recognizedwww.haole008.com

www.haole008.com  时间:2021-04-06  阅读:()
NewlydiscoveredyoungCORE-SINEsinmarsupialgenomesMaruoMunemasaa,MasatoNikaidoa,HidenoriNishiharaa,StephenDonnellanb,ChristopherC.
Austinc,NorihiroOkadaa,aGraduateSchoolofBioscienceandBiotechnology,TokyoInstituteofTechnology,Yokohama,JapanbEvolutionaryBiologyUnit,SouthAustralianMuseum,NorthTerrace,SA5000,AustraliacMuseumofNaturalScience,LouisianaStateUniversity,LA70803,USAReceived3July2007;receivedinrevisedform2October2007;accepted4October2007ReceivedbyTakashiGojoboriAvailableonline12October2007AbstractAlthoughrecentmammaliangenomeprojectshaveuncoveredalargepartofgenomiccomponentofvariousgroups,severalrepetitivesequencesstillremaintobecharacterizedandclassifiedforparticulargroups.
Theshortinterspersedrepetitiveelements(SINEs)distributedamongmarsupialgenomesareoneexample.
WehaveidentifiedandcharacterizedtwonewSINEsfrommarsupialgenomesthatbelongtotheCORE-SINEfamily,characterizedbyahighlyconserved"CORE"domain.
PCRandgenomicdotblotanalysesrevealedthatthedistributionofeachSINEshowsdistinctpatternsamongthemarsupialgenomes,implyingdifferenttimingoftheirretropositionduringtheevolutionofmarsupials.
ThemembersofMar3(Marsupialia3)SINEaredistributedthroughoutthegenomesofallmarsupials,whereastheMac1(Macropodoidea1)SINEisdistributedspecificallyinthegenomesofkangaroos.
SequencealignmentoftheMar3SINEsrevealedthattheycanbefurtherdividedintofoursubgroups,eachofwhichhasdiagnosticnucleotides.
TheinsertionpatternsofeachSINEatparticulargenomicloci,togetherwiththedistributionpatternsofeachSINE,suggestthattheMar3SINEshaveintensivelyamplifiedaftertheradiationofdiprotodontians,whereastheMac1SINEhasamplifiedonlyslightlyafterthedivergenceofhypsiprimnodonsfromothermacropods.
BycompilingtheinformationofCORE-SINEscharacterizedtodate,weproposeacomprehensivepictureofhowSINEevolutionoccurredinthegenomesofmarsupials.
2007ElsevierB.
V.
Allrightsreserved.
Keywords:CORE-SINE;Marsupials;Phylogeny;Evolution1.
IntroductionMammaliangenomesharboralargeamountofretroposonsthatpropagatetheircopiesinthehostgenomeviaanRNAintermediategeneratedfroma"copyandpaste"mechanismcalledretroposition(Rogers,1985;Weineretal.
,1986;Brosius,1991;Okada,1991a,b).
Shortinterspersedrepetitiveelements(SINEs)belongtoaclassofretroposonsthataccountformorethantenpercentofnuclearDNA.
TheroleofSINEsinthehostgenomestillremainstobeclarified;however,recentstudies,includingthosefromourlaboratory,havefoundthatsomeSINE-derivednon-codingsequencesarehighlyconserved(Nishiharaetal.
,2006a).
ThisimpliesthattheseSINEsmighthaveacquiredsomefunctionalityduringtheevolution(Nishi-haraetal.
,2006a;Bejeranoetal.
,2006;Mikkelsenetal.
,2007).
ItmaythereforebeusefultocharacterizeandcategorizethegenomiccomponentsofvariousmammalswithrespecttoSINEs.
Recentcomprehensivegenomesequencingprojectshaveallowedustoinvestigateparticularanimalsonthewhole-genomelevel(e.
g.
Marguliesetal.
,2005),providingaverypowerfultoolforrevealingacompletepictureofSINEevolution.
Indeed,owingtothecompletionofthehumangenomeproject,thecontributionofSINEstothehumangenomehasbeenclarifiedindetail—theAlufractioncoversAvailableonlineatwww.
sciencedirect.
comGene407(2008)176–185www.
elsevier.
com/locate/geneAbbreviations:SINE,shortinterspersedrepetitiveelement;LINE,longinterspersedrepetitiveelement;PCR,polymerasechainreaction;mya,millionyearsago.
ThenucleotidesequencesreportedinthispaperhavebeensubmittedtoGenBankandhavebeenassignedaccessionnumbersAB326393toAB326416.
Correspondingauthor.
DepartmentofBiologicalSciences,GraduateSchoolofBioscienceandBiotechnology,TokyoInstituteofTechnology,4259-B21,Nagatsuta-cho,Midori-ku,Yokohama226-8501,Japan.
Tel.
:+81459245742;fax:+81459245835.
E-mailaddress:nokada@bio.
titech.
ac.
jp(N.
Okada).
0378-1119/$-seefrontmatter2007ElsevierB.
V.
Allrightsreserved.
doi:10.
1016/j.
gene.
2007.
10.
008morethan13%andlonginterspersedrepetitiveelements(LINEs)comprisemorethan20%ofthewholegenome(InternationalHumanGenomeSequencingConsortium,2001).
Furthermore,recentgenomeprojectonshort-tailedopossum(Monodelphisdomestica)haverevealedthatSINEscovermorethan10%andLINEscomprisemorethan29%ofitsgenome(Gentlesetal.
,2007).
Morethan30SINEfamilieshavebeencharacterizedbasedontheirstructure.
