlimitationreduceslandcarbonuptakeinsimulationswithamodelofcombinedcarbon,nitrogenandphosphoruscycling.
BiogeosciencesDiscussions9,3173–3232.
doi:10.
5194/bgd-9-3173-2012Gonzàlez-MelerMA,Blanc-BetesE,FlowerCE,WardJK,Gomez-CasanovasN(2009)PlasticandadaptiveresponsesofplantrespirationtochangesinatmosphericCO2concentration.
PhysiologiaPlantarum137,473–484.
doi:10.
1111/j.
1399-3054.
2009.
01262.
xGoodfellowJ,EamusD,DuffG(1997)DiurnalandseasonalchangesintheimpactofCO2enrichmentonassimilation,stomatalconductanceandgrowthinalong-termstudyofMangiferaindicainthewet–drytropicsofAustralia.
TreePhysiology17,291–299.
doi:10.
1093/treephys/17.
5.
291GouldenML,MillerSD,daRochaHR,MentonMC,deFreitasHC,FigueiraAMES,deSousaCAD(2004)DielandseasonalpatternsoftropicalforestCO2exchange.
EcologicalApplications14,42–54.
doi:10.
1890/02-6008GrahamEA,MulkeySS,KitajimaK,PhillipsNG,WrightSJ(2003)CloudcoverlimitsnetCO2uptakeandgrowthofarainforesttreeduringtropicalrainyseasons.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica100,572–576.
doi:10.
1073/pnas.
0133045100GuehlJM,PiconC,AussenacG,GrossP(1994)InteractiveeffectsofelevatedCO2andsoildroughtongrowthandtranspirationefciencyanditsdeterminantsintwoEuropeanforesttreespecies.
TreePhysiology14,707–724.
doi:10.
1093/treephys/14.
7-8-9.
707HedinLO,BrookshireENJ,MengeDNL,BarronAR(2009)Thenitrogenparadoxintropicalforestecosystems.
AnnualReviewofEcologyEvolutionandSystematics40,613–635.
doi:10.
1146/annurev.
ecolsys.
37.
091305.
110246HicklerT,SmithB,PrenticeIC,MjoforsK,MillerP,ArnethA,SykesMT(2008)CO2fertilizationintemperateFACEexperimentsnotrepresentativeofborealandtropicalforests.
GlobalChangeBiology14,1531–1542.
doi:10.
1111/j.
1365-2486.
2008.
01598.
xHietzP,WanekW,DunischO(2005)Long-termtrendsincellulosed13Candwater-useefciencyoftropicalCedrelaandSwieteniafromBrazil.
TreePhysiology25,745–752.
doi:10.
1093/treephys/25.
6.
745HietzP,TurnerBL,WanekW,RichterA,NockCA,WrightSJ(2011)Long-termchangeinthenitrogencycleoftropicalforests.
Science334,664–666.
doi:10.
1126/science.
1211979546FunctionalPlantBiologyL.
A.
Cernusaketal.
HoganKP,SmithAP,ZiskaLH(1991)PotentialeffectsofelevatedCO2andchangesintemperatureontropicalplants.
Plant,Cell&Environment14,763–778.
doi:10.
1111/j.
1365-3040.
1991.
tb01441.
xHoltumJAM,WinterK(2001)AreplantsgrowingclosetotheoorsoftropicalforestsexposedtomarkedlyelevatedconcentrationsofcarbondioxideAustralianJournalofBotany49,629–636.
doi:10.
1071/BT00054HoltumJAM,WinterK(2003)PhotosyntheticCO2uptakeinseedlingsoftwotropicaltreespeciesexposedtooscillatingelevatedconcentrationsofCO2.
Planta218,152–158.
doi:10.
1007/s00425-003-1089-1HoltumJAM,WinterK(2010)Elevated[CO2]andforestvegetation:moreawaterissuethanacarbonissueFunctionalPlantBiology37,694–702.
doi:10.
1071/FP10001HoltumJAM,ArandaJ,VirgoA,GehrigHH,WinterK(2004)d13CvaluesandcrassulaceanacidmetabolisminClusiaspeciesfromPanama.
Trees18,658–668.
doi:10.
1007/s00468-004-0342-yHoultonBZ,WangYP,VitousekPM,FieldCB(2008)Aunifyingframeworkfordinitrogenxationintheterrestrialbiosphere.
Nature454,327–330.
doi:10.
1038/nature07028HsiaoTC(1973)Plantresponsestowaterstress.
AnnualReviewofPlantPhysiologyandPlantMolecularBiology24,519–570.
doi:10.
1146/annurev.
pp.
24.
060173.
002511HüveK,BicheleI,TobiasM,NiinemetsU(2006)Heatsensitivityofphotosyntheticelectrontransportvariesduringthedayduetochangesinsugarsandosmoticpotential.
Plant,Cell&Environment29,212–228.
doi:10.
1111/j.
1365-3040.
2005.
01414.
xIngwellLL,WrightSJ,BecklundKK,HubbellSP,SchnitzerSA(2010)Theimpactoflianason10yearsoftreegrowthandmortalityonBarroColoradoIsland,Panama.
JournalofEcology98,879–887.
doi:10.
1111/j.
1365-2745.
2010.
01676.
xIntergovernmentalPanelonClimateChange(IPCC)(2011)Carbondioxide:projectedemissionsandconcentrations.
(IPCC:Geneva)Availableat:http://www.
ipcc-data.
org/ddc_co2.
html[Veried5April2013]IshidaA,TomaT,Marjenah(1999)LimitationofleafcarbongainbystomatalandphotochemicalprocessesinthetopcanopyofMacarangaconifera,atropicalpioneertree.
TreePhysiology19,467–473.
doi:10.
1093/treephys/19.
7.
467JaramilloC,OchoaD,ContrerasL,PaganiM,Carvajal-OrtizH,PrattLM,KrishnanS,CardonaA,RomeroM,QuirozL,RodriguezG,RuedaMJ,delaParraF,MorónS,GreenW,BayonaG,MontesC,QuinteroO,RamirezR,MoraG,SchoutenS,BermudezH,NavarreteR,ParraF,AlvaránM,OsornoJ,CrowleyJL,ValenciaV,VervoortJ(2010)EffectsofrapidglobalwarmingatthePaleocene–EoceneboundaryonNeotropicalvegetation.
Science330,957–961.
doi:10.
1126/science.
1193833JohnsonAH,FrizanoJ,VannDR(2003)BiogeochemicalimplicationsoflabilephosphorusinforestsoilsdeterminedbytheHedleyfractionationprocedure.
Oecologia135,487–499.
KeelSG,PepinS,LeuzingerS,KrnerC(2007)StomatalconductanceinmaturedeciduousforesttreesexposedtoelevatedCO2.
Trees–StructureandFunction21,151–159.
doi:10.