UsuallySINEsarecomposedofa5′terminaltRNA-or7SLRNA-relatedregioncontainingapolIIIpromoterandapartnerLINE-related3′tail.
Furthermore,severalSINEfamiliesaregroupedintoasuperfamilybasedonthepresenceofacentralconserveddomain.
Todate,threesuperfamilieshavebeencharacterizedasV-SINEs(Ogiwaraetal.
,2002),Due-SINEs(Nishiharaetal.
,2006a)andCORE-SINEs(GilbertandLabuda,1999),whichexistinvertebrateandinvertebrategenomes.
Amongthesethreesuperfamilies,CORE-SINEsareconsideredtobearatheryounggroupandsomeintactCORE-SINEsarethoughttopossessretropositionalactivityinmammalian(especiallynon-eutherian)genomes(GilbertandLabuda,2000).
TheCOREelement,whichisthecentralconserveddomainofCORE-SINEs,wasinitiallyreportedasmammalianinterspersedrepeats(MIRs)andiswidelydistrib-utedamongmammaliangenomes(Jurkaetal.
,1995;SmitandRiggs,1995).
Later,thisMIRwasdividedintotwofamilies,Ther1(MIRinRepBaseReports)andTher2(MIR3),whicharedistributedamongthegenomesofTheria(extant"Theria"consistsofallmammalsexceptforplatypusandechidnas)(GilbertandLabuda,2000).
MIRsarethemostprevalentrepeatinthehumangenomenexttoAlu,inthatTher1shares2.
2%andTher2shares0.
3%ofthedrafthumangenomesequence(InternationalHumanGenomeSequencingConsortium,2001).
TheTher1andTher2arehighlydivergent,andseemtohavelosttheirretropositionalactivitybeforethesplitofmonotremes,marsupialsandeutherians,whichoccurredmorethan110mya(millionyearsago).
AlthoughtheCORE-SINEslackretro-positionalactivityinthegenomesofeutherians,theyarestillactiveinnon-eutheriangenomes.
GilbertandLabuda(2000)reportedthepresenceofthreeadditionalCORE-SINEfamilies(Mon1,Mar1andOpo1).
ThemembersofthesefamiliesareFig.
1.
SequencealignmentsofthenewlyidentifiedSINEsubfamilies.
(A)TheMar3subfamilyissubdividedintoMar3a,b,c,andd.
(B)TheMac1subfamily.
Thedotsindicatenucleotidesidenticaltotheconsensussequenceatthetop.
TheAboxandBbox,whicharetypicalforthetRNAregionofeachSINEareshownbythickbar.
Thediagnosticnucleotidesforeachsubfamilyareshadedinblack.
TheinsertionsimmediatelyupstreamofallMar3COREdomainscausedbytheduplicationofthe3′endofthetRNA-relatedregionareindicatedbyarrows.
UnderlinednucleotidesindicatethetargetsiteduplicationsofeachSINEloci.
177M.
Munemasaetal.
/Gene407(2008)176–185morerecentthanthoseofTher1andTher2.
Mon1isspecificallydispersedinthegenomesofmonotremesandfurthersubdividedintothreesubfamilies(Mon1a,Mon1bandMon1c).
Mar1isdistributedinthegenomesofalllivingmarsupials.
Incontrast,Opo1hasbeenshowntobedistributedinthegenomesofAmericanmarsupial(Virginiaopossum:Didelphisvirginiana,andGrayShort-tailedOpossum:M.
domestica),andabsentinAustralianmarsupialgenomes.
TheOpo-1ofM.
domesticaisdepositedinRepBaseasSINE_1MD.
Inthepresentstudy,basedongenomiclibraryscreening,wefoundtwoCORE-SINEsthatarecloselyrelatedtoMar1.
ExplorationofthegenomedatabasefortheseSINEs,togetherwithPCRandgenomicdotblotanalysesrevealedthattheyarenewlyrecognizedCORE-SINEs,Mar3andMac1,whicharedistinct,butcloselyrelatedtothemembersofMar1.
Furthermore,detailedsequencealignmentandnucleotidediversityestimationoftheCORE-SINEscharacterizedtodatehaveenabledustoprovideanearlycompletepictureoftheevolutionofthesetwonewSINEs.
DescriptionsofrepetitivesequencessuchasMar3andMac1maybeveryusefulinunderstandingthegeneticcomponentsofnon-eutherianmammalsandforadvancingcomparativegenomeanalysisbetweenbroadmammaliantaxa.
2.
Materialsandmethods2.
1.
DNAsamplesTheDNAsamplesusedinthestudywerefromthefollowinggenomes:Red-neckedwallaby(Macropusrufogriseus),swampwallaby(Wallabiabicolor),westernharewallaby(Lagorchesteshirsutus),northernNailtailwallaby(Onychogaleaunguifera),quokka(Setonixbrachyurus),duskypademelon(Thylogalebrunii),littlerockwallaby(Peradorcusconcinna),yellow-footedrockwallaby(Petrogalexanthopus),Goodfellow'streekangaroo(Dendrolagusgoodfellowi),greaterforestwallaby(Dorcopsishageni),brush-tailedratkangaroo(Bettongiapencillata),long-nosedpotoroo(Potoroustridactylus),muskyratkangaroo(Hypsiprimnodonmoschatus),spottedcuscus(Phalangermacla-tus),HerbertRiverringtailpossum(Pseudochirulusherbertensis),sugarglider(Petaurusbreviceps),mountainpygmypossum(Burramysparvus),feathertailglider(Acrobatespygmaeus),koala(Phascolarctoscinereus),fat-tailedantechinus(Antechinusagilis),tigerquoll(Dasyurusmaclatus),brindledbandicoot(Isoodonmacrourus),Virginiaopossum(D.
virginiana),domesticpig(Susdomesticus),horse(Equuscaballus),housemouse(Musmusculus),andchicken(Gallusgallus).
TotalgenomicDNAswereisolatedbyphenolandchloroformextractionandethanolprecipitation(BlinandStafford,1976)andstoredat4°C.
2.
2.
ScreeningofgenomiclibrariestoidentifynewSINEsWeusedtheP.
breviceps,P.
maclatus,andM.
rufogriseusgenomesasrepresentativesofmarsupialsforscreeningCORE-SINEs.
TotalgenomicDNAswerefirstdigestedwithHindIIIrestrictionendonuclease.
DigestedDNAfragmentswerefractionatedbyultracentrifugationthroughsucrosedensitygradients(10–40%w/v),andtheoptimalsizefractions(about2kbp)wereascertainedbyagarose-gelelectrophoresis.
Fig.
1(continued).
178M.
Munemasaetal.
/Gene407(2008)176–185GenomiclibrarieswereconstructedbyligationoftheDNAfragmentsintotheplasmidvectorpUC18.
DNAprobesusedforscreeningthegenomiclibrarieswerepreparedbyPCRwiththeprimersetMar1For:5′-AGCTAGGTGGCGCAGTGGA-3′andMar1Rev:5′-AGTCGGACACGACTGAAACG-3′usingthegenomeoftheM.
rufogriseusasatemplate.
ThePCRproductswerelabeledinternallywith[α-32P]dCTPbytheprimerextensionmethod.
ThelabeledDNAprobeswerepurifiedusingQIAquickPCRPurificationKit(QIAGEN)andusedforsubsequentscreening.
Southernhybridizationwasperformedat50°Covernightinasolutionof6*SSC,1%SDS,2*Denhardt'ssolution,and100mg/mlherringspermDNAandwashedat50°Cfor50mininasolutionof2*SSCand1%SDS(Sambrook,Fritsch,andManiatis1989).
ThepositivelyhybridizedclonesthatappearedtocontainCORE-SINEsequencewereisolatedandpurified.
PurifiedplasmidsweresequencedusingtheBigDyeterminatorcyclesequencingkit(AppliedBiosystems)intheforwarddirectionusingtheprimerM4:5′-GTTTTCCCAGTCACGAC-3′andinthereversedirectionusingtheprimerRV:5′-CAGGAAACAGCTAT-GAC-3′usinganautomatedsequencer(ABI3100,AppliedBiosystems).
2.
3.
GenBanksearchesTheCORE-SINEsequencesidentifiedbythegenomiclibraryscreenabovewereappliedtotheFASTAprogramwithdefaultparametersinordertoobtainadditionalnewCORE-SINEsequences.
TheseCORE-SINEsequenceswerecompliedandalignedusingClustalX(Thompsonetal.
,1997)andaconsensussequencewasdeducedfromthealignment.
ThisresultedintheestablishmentoftheMar1,Mar3andMac1consensusSINEsequences.
Wealsocollected50sequencesofOpo1SINE,whose3′tailwasnotclarifiedinthepreviousstudybyGilbertandLabuda(2000).
Thealignmentofthese50Opo1SINEsequencesenabledustoclarifythe3′tail.
2.
4.
DotblotanalysisGenomicDNAofG.
gallus,M.
musculus,E.
caballus,S.
domesticus,D.
virginiana,D.
maclatus,I.
macrourus,A.
agilis,P.
cinereus,P.
breviceps,B.
parvus,A.
pygmaeus,P.
maclatus,H.
moschatus,P.
tridactylusandM.
rufogriseuswerespottedontoahybridizationtransfermembrane(GeneScreenPlus,PerkinElmer)usingadot-blotapparatus(modelDP-96,Fig.
2.
ComparisonofmammalianCORE-SINEs.
(A)AlignmentoftheconsensussequencesofmammalianCORE-SINEs.
Thethickunderlinesindicatetheannealingpositionoftheoligonucleotideprobesusedinthegenomicdotblothybridizationanalysis.
TheshorterCOREdomain,characteristicofthenewlyidentifiedSINEsandOpo1,isindicatedbythegraybar.
(B)SchematicrepresentationcomparingthestructureoftheCORE-SINEscharacterizedtodate.
ThepatternswithintheboxesindicatedistinctdiagnosticelementsforeachSINE.
179M.
Munemasaetal.
/Gene407(2008)176–185Advantech).
ThefollowingoligonucleotideprobesweredesignedtoannealspecificallytoconsensusCORE-SINEsequen-ces:Mar3b:5′-GGTCTCAGACACTTAACACTTCCTAGCTGTGT-3′,Mar3c:5′-AGCCTCAGACACTTGACA-CACTTACTAGCTGTGT-3′,Mar3d:5′-AAATCCCGCCT-CAGACACTTAACACAAAAACTAGCT-3′,Mac1:5′-CCCCAATTGCCTCATCCTGGGTCATCTCCAGTCATCC-3′(Fig.
2A).
Theoligonucleotideprobeswereend-labeledwith[γ-32P]ATP.
LabeledprobeswerepurifiedusingtheQIAquickNucleotideRemovalKit(QIAGEN).
TheplasmidDNAscontain-ingconsensusMar3andMac1sequencewereusedaspositivecontrols.
Southernhybridizationwasperformedat55°Covernight,andwashingwasperformedtwotimesat60°Cfor50minutes.