1007/s00468-006-0106-yKnutsonT,McBrideJ,ChanJ,EmanuelK,HollandG,LandseaC,HeldI,KossinJP,SrivastavaAK,SugiM(2010)Tropicalcyclonesandclimatechange.
NatureGeoscience3,157–163.
doi:10.
1038/ngeo779KochGW,AmthorJS,GouldenML(1994)Diurnalpatternsofleafphotosynthesis,conductanceandwaterpotentialatthetopofalowlandrainforestcanopyinCameroon:measurementsfromtheRadeaudesCimes.
TreePhysiology14,347–360.
doi:10.
1093/treephys/14.
4.
347KrnerC(2003)Carbonlimitationintrees.
JournalofEcology91,4–17.
doi:10.
1046/j.
1365-2745.
2003.
00742.
xKrnerC(2004)Throughenhancedtreedynamicscarbondioxideenrichmentmaycausetropicalforeststolosecarbon.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences359,493–498.
doi:10.
1098/rstb.
2003.
1429KrnerC(2009)ResponsesofhumidtropicaltreestorisingCO2.
AnnualReviewofEcologyEvolutionandSystematics40,61–79.
doi:10.
1146/annurev.
ecolsys.
110308.
120217KrnerC,ArnoneJA(1992)Responsestoelevatedcarbondioxideinarticialtropicalecosystems.
Science257,1672–1675.
doi:10.
1126/science.
257.
5077.
1672KrnerC,WürthM(1996)AsimplemethodfortestingleafresponsesoftalltropicalforesttreestoelevatedCO2.
Oecologia107,421–425.
doi:10.
1007/BF00333930KrnerC,AsshoffR,BignucoloO,HttenschwilerS,KeelSG,Pelaez-RiedlS,PepinS,SiegwolfRTW,ZotzG(2005)CarbonuxandgrowthinmaturedeciduousforesttreesexposedtoelevatedCO2.
Science309,1360–1362.
doi:10.
1126/science.
1113977KosugiY,TakanashiS,OhkuboS,MatsuoN,TaniM,MitaniT,TsutsumiD,NikAR(2008)CO2exchangeofatropicalrainforestatPasohinpeninsularMalaysia.
AgriculturalandForestMeteorology148,439–452.
doi:10.
1016/j.
agrformet.
2007.
10.
007KosugiY,TakanashiS,MatsuoN,NikAR(2009)MiddaydepressionofleafCO2exchangewithinthecrownofDipterocarpussublamellatusinalowlanddipterocarpforestinpeninsularMalaysia.
TreePhysiology29,505–515.
doi:10.
1093/treephys/tpn041KrauseGH,WinterK,KrauseB,JahnsP,GarciaM,ArandaJ,VirgoA(2010)High-temperaturetoleranceofatropicaltree,Ficusinsipida:methodologicalreassessmentandclimatechangeconsiderations.
FunctionalPlantBiology37,890–900.
doi:10.
1071/FP10034KriedemannPE,SwardRJ,DowntonWJS(1976)Vineresponsetocarbondioxideenrichmentduringheattherapy.
AustralianJournalofPlantPhysiology3,605–618.
doi:10.
1071/PP9760605KrinnerG,ViovyN,deNoblet-DucoudreN,OgeeJ,PolcherJ,FriedlingsteinP,CiaisP,SitchS,PrenticeIC(2005)Adynamicglobalvegetationmodelforstudiesofthecoupledatmosphere-biospheresystem.
GlobalBiogeochemicalCycles19,GB1015.
doi:10.
1029/2003GB002199LadeauSL,ClarkJS(2006)ElevatedCO2andtreefecundity:theroleoftreesize,interannualvariability,andpopulationheterogeneity.
GlobalChangeBiology12,822–833.
doi:10.
1111/j.
1365-2486.
2006.
01137.
xLambersH,RavenJA,ShaverGR,SmithSE(2008)Plantnutrient-acquisitionstrategieschangewithsoilage.
TrendsinEcology&Evolution23,95–103.
doi:10.
1016/j.
tree.
2007.
10.
008LapolaDM,OyamaMD,NobreCA(2009)ExploringtherangeofclimatebiomeprojectionsfortropicalSouthAmerica:theroleofCO2fertilizationandseasonality.
GlobalBiogeochemicalCycles23,1–16.
doi:10.
1029/2008GB003357LauranceWF,OliveiraAA,LauranceSG,ConditR,NascimentoHEM,Sanchez-ThorinAC,LovejoyTE,AndradeA,D'AngeloS,RibeiroJE,DickCW(2004)PervasivealterationoftreecommunitiesinundisturbedAmazonianforests.
Nature428,171–175.
doi:10.
1038/nature02383LeakeyADB,LauJA(2012)Evolutionarycontextforunderstandingandmanipulatingplantresponsestopast,presentandfutureatmospheric[CO2].
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences367,613–629.
doi:10.
1098/rstb.
2011.
0248LeakeyADB,PressMC,ScholesJD,WatlingJR(2002)RelativeenhancementofphotosynthesisandgrowthatelevatedCO2isgreaterundersunecksthanuniformirradianceinatropicalrainforesttreeseedling.
Plant,Cell&Environment25,1701–1714.
doi:10.
1046/j.
1365-3040.
2002.
00944.
xLeakeyADB,XuF,GillespieKM,McGrathJM,AinsworthEA,OrtDR(2009)Genomicbasisforstimulatedrespirationbyplantsgrowingunderelevatedcarbondioxide.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica106,3597–3602.
doi:10.
1073/pnas.
0810955106LeakeyADB,BishopKA,AinsworthEA(2012)Amulti-biomegapinunderstandingofcropandecosystemresponsestoelevatedCO2.
CurrentOpinioninPlantBiology15,228–236.
doi:10.
1016/j.
pbi.
2012.
01.
009Tropicalforestsandelevated[CO2]FunctionalPlantBiology547LeuzingerS,KrnerC(2007)WatersavingsinmaturedeciduousforesttreesunderelevatedCO2.
GlobalChangeBiology13,2498–2508.
doi:10.
1111/j.
1365-2486.
2007.
01467.
xLeuzingerS,KrnerC(2010)RainfalldistributionisthemaindriverofrunoffunderfutureCO2concentrationinatemperatedeciduousforest.
GlobalChangeBiology16,246–254.
doi:10.
1111/j.
1365-2486.
2009.
01937.
xLewisSL,PhillipsOL,BakerTR,LloydJ,MalhiY,AlmeidaS,HiguchiN,LauranceWF,NeillDA,SilvaJNM,TerborghJ,TorresLezamaA,VásquezMartinezR,BrownS,ChaveJ,KueblerC,NúezVargasP,VincetiB(2004)Concertedchangesintropicalforeststructureanddynamics:evidencefrom50SouthAmericanlong-termplots.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences359,421–436.
doi:10.
1098/rstb.
2003.
1431LewisSL,LloydJ,SitchS,MitchardETA,LauranceWF(2009a)Changingecologyoftropicalforests:evidenceanddrivers.