3.
Results3.
1.
NewlyisolatedCORE-SINEsinAustralianmarsupialsTheCORE-SINEsisolatedthroughscreeningofP.
brevi-ceps,P.
maclatus,andM.
rufogriseusgenomiclibrariesconsistedofMar1,Ther1anduncharacterizedSINEs.
TheseuncharacterizedSINEswerefurtherdividedintotwosub-groups.
ThefirstsubgroupconsistsofSINEswitha5′tRNA-derivedregion,aCORE-domain,anda3′polyAtail(Fig.
1A).
Thesecondsubgroupisdistinguishedbyaunique3′tailregioncontainingalong(CA)nterminalrepeat(Fig.
1B),whichisspecifictothissubgroup(Fig.
1B).
AlthoughtypicalCORE-SINEspossessahighlyconserved65bpCOREdomain,theCOREsofthenewlyisolatedSINEsare20bpshorterinlength.
ThisshorterCOREisalsodetectedinOpo1,implyingthesameancestryofthesenewSINEsandOpo1(Fig.
2A,B).
ThenewSINEswereclassifiedaseitherMar3family(Marsupialia3)orMac1family(Macropodoidea1)SINEStoindicatethedistributionoftheSINEfamiliesinthegenomesofallmarsupialsorofmacropods(themembersofthesuperfamilyMacropodoidea),respectively.
Recently,"MAR2_MD"SINEhasbeendepositedinRepBase,butthissequenceisjustashortfragmentofBov-BLINE(RTE-1)andhasnorelationshipwithCORE-SINEs.
Toavoidconfusion,wedonotusethename"Mar2"butuse"Mar3"forthenewlycharacterizedCORE-SINEs.
3.
2.
CharacterizationoftheMar3SINEFig.
1showsthesequencealignmentofMar3andMac1.
ThelengthofMar3variesfrom116to144bpwithoutthepolyAtail.
VariableregionsarelocatedatbothendsoftheCOREdomain.
MostofthemembersofMar3haveadiagnostic7bpinsertionimmediatelyupstreamoftheCOREdomain(Fig.
2B).
Thisdiagnosticinsertionisderivedfromduplicationofthe3′endofthetRNA-relatedregion(Fig.
1A,indicatedbyarrows).
ThemembersofMar3arefurthersubdividedintofoursubfamilies.
WenamedtheseSINEsubfamiliesMar3a,Mar3b,Mar3candMar3d(Figs.
1and2).
Mar3aistheonlysubfamilylackingthediagnosticinsertionupstreamoftheCOREdomain,implyingthatthisgroupisthemostprimitiveMar3SINE.
TheMar3csubfamilyalsohasa5′-GACACACTT-Fig.
2(continued).
180M.
Munemasaetal.
/Gene407(2008)176–1853′insertionimmediatelydownstreamoftheCOREdomain.
SeveralintermediatesbetweenMar3aandMar3cwereobtainedthroughoutthescreening(Fig.
1A),whichsuggeststhatMar3cwasderivedfromMar3a.
BecausewealsoobtainedsuchintermediateswhencomparingMar3awithMar3bandMar3d,thelattertwomembersalsomightbederivedfromMar3a.
Allmembersofthesesubfamilieshave3′polyAtailsthatare4to30bpinlength.
ThepresenceofthepolyAtailinthemembersoftheMar3familyimpliesthat,likeAluinthehumangenome,theyuseL1proteinsforretroposition.
Aftercompletionofourwork,Gentlesetal.
(2007)reportedthepresenceofaSINEfamilynamedSINE2_MDinthegenomeofshort-tailedopossum.
ThisSINE2_MDshareobvioussequencehomologywithMar3SINE,implyingthecommonancestryamongthem.
3.
3.
CharacterizationoftheMac1SINETheconsensussequenceofMac1is310bpinlength.
Mac1iscomposedofa5′tRNA-relatedregion,ashorterCOREdomainwithadiagnosticupstreaminsertionanda3′tailregionFig.
3.
ThedistributionofMar3andMac1amongthegenomesofvariousvertebratetaxa.
(A)DotblotanalysisonmarsupialgenomicDNA(leftpanel)andcontrolplasmidDNA(rightpanel).
Theradiolabeledprobeusedforeachsampleisindicatedatleft.
TheamountofinputDNAisindicatedtotherightofeachpanel.
(B)PCRanalysisofmarsupialgenomicDNAtoconfirmdotblotdata.
PCRproductsfromreactionscontaining10nggenomicDNAand5pmolofthePCRprimersindicatedatleft(seeSupp.
Table1)weresubjectedto3%agarosegelelectrophoresisandstainedwithethidiumbromide.
DNAsizemarkers(bp)areindicatedatright.
181M.
Munemasaetal.
/Gene407(2008)176–185thatisuniquetoMac1.
ThisSINEfamily,thesequencesofwhichcanbefoundinGenBank,wasalsofoundinthegenomesofTammarwallaby(Macropuseugenii)andswampwallaby(W.
bicolor).
The3′tailofMac1isabout250bpandendswith(CA)nrepeats.
ThesequencedivergenceamongthemembersofMac1isverysmall,showingthatthisSINEfamilyseemstobeveryyoung.
3.
4.
ThedistributionofnewSINEsWeinvestigatedthedistributionpatternofMar3andMac1amongvertebratesusingoligonucleotideprobesspecificforMar3b,Mar3c,Mar3dandMac1.
Fig.
3AshowsthedotblotpatterngeneratedbySouthernhybridizationusingeachprobeagainstthegenomicDNAofvariousvertebrates.