AnnualReviewofEcologyEvolutionandSystematics40,529–549.
doi:10.
1146/annurev.
ecolsys.
39.
110707.
173345LewisSL,Lopez-GonzalezG,SonkéB,Affum-BaffoeK,BakerTR,OjoLO,PhillipsOL,ReitsmaJM,WhiteL,ComiskeyJA,DjuikouoMN,EwangoCEN,FeldpauschTE,HamiltonAC,GloorM,HartT,HladikA,LloydJ,LovettJC,MakanaJ-R,MalhiY,MbagoFM,NdangalasiHJ,PeacockJ,PehKS-H,SheilD,SunderlandT,SwaineMD,TaplinJ,TaylorD,ThomasSC,VotereR,WllH(2009b)IncreasingcarbonstorageinintactAfricantropicalforests.
Nature457,1003–1006.
doi:10.
1038/nature07771LewisS,BrandoP,PhillipsO,vanderHeijdenG,NepstadD(2011)The2010Amazondrought.
Science331,554.
doi:10.
1126/science.
1200807LloydJ,FarquharGD(1996)TheCO2dependenceofphotosynthesis,plantgrowthresponsestoelevatedatmosphericCO2concentrationsandtheirinteractionwithsoilnutrientstatus.
I.
Generalprinciplesandforestecosystems.
FunctionalEcology10,4–32.
doi:10.
2307/2390258LloydJ,FarquharGD(2008)Effectsofrisingtemperaturesand[CO2]onthephysiologyoftropicalforesttrees.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences363,1811–1817.
doi:10.
1098/rstb.
2007.
0032LloydJ,GraceJ,MirandaAC,MeirP,WongSC,MirandaBS,WrightIR,GashJHC,McIntyreJ(1995)AsimplecalibratedmodelofAmazonrainforestproductivitybasedonleafbiochemicalproperties.
Plant,Cell&Environment18,1129–1145.
doi:10.
1111/j.
1365-3040.
1995.
tb00624.
xLloydJ,KruijtB,HollingerDY,GraceJ,FranceyRJ,WongSC,KelliherFM,MirandaAC,FarquharGD,GashJHC,VygodskayaNN,WrightIR,MirandaHS,SchulzeED(1996)VegetationeffectsontheisotopiccompositionofatmosphericCO2atlocalandregionalscales:theoreticalaspectsandacomparisonbetweenrainforestinAmazoniaandaborealforestinSiberia.
AustralianJournalofPlantPhysiology23,371–399.
doi:10.
1071/PP9960371LloydJ,BirdMI,VeenendaalEM,KruijtB(2001)ShouldphosphorusavailabilitybeconstrainingmoisttropicalforestresponsestoincreasingCO2concentrationsIn'Globalbiogeochemicalcyclesintheclimatesystem'.
(EdsE-DSchulze,MHeimann,SHarrison,EHolland,JLloyd,ICPrentice,DSchimel)pp.
95–114.
(AcademicPress:SanDiego)LloydJ,GloorEU,LewisSL(2009)ArethedynamicsoftropicalforestsdominatedbylargeandraredisturbanceeventsEcologyLetters12,E19–E21.
doi:10.
1111/j.
1461-0248.
2009.
01326.
xLoaderNJ,WalshRPD,RobertsonI,BidinK,OngRC,ReynoldsG,McCarrollD,GagenM,YoungGHF(2011)Recenttrendsintheintrinsicwater-useefciencyofringlessrainforesttreesinBorneo.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences366,3330–3339.
doi:10.
1098/rstb.
2011.
0037LongSP(1991)ModicationoftheresponseofphotosyntheticproductivitytorisingtemperaturebyatmosphericCO2concentrations–hasitsimportancebeenunderestimated.
Plant,Cell&Environment14,729–739.
doi:10.
1111/j.
1365-3040.
1991.
tb01439.
xLongSP,AinsworthEA,RogersA,OrtDR(2004)Risingatmosphericcarbondioxide:plantsfacethefuture.
AnnualReviewofPlantBiology55,591–628.
doi:10.
1146/annurev.
arplant.
55.
031903.
141610LososE,LeighE(Eds)(2004)'Tropicalforestdiversityanddynamism:ndingsfromalarge-scaleplotnetwork.
'(UniversityofChicagoPress:Chicago)LovelockCE,KylloD,WinterK(1996)Growthresponsestovesicular-arbuscularmycorrhizaeandelevatedCO2inseedlingsofatropicaltree,Beilschmiediapendula.
FunctionalEcology10,662–667.
doi:10.
2307/2390177LovelockCE,WinterK,MersitsR,PoppM(1998)ResponsesofcommunitiesoftropicaltreespeciestoelevatedCO2inaforestclearing.
Oecologia116,207–218.
doi:10.
1007/s004420050581LovelockCE,VirgoA,PoppM,WinterK(1999)EffectsofelevatedCO2concentrationsonphotosynthesis,growthandreproductionofbranchesofthetropicalcanopytreespecies,LueheaseemanniiTr.
&Planch.
Plant,Cell&Environment22,49–59.
doi:10.
1046/j.
1365-3040.
1999.
00370.
xLuoYQ,MelilloJ,NiuS,BeierC,ClarkJS,ClassenAT,DavidsonE,DukesJS,EvansRD,FieldCB,CzimczikCI,KellerM,KimballBA,NorbyRJ,PeliniSL,PendallE,RastetterE,SixJ,SmithM,TjoelkerMG,TornMS(2011)Coordinatedapproachestoquantifylong-termecosystemdynamicsinresponsetoglobalchange.
GlobalChangeBiology17,843–854.
doi:10.
1111/j.
1365-2486.
2010.
02265.
xLüthiD,LeFlochM,BereiterB,BlunierT,BarnolaJ-M,SiegenthalerU,RaynaudD,JouzelJ,FischerH,KawamuraK,StockerTF(2008)High-resolutioncarbondioxideconcentrationrecord650,000–800,000yearsbeforepresent.
Nature453,379–382.
doi:10.
1038/nature06949Macinnis-NgC,ZeppelM,WilliamsM,EamusD(2011)ApplyingaSPAmodeltoexaminetheimpactofclimatechangeonGPPofopenwoodlandsandthepotentialforwoodythickening.
Ecohydrology4,379–393.
doi:10.
1002/eco.
138MalhiY(2012)Theproductivity,metabolismandcarboncycleoftropicalforestvegetation.
JournalofEcology100,65–75.
doi:10.
1111/j.
1365-2745.
2011.
01916.
xMalhiY,GraceJ(2000)Tropicalforestsandatmosphericcarbondioxide.
TrendsinEcology&Evolution15,332–337.
doi:10.
1016/S0169-5347(00)01906-6MalhiY,WrightJ(2004)Spatialpatternsandrecenttrendsintheclimateoftropicalforestregions.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences359,311–329.
doi:10.
1098/rstb.
2003.
1433MalhiY,BaldocchiDD,JarvisPG(1999)Thecarbonbalanceoftropical,temperateandborealforests.
Plant,Cell&Environment22,715–740.
doi:10.
1046/j.
1365-3040.
1999.
00453.
xMalhiY,WoodD,BakerTR,WrightJ,PhillipsOL,CochraneT,MeirP,ChaveJ,AlmeidaS,ArroyoL,HiguchiN,KilleenTJ,LauranceSG,LauranceWF,LewisSL,MonteagudoA,NeillDA,NúezVargasP,PitmanNCA,QuesadaCA,SalomoR,SilvaJNM,TorresLezamaA,TerborghJ,VásquezMartínezR,VincetiB(2006)Theregionalvariationofabovegroundlivebiomassinold-growthAmazonianforests.
GlobalChangeBiology12,1107–1138.
doi:10.
1111/j.
1365-2486.
2006.
01120.
xMalhiY,DoughtyC,GalbraithD(2011)Theallocationofecosystemnetprimaryproductivityintropicalforests.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences366,3225–3245.
doi:10.
1098/rstb.
2011.
0062McCarthyHR,OrenR,JohnsenKH,Gallet-BudynekA,PritchardSG,CookCW,LaDeauSL,JacksonRB,FinziAC(2010)Re-assessmentofplantcarbondynamicsattheDukefree-airCO2enrichmentsite:interactionsofatmosphericCO2withnitrogenandwateravailabilityoverstanddevelopment.
NewPhytologist185,514–528.
doi:10.
1111/j.
1469-8137.
2009.
03078.
xMcDowellN,PockmanWT,AllenCD,BreshearsDD,CobbN,KolbT,PlautJ,SperryJ,WestA,WilliamsDG,YepezEA(2008)Mechanismsofplantsurvivalandmortalityduringdrought:whydosomeplantssurvivewhile548FunctionalPlantBiologyL.
A.
Cernusaketal.
otherssuccumbtodroughtNewPhytologist178,719–739.
doi:10.
1111/j.
1469-8137.
2008.
02436.
xMcDowellNG,BeerlingDJ,BreshearsDD,FisherRA,RaffaKF,StittM(2011)Theinterdependenceofmechanismsunderlyingclimate-drivenvegetationmortality.
TrendsinEcology&Evolution26,523–532.
doi:10.
1016/j.
tree.
2011.
06.
003McHargueLA(1999)Factorsaffectingthenodulationandgrowthoftropicalwoodylegumeseedlings.
PhDThesisthesis,FloridaInternationalUniversity,Miami,Florida.
McMurtrieRE,NorbyRJ,MedlynBE,DewarRC,PepperDA,ReichPB,BartonCVM(2008)Whyisplant-growthresponsetoelevatedCO2ampliedwhenwaterislimiting,butreducedwhennitrogenislimitingAgrowth-optimisationhypothesis.
FunctionalPlantBiology35,521–534.
doi:10.
1071/FP08128MedlynBE,DuursmaRA,EamusD,EllsworthDS,PrenticeIC,BartonCVM,CrousKY,deAngelisP,FreemanM,WingateL(2011)Reconcilingtheoptimalandempiricalapproachestomodellingstomatalconductance.
GlobalChangeBiology17,2134–2144.
doi:10.
1111/j.
1365-2486.
2010.
02375.
xMedvigyD,WofsySC,MungerJW,HollingerDY,MoorcroftPR(2009)Mechanisticscalingofecosystemfunctionanddynamicsinspaceandtime:ecosystemdemographymodelversion2.
JournalofGeophysicalResearch-Biogeosciences114,doi:10.
1029/2008JG000812MercadoL,LloydJ,CarswellF,MalhiY,MeirP,NobreAD(2006)ModellingAmazonianforesteddycovariancedata:acomparisonofbigleafversussun/shademodelsfortheC-14toweratManausI.
Canopyphotosynthesis.
ActaAmazonica36,69–82.
doi:10.
1590/S0044-59672006000100009MercadoLM,PatioS,DominguesTF,FyllasNM,WeedonGP,SitchS,QuesadaCA,PhillipsOL,AragoLEOC,MalhiY,DolmanAJ,Restrepo-CoupeN,SaleskaSR,BakerTR,AlmeidaS,HiguchiN,LloydJ(2011)VariationsinAmazonforestproductivitycorrelatedwithfoliarnutrientsandmodelledratesofphotosyntheticcarbonsupply.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences366,3316–3329.
doi:10.
1098/rstb.
2011.
0045MetcalfeDB,MeirP,AragoLEOC,Lobo-do-ValeR,GalbraithD,FisherRA,ChavesMM,MarocoJP,daCostaACL,deAlmeidaSS,BragaAP,GoncalvesPHL,deAthaydesJ,daCostaM,PortelaTTB,deOliveiraAAR,MalhiY,WilliamsM(2010)Shiftsinplantrespirationandcarbonuseefciencyatalarge-scaledroughtexperimentintheeasternAmazon.
NewPhytologist187,608–621.
doi:10.
1111/j.
1469-8137.
2010.
03319.
xMoorcroftPR,HurttGC,PacalaSW(2001)Amethodforscalingvegetationdynamics:theecosystemdemographymodel(ED).
EcologicalMonographs71,557–586.
doi:10.
1890/0012-9615(2001)071[0557:AMFSVD]2.
0.
CO;2MooreBD,ChengSH,SimsD,SeemannJR(1999)ThebiochemicalandmolecularbasisforphotosyntheticacclimationtoelevatedatmosphericCO2.
Plant,Cell&Environment22,567–582.
doi:10.
1046/j.
1365-3040.
1999.
00432.
xMorganJA,PatakiDE,KrnerC,ClarkH,DelGrossoSJ,GrünzweigJM,KnappAK,MosierAR,NewtonPCD,NiklausPANippertJB,NowakRS,PartonWJ,PolleyHW,ShawMR(2004)WaterrelationsingrasslandanddesertecosystemsexposedtoelevatedatmosphericCO2.
Oecologia140,11–25.
doi:10.
1007/s00442-004-1550-2MullerB,PantinF,GenardM,TurcO,FreixesS,PiquesM,GibonY(2011)Waterdecitsuncouplegrowthfromphotosynthesis,increaseCcontent,andmodifytherelationshipsbetweenCandgrowthinsinkorgans.
JournalofExperimentalBotany62,1715–1729.
doi:10.
1093/jxb/erq438NeelinJ,MunnichM,SuH,MeyersonJ,HollowayC(2006)Tropicaldryingtrendsinglobalwarmingmodelsandobservations.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica103,6110–6115.
doi:10.
1073/pnas.