ItwasverydifficulttodesignprobestocompletelydistinguishbetweeneachMar3subfamilybecausethenucleotidedifferencesbetweenthesesubfamiliesareverysmall.
Indeed,althoughwedetectedcrosshybridizationofparticularprobestoseveralnegativecontrolplasmids,highlydensesignalswereclearlydetectedinthecaseofthecorrectcombinationofprobesandplasmids.
ThedotblotpatternsshowedtheexistenceoftheMar3b,Mar3candMar3dsubfamiliesinallmarsupialgenomes.
However,becauseofthepossibilityoffalsepositivesduetodotblotcross-hybridization,PCRanalysiswasusedtoconfirmthisconclusion(Fig.
3B).
WesequencedthePCRproductsforeachmarsupialandconfirmedthepresenceoftheMar3b,Mar3candMar3dsubfamilySINEsamongtheirgenomes.
Although,averyweaksignalwasdetectedinthemousegenomewiththeMar3cprobe(Fig.
3A),itwaslikelyanartifactbecausenoMar3csequencewasfoundinthemousegenomedatabaseandnoMar3c-specificPCRproductwasgeneratedfromthemousegenome(Fig.
3B).
AlthoughdotblotsignalsfortheMar3subfamilies'probeswereweakintheD.
virginiana,PCRproductsweresuccessfullyobtained.
ThisdatasuggeststhatMar3ispresentinthegenomeoftheD.
virginiana,butthecopynumberislowand/orthesequencedivergenceislarge,whichresultsinlesseffectivenessoftheprobe.
Mac1showedonlyalimiteddistributionwithinthegenomesofthesuperfamilyMacropodoidea,whichwasconfirmedbythePCRanalysis(Figs.
3A,B).
AlthoughweaksignalwasobtainedinB.
parvus,noobviousPCRbandwasobtained.
Onthecontrary,faintPCRproductsweredetectedinthegenomesofI.
macrourusandA.
agilis,whereasdotblotsignalswerenotobserved.
WeclonedandsequencedthePCRproductsofthesetwospecies,andfoundtheywerenon-specificbands,whichmightbeduetothemissannealingofthePCRprimers.
Therefore,wecanconcludethatMac1isdistributedspecificallyinthegenomesofthesuperfamilyMacropodoidea.
3.
5.
CharacterizationofparticularSINElociSupplementaryFigures1Aand1BshowtheinsertionpatternsoftwoMar3loci(PA031andPA023)andoneMac1locus(MS010).
InsertionofMar3atthePA023locuswasdetectedinbothP.
breviceps(Petauridae)andP.
herbertensis(Pseudocheiridae),implyingacloserelationshipbetweenthem.
AtthelocusPA031,theMar3insertionwasdetectedinallmembersofMacropodoidea,confirmingthemonophylyofthissuperfamily.
AtmanyofthelocirepresentedbyMS010(MS010,MS022,MS032,MS045andMS055),theinsertionofMac1wasdetectedinP.
tridactylus,B.
pencillata,D.
hageni,D.
goodfellowi,P.
xanthopus,P.
concinna,T.
brunii,S.
brachyurus,O.
unguifera,L.
hirsutus,W.
bicolor,andM.
rufogriseus,butnotinH.
moschatus.
ThesedataindicatethatHypsiprimnodonisthemostbasalgenusamongthekangaroosusedinthepresentanalysis.
ThisideaisconsistentwiththeresultofBurketal.
(1998).
4.
Discussion4.
1.
TherelationshipsofCORE-SINEfamiliesWediscoveredtwonovelCORE-SINEfamiliesandclarifiedthedistributionpatternsofthesefamiliesamongmarsupials.
DotblotandPCRanalysesindicatedthatmembersoftheMar3familyarepresentinallmarsupialgenomes.
CORE-SINEfamiliestypicallypossessa65bpCOREdomain,whichishighlyconservedinTher1,Ther2,Mon1andMar1.
However,theCOREdomainofthesenewlyidentifiedSINEfamiliesis20bpshorterthanthecanonicalCOREdomain(Fig.
1).
TheshorterCOREdomainiscommonlyobservedinseveralCORE-SINEs,includingtheOpo1family.
ThepresenceofCORE-SINEspossessingthisshorterCOREregionimpliesthat20bpofthe3′terminalregionoftheCOREdomainlackedimportanceforretropositionduringtheevolutionofmarsupials.
TheMar3familyconsistsofatleastfoursubfamilies.
Basedonthesequencedivergence,theoldestandmostprimitivesubfamilyisMar3a.
ThissubfamilyhasnodiagnosticinsertionimmediatelyupstreamoftheCOREdomain,whereasMar3b,Mar3c,andMar3dsharetheinsertionelement.
Therefore,wespeculatedthatthesethreesubfamiliesarederivedfromMar3a.
ThepresenceofseveralintermediatesequencesbetweenMar3aandMar3cenabledustodescribethetransitionfromMar3atoMar3c(Fig.
1A).
Mar3bandMar3dmightalsobederivedfromMar3a;namely,oneoftheintermediatesequencesbetweenMar3aandMar3ccouldbetheoriginofthesetwosubfamilies(Fig.
4).
TheinsertionintheupstreamregionoftheCOREdomain,whichisdiagnosticofMar3b,candd,isalsoobservedinMac1(Fig.
2A).
Furthermore,Mac1hastheshortCOREdomain,likeallmembersoftheMar3family.
ThesetwolinesofevidencesuggestthatMac1originatedfromoneofthemembersofMar3andproliferatedinthegenomeofthecommonancestorofthesuperfamilyMacropodoidea(Fig.
4).
4.
2.
ThedistributionofCORE-SINEfamiliesFig.
5illustratesthedistributionofeachCORE-SINEinMarsupials.
Mar1isamarsupial-specificSINE(GilbertandLabuda,2000)presentinbothAmericanandAustralianmarsupials.
Byusingthedatabasesearch,wefoundseveralorthologousloci,whereMar1SINEiscommonlypresentinD.
virginianaandM.
rufogriseus(datanotshown),whichindicatesthatthisSINEwasamplifiedbeforetheancestralsplitof182M.
Munemasaetal.
/Gene407(2008)176–185AmericanandAustralianmarsupialsandsuggestsarelativelyoldageforthisSINEgroup.
AccordingtothepreviousstudybyGilbertandLabuda(2000),Opo1showsadistributionspecifictoAmericanmarsupials.
OurresultsindicatethatallmembersofMar3aredistributedamongmarsupials.
However,SouthernblotanalysissuggeststhatMar3occursatalowerfrequencyintheAmericanmarsupial(representedbyD.
virginiana)genomethaninAustralianmarsupials.
Furthermore,severalinsertionsofMar3carespecifictoparticularlineagesofAustralianmarsupials.
Inaddition,averagenucleotidediversitiesofMar3c,andMar3daresmallerthanthatofMar1(Suppl.
Table2).
ThesethreelinesofevidencesuggestthattheproliferationofMar3ismorerecentthanMar1.
Mac1ispresentinthegenomesofallmembersofMacro-podoidea(Figs.
3A,B).
HoweverourSINEinsertionanalysesofeachparticularlocusrevealedthatMac1wasinsertedinallmembersofMacropodoidea(macropods)exceptH.
moschatus(Suppl.
Figs.
1Band2).
Therefore,majorityofthemembersofMac1werelikelyamplifiedsoonafterthedivergenceofH.
moschatusfromothermacropods,whichisestimatedtohavetakenplaceapproximately25myabasedonthemitochondrialDNAsequencesanalysis(BurkandSpringer,2000).
4.
3.
PhylogeneticimpactofSINEinsertionsThephylogenicrelationshipsofmarsupialsarestillenig-maticattheorderandfamilylevel,particularlyamongAustralianmarsupials(Osborneetal.
,2002;Nilssonetal.
,2004).
Toresolvetheseproblems,diagnosticSINEinsertionsprovideusefulinformation(Nikaidoetal.
,1999;ShedlockandOkada,2000;Nishiharaetal.
,2005;Nishiharaetal.
,2006b).
Inthepresentstudy,twophylogeneticallyinformativeinsertionsofMar3weredetected.
AtthelocusPA023,Mar3iscommontoPetauridaeandPseudocheiridae,butisnotfoundinotherdiprotodontianmarsupials,implyingthatthisSINEwasinsertedFig.
4.
IllustrationoftheevolutionaryrelationshipsamongCORE-SINEs.
Fig.
5.
ThesummaryofCORE-SINEevolution.
ThepresenceofactiveSINEsisindicatedbyshadedregions.
TheintensityofshadingisrelativetothespeculatedretropositionalactivityofeachSINEinferredfromthedistributionandthesequencedivergencecalculationsoftheseSINEs.
Thetimescaleisshownbelow.
183M.
Munemasaetal.
/Gene407(2008)176–185inacommonancestorofthesetwofamilies(Suppl.
Figs.
1,2).
Thatis,PA023suggeststhemonophylyofPetauridaeandPseudocheiridae,whicharegroupedinthesuperfamilyPe-tauroideabasedonmorphologicalclassification(AplinandArcher,1987).
ThePA031locussupportsthemonophylyofPotoroidaeandMacropodidae,whicharegroupedinthesuperfamilyMacropodoideabasedonmorphologicalstudy(Gray,1821)(Supp.
Figs.
1,2).
OurmoleculardataalsosupportthemonophyleticrelationshipsofthesuperfamiliesPetauroi-deaandMacropodoideaestablishedbynuclearandmitochon-drialsequencedata(Amrine-Madsenetal.
,2003;Burketal.
,1998;BurkandSpringer,2000;Osborneetal.
,2002).
TheconsistencyofthephylogenetictreesconstructedbySINEinsertions,morphologicalclassificationsorseveralDNAsequencecomparisonanalysesclearlyshowthereliabilityofSINEinsertionsasphylogeneticmarkers.
InthecaseofallMac1lociisolatedinthepresentstudy,SINEinsertionsweredetectedforallmembersofMacropodoideaexceptforH.
moschatus.
ThisSINEdatasuggeststhatPotoroidaearenon-monophyletic,whichhasalsobeensuggestedbyothermoleculardata(Burketal.
,1998).
ThecombinationofourdatawiththatofBurketal.
(1998)suggestsaneedfortaxonomicrevisionforH.
moschatus.
Thus,thesenewlycharacterizedMar3andMac1SINEsmightbeveryimportantforfurtherunderstandingofmarsupialphylogeny,particularlyregardingdiprotodontians.
Especially,Mar3SINEswillprovidereliableinformationfortheinter-familialphylogeny,andMac1SINEforintra-Macropodoideaphylogeny.
Inthisstudy,weidentifiedandcharacterizedtwonewCORE-SINEsinmarsupialgenomesandshowedthattheyarerelativelyyoungSINEscomparedwithTher1,Ther2andMar1,whichhavepreviouslybeencharacterized(GilbertandLabuda,1999,2000).