0601798103Negron-JuarezRI,ChambersJQ,GuimaraesG,ZengH,RauppCFM,MarraDM,RibeiroGHPM,SaatchiSS,NelsonBW,HiguchiN(2010)WidespreadAmazonforesttreemortalityfromasinglecross-basinsqualllineevent.
GeophysicalResearchLetters37,L16701.
doi:10.
1029/2010GL043733NelsonBW,KaposV,AdamsJB,OliveiraWJ,BraunOPG,DoamaralIL(1994)ForestdisturbancebylargeblowdownsintheBrazilianAmazon.
Ecology75,853–858.
doi:10.
2307/1941742NepstadDC,TohverIM,RayD,MoutinhoP,CardinotG(2007)MortalityoflargetreesandlianasfollowingexperimentaldroughtinanAmazonforest.
Ecology88,2259–2269.
doi:10.
1890/06-1046.
1NewellEA,MulkeySS,WrightSJ(2002)Seasonalpatternsofcarbohydratestorageinfourtropicaltreespecies.
Oecologia131,333–342.
doi:10.
1007/s00442-002-0888-6NockCA,BakerPJ,WanekW,LeisA,GrabnerM,BunyavejchewinS,HietzP(2011)Long-termincreasesinintrinsicwater-useefciencydonotleadtoincreasedstemgrowthinatropicalmonsoonforestinwesternThailand.
GlobalChangeBiology17,1049–1063.
doi:10.
1111/j.
1365-2486.
2010.
02222.
xNorbyRJ,ZakDR(2011)Ecologicallessonsfromfree-airCO2enrichment(FACE)experiments.
AnnualReviewofEcologyEvolutionandSystematics42,181–203.
doi:10.
1146/annurev-ecolsys-102209-144647NorbyRJ,DeLuciaEH,GielenB,CalfapietraC,GiardinaCP,KingJS,LedfordJ,McCarthyHR,MooreDJP,CeulemansR,DeAngelisP,FinziAC,KarnoskyDF,KubiskeME,LukacM,PregitzerKS,Scarascia-MugnozzaGE,SchlesingerWH,OrenR(2005)ForestresponsetoelevatedCO2isconservedacrossabroadrangeofproductivity.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica102,18052–18056.
doi:10.
1073/pnas.
0509478102NorbyRJ,WarrenJM,IversenCM,MedlynBE,McMurtrieRE(2010)CO2enhancementofforestproductivityconstrainedbylimitednitrogenavailability.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica107,19368–19373.
doi:10.
1073/pnas.
1006463107NottinghamAT,TurnerBL,ChamberlainPM,StottAW,TannerEVJ(2013)Primingandmicrobialnutrientlimitationinlowlandtropicalforestsoilsofcontrastingfertility.
Biogeochemistry111,219–237.
doi:10.
1007/s10533-011-9637-4OberbauerSF,StrainBR,FetcherN(1985)EffectofCO2-enrichmentonseedlingphysiologyandgrowthoftwotropicaltreespecies.
PhysiologiaPlantarum65,352–356.
doi:10.
1111/j.
1399-3054.
1985.
tb08658.
xOsmondCB,AnanyevG,BerryJ,LangdonC,KolberZ,LinG,MonsonR,NicholC,RascherU,SchurrU,SmithS,YakirD(2004)Changingthewaywethinkaboutglobalchangeresearch:scalingupinexperimentalecosystemscience.
GlobalChangeBiology10,393–407.
doi:10.
1111/j.
1529-8817.
2003.
00747.
xPanYD,BirdseyRA,FangJ,HoughtonR,KauppiPE,KurzWA,PhillipsOL,ShvidenkoA,LewisSL,CanadellJG,CiaisP,JacksonRB,PacalaSW,McGuireAD,PiaoS,RautiainenA,StitchS,HayesD(2011)Alargeandpersistentcarbonsinkintheworld'sforests.
Science333,988–993.
doi:10.
1126/science.
1201609PavlickR,DrewryDT,BohnK,ReuB,KleidonA(2012)TheJenadiversity-dynamicglobalvegetationmodel(JeDi-DGVM):adiverseapproachtorepresentingterrestrialbiogeographyandbiogeochemistrybasedonplantfunctionaltrade-offs.
BiogeosciencesDiscussions9,4627–4726.
doi:10.
5194/bgd-9-4627-2012PearcyRW,TroughtonJ(1975)C4photosynthesisintreeformEuphorbiaspeciesfromHawaiianrainforestsites.
PlantPhysiology55,1054–1056.
doi:10.
1104/pp.
55.
6.
1054PhillipsOL,MartinezRV,ArroyoL,BakerTR,KilleenT,LewisSL,MalhiY,MendozaAM,NeillD,NúezVargasP,AlexiadesM,CerónC,DiFioreA,ErwinT,JardimA,PalaciosW,SaldiasM,VincetiB(2002)IncreasingdominanceoflargelianasinAmazonianforests.
Nature418,770–774.
doi:10.
1038/nature00926PhillipsOL,BakerTR,ArroyoL,HiguchiN,KilleenTJ,LauranceWF,LewisSL,LloydJ,MalhiY,MonteagudoA,NeillDA,NúezVargasP,SilvaTropicalforestsandelevated[CO2]FunctionalPlantBiology549JNM,TerborghJ,VásquezMartínezR,AlexiadesM,AlmeidaS,BrownS,ChaveJ,ComiskeyJA,CzimczikCI,DiFioreA,ErwinT,KueblerC,LauranceSG,NascimentoHEM,OlivierJ,PalaciosW,PatioS,PitmanNCA,QuesadaCA,SaldiasM,TorresLezamaA,VincetiB(2004)PatternandprocessinAmazontreeturnover,1976–2001.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.
SeriesB,BiologicalSciences359,381–407.
doi:10.
1098/rstb.
2003.
1438PhillipsOL,AragaoL,LewisSL,FisherJB,LloydJ,López-GonzálezG,MalhiY,MonteagudoA,PeacockJ,QuesadaCA,vanderHeijdenG,AlmeidaS,AmaralI,ArroyoL,AymardG,BakerTR,BánkiO,BlancL,BonalD,BrandoP,ChaveJ,AlveadeOliveiraAC,DávilaCardozoN,CzimczikCI,FeldpauschTR,FreitasMA,GloorE,HiguchiN,JiménezE,LloydG,MeirP,MendozaC,MorelA,NeillDA,NepstadD,PatioS,PeuelaMC,PreitoA,RamírezF,SchwarzM,SilvaJ,SilveiraM,SotaThomasA,terSteegeH,StroppJ,VasquézR,ZelazowskiP,AlvarezDávilaE,AndelmanS,AndradeA,ChaoK-J,ErwinT,DiFioreA,HonorioCoronadoE,KeelingH,KilleenTJ,LauranceWF,PeaCruzA,PitmanNCA,NúezVargasP,Ramírez-AnguloH,RudasA,SalomoR,SilvaN,TerborghJ,Torres-LezamaA(2009)DroughtsensitivityoftheAmazonrainforest.