Thedistribution,sequencedivergenceandstructureofeachCORE-SINErevealedanearlycompletepictureoftheevolutionoftheseSINEs,suggestingtheirpromiseasaphylogenetictool.
OurSINEdatawillprovidethefoundationforfurtherunderstandingofthegenomesandevolutionofmarsupials,whosecompletegenomesequencesarenowrapidlyaccumulatinginthedatabase.
AcknowledgmentsWethankDrs.
KenAplin,YokoSattaandtheKanazawazooforvariousmarsupialsamples.
ThisworkwassupportedbyaGrant-in-AidtoN.
O.
fromtheMinistryofEducation,Science,SportsandCultureofJapan.
AppendixA.
SupplementarydataSupplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,atdoi:10.
1016/j.
gene.
2007.
10.
008.
ReferencesAmrine-Madsen,H.
,Scally,M.
,Westerman,M.
,Stanhope,M.
J.
,Krajewski,C.
,Springer,M.
S.
,2003.
Nucleargenesequencesprovideevidenceforthemonophylyofaustralidelphianmarsupials.
Mol.
Phylogenet.
Evol.
28,186–196.
Aplin,K.
P.
,Archer,M.
,1987.
Recentadvancesinmarsupialsystematicswithanewsyncreticclassification.
In:Archer,M.
(Ed.
),PossumsandOpossums.
StudiesinEvolution.
SurreyBeattyandSons,NewSouthWales,pp.
15–72.
Bejerano,G.
,etal.
,2006.
Adistalenhancerandanultraconservedexonarederivedfromanovelretroposon.
Nature441,87–90.
Blin,N.
,Stafford,D.
W.
,1976.
AgeneralmethodforisolationofhighmolecularweightDNAfromeukaryotes.
NucleicAcidsRes.
3,2303–2308.
Brosius,J.
,1991.
Retroposons-seedsofevolution.
Science251,753.
Burk,A.
,Springer,M.
S.
,2000.
IntergenericrelationshipsamongMacropodoi-dea(Metatheria:Diprotodontia)andthechronicleofkangarooevolution.
J.
Mol.
Evol.
7,213–237.
Burk,A.
,Westerman,M.
,Springer,M.
S.
,1998.
Thephylogeneticpositionofthemuskyrat–kangarooandtheevolutionofbipedalhoppinginkangaroos(Macropodidae:Diprotodontia).
Syst.
Biol.
47,457–474.
Gentles,A.
J.
,etal.
,2007.
Evolutionarydynamicsoftransposableelementsintheshort-tailedopossumMonodelphisdomestica.
GenomeRes.
17,992–1004.
Gilbert,N.
,Labuda,D.
,1999.
CORE-SINEs:Eukaryoticshortinterspersedretroposingelementswithcommonsequencemotifs.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
96,2869–2874.
Gilbert,N.
,Labuda,D.
,2000.
EvolutionaryinventionsandcontinuityofCORE-SINEsinmammals.
J.
Mol.
Biol.
298,365–377.
Gray,J.
E.
,1821.
Onthenaturalarrangementofverteboseanimals.
Lond.
Med.
Redeposit.
15,296–310.
InternationalHumanGenomeSequencingConsortium,2001.
Initialsequencingandanalysisofthehumangenome.
Nature409,860–920.
Jurka,J.
,Zietkiewicz,E.
,Labuda,D.
,1995.
Ubiquitousmammalian-wideinterspersedrepeats(MIRs)aremolecularfossilsfromthemesozoicera.
NucleicAcidsRes.
23,170–175.
Karolchik,D.
,etal.
,2003.
TheUCSCGenomeBrowserDatabase.
NucleicAcidsRes.
31,51–54.
Kimura,M.
,1980.
Asimplemethodforestimatingevolutionaryratesofbasesubstitutionsthroughcomparativestudiesofnucleotidesequences.
J.
Mol.
Biol.
16,111–120.
Kumar,S.
,Tamura,K.
,Nei,M.
,2004.
MEGA3:IntegratedsoftwareforMolecularEvolutionaryGeneticsAnalysisandsequencealignment.
Brief.
Bioinform.
5,150–163.
Margulies,E.
,etal.
,2005.
Comparativesequencingprovidesinsightsaboutthestructureandconservationofmarsupialandmonotremegenomes.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
102,3354–3359.
Mikkelsen,T.
S.
,etal.
,2007.
GenomeofthemarsupialMonodelphisdomesticarevealsinnovationinnon-codingsequences.
Nature447,167–177.
Munemasa,M.
,Nikaido,M.
,Donnellan,S.
,Austin,C.
C.
,Okada,N.
,Hasegawa,M.
,2006.
Phylogeneticanalysisofdiprotodontianmarsupialsbasedoncompletemitochondrialgenomes.
GenesGenet.
Syst.
81,181–191.
Nikaido,M.
,Rooney,A.
P.
,Okada,N.
,1999.
Phylogeneticrelationshipsamongcetartiodactylsbasedoninsertionsofshortandlonginterspersedelements:Hippopotamusesaretheclosestextantrelativesofwhales.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
96,10261–10266.
Nilsson,M.
A.
,Arnason,U.
,Spencer,P.
B.
S.
,Janke,A.
,2004.
MarsupialrelationshipsandatimelineformarsupialradiationinSouthGondwana.
Gene340,189–196.
Nishihara,H.
,Satta,Y.
,Nikaido,M.
,Thewissen,J.
G.
M.
,Stanhope,M.
J.
,Okada,N.
,2005.
AretroposonanalysisofAfrotherianphylogeny.
Mol.
Biol.
Evol.
22,1823–1833.
Nishihara,H.
,Smit,A.
F.
A.
,Okada,N.
,2006a.
FunctionalnoncodingsequencesderivedfromSINEsinthemammaliangenome.
GenomeRes.
16,864–874.
Nishihara,H.
,Hasegawa,M.
,Okada,N.
,2006b.
Pegasoferae,anunexpectedmammaliancladerevealedbytrackingancientretroposoninsertions.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
103,9929–9934.
Ogiwara,I.
,Miya,M.
,Ohsima,K.
,Okada,N.
,2002.
V-SINE:AnewsuperfamilyofvertebrateSINEsthatarewidespreadinvertebrategenomesandretainastronglyconservedsegmentwithineachrepetitiveunit.
GenomeRes.
12,316–324.
Okada,N.
,1991a.
SINEs.
Curr.
Opin.
Genet.
Dev.
1,498–504.
Okada,N.
,1991b.
SINEs:shortinterspersedrepeatedelementsoftheeukaryoticgenome.
TrendsEcol.
Evol.
6,358–361.
184M.
Munemasaetal.
/Gene407(2008)176–185Osborne,M.
J.
,Christidis,L.
,Norman,J.
A.
,2002.
MolecularphylogeneticsoftheDiprotodontia(kangaroos,wombats,koala,possums,andallies).
Mol.
Phylogenet.
Evol.
25,219–228.
Rogers,J.
H.
,1985.
Theoriginandevolutionofretroposons.
Int.
Rev.
Cyt.
93,187–279.
Shedlock,A.
M.
,Okada,N.
,2000.
SINEinsertions:powerfultoolsformolecularsystematics.
BioEssays22,148–160.
Smit,A.
F.
A.
,Riggs,A.
D.
,1995.
MIRsareclassic,tRNA-derivedSINEsthatamplifiedbeforethemammalianradiation.
NucleicAcidsRes.
23,98–102.
Thompson,J.
D.
,Gibson,T.
J.
,Plewniak,F.
,Jeanmougin,F.
,Higgins,D.
G.
,1997.
TheClustalXwindowsinterface:flexiblestrategiesformultiplesequencealignmentaidedbyqualityanalysistools.
NucleicAcidsRes.
24,4876–4882.
Weiner,A.
M.
,Deininger,P.
L.
,Efstratiadis,A.
,1986.
Nonviralretroposons:Genes,pseudogenes,andtransposableelementsgeneratedbythereverseflowofgeneticinformation.
Annu.
Rev.
Biochem.
AlliedRes.
India55,631–661.
185M.
Munemasaetal.
/Gene407(2008)176–185

云基Yunbase无视CC攻击(最高500G DDoS防御),美国洛杉矶CN2-GIA高防独立服务器,

云基yunbase怎么样?云基成立于2020年,目前主要提供高防海内外独立服务器,欢迎各类追求稳定和高防优质线路的用户。业务可选:洛杉矶CN2-GIA+高防(默认500G高防)、洛杉矶CN2-GIA(默认带50Gbps防御)、香港CN2-GIA高防(双向CN2GIA专线,突发带宽支持,15G-20G DDoS防御,无视CC)。目前,美国洛杉矶CN2-GIA高防独立服务器,8核16G,最高500G ...

Krypt($120/年),2vCPU/2GB/60GB SSD/3TB

Krypt这两天发布了ION平台9月份优惠信息,提供一款特选套餐年付120美元(原价$162/年),开设在洛杉矶或者圣何塞机房,支持Windows或者Linux操作系统。ion.kryptcloud.com是Krypt机房上线的云主机平台,主要提供基于KVM架构云主机产品,相对于KT主站云服务器要便宜很多,产品可选洛杉矶、圣何塞或者新加坡等地机房。洛杉矶机房CPU:2 cores内存:2GB硬盘:...

易探云服务器怎么过户/转让?云服务器PUSH实操步骤

易探云服务器怎么过户/转让?易探云支持云服务器PUSH功能,该功能可将云服务器过户给指定用户。可带价PUSH,收到PUSH请求的用户在接收云服务器的同时,系统会扣除接收方的款项,同时扣除相关手续费,然后将款项打到发送方的账户下。易探云“PUSH服务器”的这一功能,可以让用户将闲置云服务器转让给更多需要购买的用户!易探云服务器怎么过户/PUSH?1.PUSH双方必须为认证用户:2.买家未接收前,卖家...

www.haole008.com为你推荐
2020双十一成绩单2020年的期末卷子出来了吗?网红名字被抢注球星名字被抢注合法合理吗?百度商城百度积分有什么用?lunwenjiance论文检测,知网的是32.4%,改了以后,维普的是29.23%。如果再到知网查,会不会超过呢?杰景新特杰普特长笛JFL-511SCE是不是有纯银的唇口片??价格怎样??百花百游百花净斑方多少钱一盒www.kanav001.com翻译为日文: 主人,请你收养我一天吧. 带上罗马音标会更好www555sss.com不能在线播放了??555www.toutoulu.com安装好派克滤芯后要检查其是否漏气sodu.tw台湾人看小说的网站是
二级域名查询 smartvps cloudstack 香港新世界电讯 免费博客空间 dd444 admit的用法 tna官网 酷番云 免费dns解析 个人免费主页 环聊 可外链的相册 杭州电信 .htaccess 架设代理服务器 ping值 symantec 时间同步服务器 香港打折信息 更多