Science323,1344–1347.
doi:10.
1126/science.
1164033PoulterB,AragaoL,HeinkeJ,GumpenbergerM,HeyderU,RammigA,ThonickeK,CramerW(2010a)NetbiomeproductionoftheAmazonBasininthe21stcentury.
GlobalChangeBiology16,2062–2075.
doi:10.
1111/j.
1365-2486.
2009.
02064.
xPoulterB,HattermannF,HawkinsE,ZaehleS,SitchS,CoupeNR,HeyderU,CramerW(2010b)RobustdynamicsofAmazondiebacktoclimatechangewithperturbedecosystemmodelparameters.
GlobalChangeBiology16,2476–2495.
PrenticeIC,HarrisonSP,BartleinPJ(2011)Globalvegetationandterrestrialcarboncyclechangesafterthelasticeage.
NewPhytologist189,988–998.
doi:10.
1111/j.
1469-8137.
2010.
03620.
xPutzFE(1984)ThenaturalhistoryoflianasonBarroColoradoIsland,Panama.
Ecology65,1713–1724.
doi:10.
2307/1937767QuesadaC,LloydJ,SchwarzM,PatioS,BakerTR,CzimczikC,FyllasNM,MartinelliL,NardotoGB,SchmerlerJ,SantosAJB,HodnettMG,HerreraR,LuizoFJ,ArnethA,LloydG,DezzeoN,HilkeI,KuhlmannI,RaesslerM,BrandWA,GeilmannH,MoraesFilhoJO,CarvalhoFP,AraujoFilhoRN,ChavesJE,CruzOF,PimentelTP,PaivaR(2010)VariationsinchemicalandphysicalpropertiesofAmazonforestsoilsinrelationtotheirgenesis.
Biogeosciences7,1515–1541.
doi:10.
5194/bg-7-1515-2010QuesadaCA,PhillipsOL,SchwarzM,CzimczikCI,BakerTR,PatioS,FyllasNM,HodnettMG,HerreraR,AlmeidaS,AlvarezDávilaE,ArnethA,ArroyoL,ChaoKJ,DezzeoN,ErwinT,diFioreA,HiguchiN,HonorioCoronadoE,JiménezEM,KilleenT,Torres-LezamaA,LloydG,López-GonzálesG,LuizoFJ,MalhiY,MonteagudoA,NeillDA,NúezVargasP,PaivaR,PeacockJ,PeuelaMC,PeaCruzA,PitmanN,PrianteFilhoN,PrietoA,RamírezH,RudasA,SalomoR,SantosAJB,SchmerlerJ,SilvaN,SilveiraM,VásquezR,VieiraI,TerborghJ,LloydJ(2012)Basin-widevariationsinAmazonforeststructureandfunctionaremediatedbybothsoilsandclimate.
Biogeosciences9,2203–2246.
doi:10.
5194/bg-9-2203-2012RachmilevitchS,CousinsAB,BloomAJ(2004)Nitrateassimilationinplantshootsdependsonphotorespiration.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica101,11506–11510.
doi:10.
1073/pnas.
0404388101RammigA,JuppT,ThonickeK,TietjenB,HeinkeJ,OstbergS,LuchtW,CramerW,CoxP(2010)EstimatingtheriskofAmazonianforestdieback.
NewPhytologist187,694–706.
doi:10.
1111/j.
1469-8137.
2010.
03318.
xRasineniGK,GuhaA,ReddyAR(2011)ElevatedatmosphericCO2mitigatedphotoinhibitioninatropicaltreespecies,Gmelinaarborea.
JournalofPhotochemistryandPhotobiology.
B,Biology103,159–165.
doi:10.
1016/j.
jphotobiol.
2011.
02.
024ReekieEG,BazzazFA(1989)CompetitionandpatternsofresourceuseamongseedlingsofvetropicaltreesgrownatambientandelevatedCO2.
Oecologia79,212–222.
doi:10.
1007/BF00388481RichardsonAE,GeorgeTS,HensM,SimpsonRJ(2005)Utilizationofsoilorganicphosphorusbyhigherplants.
In'Organicphosphorusintheenvironment.
'.
(EdsBLTurner,EFrossard,DSBaldwin)pp.
165–184.
(CABIPublishing:Wallingford)RoyJ,SalagerJ-L(1992)MiddaydepressionofnetCO2exchangeofleavesofanemergentrainforesttreeinFrenchGuiana.
JournalofTropicalEcology8,499–504.
doi:10.
1017/S0266467400006842RoyJ,SaugierB,MooneyHA(2001)'Terrestrialglobalproductivity.
'(AcademicPress:SanDiego)RyanMG(1995)Foliarmaintenancerespirationofsub-alpineandborealtreesandshrubsinrelationtonitrogencontent.
Plant,Cell&Environment18,765–772.
doi:10.
1111/j.
1365-3040.
1995.
tb00579.
xSaatchiSS,HarrisNL,BrownS,LefskyM,MitchardETA,SalasW,ZuttaBR,BuermannW,LewisSL,HagenS,PetrovaS,WhiteL,SilmanM,MorelA(2011)Benchmarkmapofforestcarbonstocksintropicalregionsacrossthreecontinents.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica108,9899–9904.
doi:10.
1073/pnas.
1019576108SageRF,KubienDS(2007)ThetemperatureresponseofC3andC4photosynthesis.
Plant,Cell&Environment30,1086–1106.
doi:10.
1111/j.
1365-3040.
2007.
01682.
xSalaA,PiperF,HochG(2010)Physiologicalmechanismsofdrought-inducedtreemortalityarefarfrombeingresolved.
NewPhytologist186,274–281.
doi:10.
1111/j.
1469-8137.
2009.
03167.
xSalaA,WoodruffDR,MeinzerFC(2012)Carbondynamicsintrees:feastorfamineTreePhysiology32,764–775.
doi:10.
1093/treephys/tpr143SalazarLF,NobreCA,OyamaMD(2007)ClimatechangeconsequencesonthebiomedistributionintropicalSouthAmerica.
GeophysicalResearchLetters34,doi:10.
1029/2007GL029695SayerEJ,HeardMS,GrantHK,MarthewsTR,TannerEVJ(2011)Soilcarbonreleaseenhancedbyincreasedtropicalforestlitterfall.
NatureClimateChange1,304–307.
doi:10.
1038/nclimate1190SchnitzerSA,BongersF(2011)Increasinglianaabundanceandbiomassintropicalforests:emergingpatternsandputativemechanisms.
EcologyLetters14,397–406.
doi:10.
1111/j.
1461-0248.
2011.
01590.
xSellersPJ,BounouaL,CollatzGJ,RandallDA,DazlichDA,LosSO,BerryJA,FungI,TuckerCJ,FieldCB,JensenTG(1996)ComparisonofradiativeandphysiologicaleffectsofdoubledatmosphericCO2onclimate.
Science271,1402–1406.
doi:10.
1126/science.
271.
5254.
1402SitchS,SmithB,PrenticeIC,ArnethA,BondeauA,CramerW,KaplanJO,LevisS,LuchtW,SykesMT,ThonickeK,VenevskyS(2003)Evaluationofecosystemdynamics,plantgeographyandterrestrialcarboncyclingintheLPJdynamicglobalvegetationmodel.
GlobalChangeBiology9,161–185.
doi:10.
1046/j.
1365-2486.
2003.
00569.
xSolomonS,QinD,ManningM,ChenZ,MarquisM,AverytKB,TignorM,MillerHL(Eds)(2007)'Climatechange2007:thephysicalsciencebasis.
ContributionofWorkingGroupItotheFourthAssessmentReportoftheIntergovermentalPanelonClimateChange.
'(CambridgeUniversityPress:Cambridge,UK)SprentJI(2009)'Legumenodulation:aglobalperspective.
'(Wiley-Blackwell:Oxford,UK)SprugelDG,HinckleyTM,SchaapW(1991)Thetheoryandpracticeofbranchautonomy.
AnnualReviewofEcologyandSystematics22,309–334.
doi:10.
1146/annurev.
es.
22.
110191.
001521StorkNE,BalstonJ,FarquharGD,FranksPJ,HoltumJAM,LiddellMJ(2007)Tropicalrainforestcanopiesandclimatechange.
AustralEcology32,105–112.
doi:10.
1111/j.
1442-9993.
2007.
01741.
xStrainBR,BazzazFA(1983)Terrestrialplantcommunities.
In'CO2andplants'.
(Ed.
ERLemon)pp.
177–122.
(Westview:Boulder,CO)550FunctionalPlantBiologyL.
A.
Cernusaketal.
SwaineMD,WhitmoreTC(1988)Onthedenitionofecologicalspeciesgroupsintropicalrainforests.
Vegetatio75,81–86.
doi:10.
1007/BF00044629TannerEVJ,VitousekPM,CuevasE(1998)Experimentalinvestigationofnutrientlimitationofforestgrowthonwettropicalmountains.
Ecology79,10–22.
doi:10.
1890/0012-9658(1998)079[0010:EIONLO]2.
0.
CO;2terSteegeH,PitmanNCA,PhillipsOL,ChaveJ,SabatierD,DuqueA,MolinoJ-F,PrévostM-F,SpichigerR,CastellanosH,vonHildebrandP,VásquezR(2006)Continental-scalepatternsofcanopytreecompositionandfunctionacrossAmazonia.
Nature443,444–447.
doi:10.
1038/nature05134ThomasRB,RichterDD,YeH,HeinePR,StrainBR(1991)NitrogendynamicsandgrowthofseedlingsofanN-xingtree(Gliricidiasepium(Jacq.
)Walp.
)exposedtoelevatedatmosphericcarbondioxide.
Oecologia88,415–421.
doi:10.
1007/BF00317587TimmermannA,OberhuberJ,BacherA,EschM,LatifM,RoecknerE(1999)IncreasedElNiofrequencyinaclimatemodelforcedbyfuturegreenhousewarming.
Nature398,694–697.
doi:10.
1038/19505TissueDT,MegonigalJP,ThomasRB(1997)NitrogenaseactivityandN2xationarestimulatedbyelevatedCO2inatropicalN2-xingtree.
Oecologia109,28–33.
doi:10.
1007/s004420050054TolleyLC,StrainBR(1984)EffectsofCO2enrichmentandwatersressongrowthofLiquidamberstyraciuaandPinustaedaseedlings.
CanadianJournalofBotany62,2135–2139.
doi:10.
1139/b84-291TurnerBL(2008)Resourcepartitioningforsoilphosphorus:ahypothesis.
JournalofEcology96,698–702.
doi:10.
1111/j.
1365-2745.
2008.
01384.
xTurnerBL,EngelbrechtBMJ(2011)Soilorganicphosphorusintropicalrainforests.
Biogeochemistry103,297–315.
doi:10.
1007/s10533-010-9466-xVerbeeckH,PeylinP,BacourC,BonalD,SteppeK,CiaisP(2011)SeasonalpatternsofCO2uxesinAmazonforests:fusionofeddycovariancedataandtheORCHIDEEmodel.
JournalofGeophysicalResearch116,doi:10.
1029/2010JG001544VincentAG,TurnerBL,TannerEVJ(2010)Soilorganicphosphorusdynamicsfollowingperturbationoflittercyclinginatropicalmoistforest.
EuropeanJournalofSoilScience61,48–57.
doi:10.
1111/j.
1365-2389.
2009.
01200.
xVitousekPM(1984)Litterfall,nutrientcycling,andnutrientlimitationintropicalforests.
Ecology65,285–298.
doi:10.
2307/1939481VitousekPM,PorderS,HoultonBZ,ChadwickOA(2010)Terrestrialphosphoruslimitation:mechanisms,implications,andnitrogen-phosphorusinteractions.
EcologicalApplications20,5–15.
doi:10.
1890/08-0127.
1vonCaemmererS,FarquharGD(1981)Somerelationshipsbetweenthebiochemistryofphotosynthesisandthegasexchangeofleaves.
Planta153,376–387.
doi:10.
1007/BF00384257WangYP,HoultonBZ,FieldCB(2007)Amodelofbiogeochemicalcyclesofcarbon,nitrogen,andphosphorusincludingsymbioticnitrogenxationandphosphataseproduction.
GlobalBiogeochemicalCycles21,GB1018.
doi:10.
1029/2006GB002797WayDA,LadeauSL,McCarthyHR,ClarkJS,OrenR,FinziAC,JacksonRB(2010)GreaterseedproductioninelevatedCO2isnotaccompaniedbyreducedseedqualityinPinustaedaL.
GlobalChangeBiology16,1046–1056.
doi:10.
1111/j.
1365-2486.
2009.
02007.
xWileyE,HellikerB(2012)Are-evaluationofcarbonstorageintreeslendsgreatersupportforcarbonlimitationtogrowth.
NewPhytologist195,285–289.
doi:10.
1111/j.
1469-8137.
2012.
04180.
xWilliamsonG,LauranceW,OliveiraA,DelamonicaP,GasconC,LovejoyT,PohlL(2000)Amazoniantreemortalityduring1997ElNiodrought.
ConservationBiology14,1538–1542.
doi:10.
1046/j.
1523-1739.
2000.
99298.
xWinterK,GarciaM,LovelockCE,GottsbergerR,PoppM(2000)ResponsesofmodelcommunitiesoftwotropicaltreespeciestoelevatedatmosphericCO2:growthonunfertilizedsoil.
Flora195,289–302.
WinterK,ArandaJ,GarciaM,VirgoA,PatonSR(2001a)EffectofelevatedCO2andsoilfertilizationonwhole-plantgrowthandwateruseinseedlingsofatropicalpioneertree,FicusinsipidaWilld.
Flora196,458–464.
WinterK,GarciaM,GottsbergerR,PoppM(2001b)MarkedgrowthresponseofcommunitiesoftwotropicaltreespeciestoelevatedCO2whensoilnutrientlimitationisremoved.
Flora196,47–58.
WongS-C,CowanIR,FarquharGD(1979)Stomatalconductancecorrelateswithphotosyntheticcapacity.
Nature282,424–426.
doi:10.
1038/282424a0WrightSJ,CalderonO(2006)Seasonal,ElNioandlongertermchangesinowerandseedproductioninamoisttropicalforest.
EcologyLetters9,35–44.
WrightSJ,CalderonO,HernandezA,PatonS(2004)ArelianasincreasinginimportanceintropicalforestsA17-yearrecordfromPanama.
Ecology85,484–489.
doi:10.
1890/02-0757WrightSJ,Muller-LandauHC,CalderonO,HernandezA(2005)Annualandspatialvariationinseedfallandseedlingrecruitmentinaneotropicalforest.
Ecology86,848–860.
doi:10.
1890/03-0750WrightSJ,HernandezA,ConditR(2007)Thebushmeatharvestaltersseedlingbanksbyfavoringlianas,largeseeds,andseedsdispersedbybats,birds,andwind.
Biotropica39,363–371.
doi:10.
1111/j.
1744-7429.
2007.
00289.
xWrightSJ,KitajimaK,KraftNJB,ReichPB,WrightIJ,BunkerDE,ConditR,DallingJW,DaviesSJ,DíazS,etal.
(2010)Functionaltraitsandthegrowth-mortalitytrade-offintropicaltrees.
Ecology91,3664–3674.
doi:10.
1890/09-2335.
1WrightSJ,YavittJB,WurzburgerN,TurnerBL,TannerEVJ,SayerEJ,SantiagoLS,KaspariM,HedinLO,HarmsKE,GarciaMN,CorreMD(2011)Potassium,phosphorus,ornitrogenlimitrootallocation,treegrowth,orlitterproductioninalowlandtropicalforest.
Ecology92,1616–1625.
doi:10.
1890/10-1558.
1WullschlegerSD,TschaplinskiTJ,NorbyRJ(2002)PlantwaterrelationsatelevatedCO2–implicationsforwater-limitedenvironments.
Plant,Cell&Environment25,319–331.
doi:10.
1046/j.
1365-3040.
2002.
00796.
xWürthMKR,WinterK,KrnerC(1998a)InsituresponsestoelevatedCO2intropicalforestunderstoreyplants.
FunctionalEcology12,886–895.
doi:10.
1046/j.
1365-2435.
1998.
00278.
xWürthMKR,WinterK,KrnerC(1998b)LeafcarbohydrateresponsestoCO2enrichmentatthetopofatropicalforest.
Oecologia116,18–25.
WürthMKR,Pelaez-RiedlS,WrightSJ,KrnerC(2005)Non-structuralcarbohydratepoolsinatropicalforest.
Oecologia143,11–24.
doi:10.
1007/s00442-004-1773-2ZachosJC,WaraMW,BohatyS,DelaneyML,PetrizzoMR,BrillA,BralowerTJ,Premoli-SilvaI(2003)AtransientriseintropicalseasurfacetemperatureduringthePaleocene–Eocenethermalmaximum.
Science302,1551–1554.
doi:10.
1126/science.
1090110ZiskaLH,HoganKP,SmithAP,DrakeBG(1991)Growthandphotosyntheticresponseof9tropicalspecieswithlong-termexposuretoelevatedcarbondioxide.
Oecologia86,383–389.
doi:10.
1007/BF00317605ZotzG,HarrisG,KnigerM,WinterK(1995)Highratesofphotosynthesisinthetropicalpioneertree,FicusinsipidaWilld.
Flora190,265–272.
ZotzG,CueniN,KrnerC(2006)Insitugrowthstimulationofatemperatezoneliana(Hederahelix)inelevatedCO2.
FunctionalEcology20,763–769.
doi:10.
1111/j.
1365-2435.
2006.
01156.
xTropicalforestsandelevated[CO2]FunctionalPlantBiology551www.
publish.
csiro.
au/journals/fpb

易探云:香港大带宽/大内存物理机服务器550元;20Mbps带宽!三网BGP线路

易探云怎么样?易探云隶属于纯乐电商旗下网络服务品牌,香港NTT Communications合作伙伴,YiTanCloud Limited旗下合作云计算品牌,数十年云计算行业经验。发展至今,我们已凝聚起港内领先的开发和运维团队,积累起4年市场服务经验,提供电话热线/在线咨询/服务单系统等多种沟通渠道,7*24不间断服务,3分钟快速响应。目前,易探云提供香港大带宽20Mbps、16G DDR3内存、...

弘速云20.8元/月 ,香港云服务器 2核 1g 10M

弘速云元旦活动本公司所销售的弹性云服务器、虚拟专用服务器(VPS)、虚拟主机等涉及网站接入服务的云产品由具备相关资质的第三方合作服务商提供官方网站:https://www.hosuyun.com公司名:弘速科技有限公司香港沙田直营机房采用CTGNET高速回国线路弹性款8折起优惠码:hosu1-1 测试ip:69.165.77.50​地区CPU内存硬盘带宽价格购买地址香港沙田2-8核1-16G20-...

ZJI:台湾CN2/香港高主频服务器7折每月595元起,其他全场8折

ZJI原名维翔主机,是原来Wordpress圈知名主机商家,成立于2011年,2018年9月更名为ZJI,提供香港、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册业务。ZJI今年全新上架了台湾CN2线路服务器,本月针对香港高主频服务器和台湾CN2服务器提供7折优惠码,其他机房及产品提供8折优惠码,优惠后台湾CN2线路E5服务器月付595元起。台湾一型CPU:Inte...

257kk.com为你推荐
同ip网站查询怎么查自己的服务器挂着哪些网站刘祚天Mc浩然的资料以及百科谁知道?www.yahoo.com.hk香港有什么有名的娱乐门户网站吗?www.585ccc.com手机ccc认证查询,求网址www.gogo.com祺笑化瘀祛斑胶囊效果。www.gogo.com哪种丰胸产品是不含激素的?www.dm8.cc有谁知道海贼王最新漫画网址是多少??www.bbbb.com二级域名怎么申请?看URL怎么分辨出二级域名、三级域名ww.43994399??????????www.5566.com.cn大家在哪里在线看动漫?
重庆域名注册 asp.net主机 vpsio windows主机 全球付 谷歌香港 网站被封 eq2 ibrs 台湾谷歌网址 100m独享 根服务器 web服务器搭建 架设邮件服务器 阿里云手机官网 supercache 测试网速命令 卡巴斯基试用版下载 葫芦机 最新优惠 更多