3Jun1998NeuralNetworkDesignforJFunctionApproximationinDynamicProgrammingXiaozhongPangPaulJ.
WerbosAbstractThispaperwillshowthatanewneuralnetworkdesigncansolveanexampleofdicultfunctionapproximationproblemswhicharecrucialtotheeldofapproximatedynamicprogramming(ADP).
Althoughconven-tionalneuralnetworkshavebeenproventoapproximatesmoothfunctionsverywell,theuseofADPforproblemsofintelligentcontrolorplanningrequirestheapproximationoffunctionswhicharenotsosmooth.
Asanexample,thispaperstudiestheproblemofapproximatingtheJfunctionofdynamicprogrammingappliedtothetaskofnavigatingmazesingen-eralwithouttheneedtolearneachindividualmaze.
Conventionalneuralnetworks,likemulti-layerperceptrons(MLPs),cannotlearnthistask.
Butanewtypeofneuralnetworks,simultaneousrecurrentnetworks(SRNs),candosoasdemonstratedbysuccessfulinitialtests.
Thepaperalsoex-aminestheabilityofrecurrentneuralnetworkstoapproximateMLPsandviceversa.
Keywords:Simultaneousrecurrentnetworks(SRNs),multi-layerpercep-trons(MLPs),approximatedynamicprogramming,mazenavigation,neuralnet-works.
1Introduction1.
1PurposeThispaperhasthreegoals:First,todemonstratethevalueofanewclassofneuralnetworkwhichpro-videsacrucialcomponentneededforbrain-likeintelligentcontrolsystemsforthefuture.
Second,todemonstratethatthisnewkindofneuralnetworkprovidesbetterfunctionapproximateabilityforuseinmoreordinarykindsofneuralnetworkapplicationsforsupervisedlearning.
Third,todemonstratesomepracticalimplementationtechniquesnecessarytomakethiskindofnetworkactuallyworkinpractice.
X(t)Y(t)SupervisedLearningSystemActualY(t)^Figure1:Whatissupervisedlearning1.
2BackgroundAtpresent,intheneuralnetworkeldperhaps90%ofneuralnetworkapplica-tionsinvolvetheuseofneuralnetworksdesignedtoperformanceataskcalledsupervisedlearning(Figure1).
Supervisedlearningisthetaskoflearninganon-linearfunctionwhichmayhaveseveralinputsandseveraloutputsbasedonsomeexamplesofthefunction.
Forexample,incharacterrecognition,theinputsmaybeanarrayofpixelsseenfromacamera.
Thedesiredoutputsofthenetworkmaybeaclassicationofcharacterbeingseen.
Anotherexamplewouldbeforintelligentsensinginthechemicalindustrywheretheinputsmightbespectraldatafromobservingabatchofchemicals,andthedesiredoutputswouldbetheconcentrationsofthedierentchemicalsinthebatch.
Thepurposeofthisapplicationistopredictorestimatewhatisinthebatchwithouttheneedforexpensiveanalyticaltests.
Theworkinthispaperwillfocustotallyoncertaintasksinsupervisedlearning.
Eventhoughexistingneuralnetworkscanbeusedinsupervisedlearn-ing,therecanbeperformanceproblemsdependingonwhatkindoffunctionislearned.
Manypeoplehaveprovenmanytheoremstoshowthatneuralnetworks,fuzzylogic,Taylortheoriesandotherfunctionapproximationhaveauniversalabilitytoapproximatefunctionsontheconditionthatthefunctionshavecertainpropertiesandthatthereisnolimitonthecomplexityoftheapproximation.
Inpractice,manyapproximationschemesbecomeuselesswhentherearemanyinputvariablesbecausetherequiredcomplexitygrowsatanexponentialrate.
Forexample,onewaytoapproximateafunctionwouldbetoconstructatableofthevaluesofthefunctionatcertainpointsinthespaceofpossibleinputs.
Supposethereare30inputvariablesandweconsider10possiblevaluesofeachinput.
Inthatcase,thetablemusthave1030numbersinit.
Thisisnotusefulinpracticeformanyreasons.
Actually,however,manypopular2approximationmethodslikeradialbasisfunction(RBF)aresimilarinspirittoatableofvalues.
Intheeldofsupervisedlearning,AndrewBarron[30]hasprovedsomefunc-tionapproximationtheoremswhicharemuchmoreusefulinpractice.
Hehasproventhatthemostpopularformofneuralnetworks,themulti-layerpercep-tron(MLP),canapproximateanysmoothfunction.
Unlikethecasewiththelinearbasisfunctions(likeRBFandTaylorseries),thecomplexityofthenet-workdoesnotgrowrapidlyasthenumberofinputvariablesgrows.
Unfortunatelytherearemanypracticalapplicationswherethefunctionstobeapproximatedarenotsmooth.
Insomecases,itisgoodenoughjusttoaddextralayerstoanMLP[1]ortouseageneralizedMLP[2].
However,therearesomedicultproblemswhichariseineldslikeintelligentcontrolorimageprocessingorevenstochasticsearchwherefeed-forwardnetworksdonotappearpowerfulenough.
1.
3SummaryandOrganizationofThisPaperThemaingoalofthispaperistodemonstratethecapabilityofadierentkindofsupervisedlearningsystembasedonakindofrecurrentnetworkcalledsimultaneousrecurrentnetwork(SRN).
Inthenextchapterwewillexplainwhythiskindofimprovedsupervisedlearningsystemwillbeveryimportanttointelligentcontrolandtoapproximatedynamicprogramming.
Ineectthisworkonsupervisedlearningistherststepinamulti-stepeorttobuildmorebrain-likeintelligentsystems.
ThenextstepwouldbetoapplytheSRNtostaticoptimizationproblems,andthentointegratetheSRNsintolargesystemsforADP.
Eventhoughintelligentcontrolisthemainmotivationforthiswork,theworkmaybeusefulforotherareasaswell.
Forexample,inzipcoderecog-nition,AT&T[3]hasdemonstratedthatfeed-forwardnetworkscanachieveahighlevelofaccuracyinclassifyingindividualdigits.
However,AT&Tandtheothersstillhavedicultyinsegmentingthetotalzipcodesintoindividualdig-its.
ResearchonhumanvisionbyvonderMalsburg[4]andothershassuggestedthatsomekindsofrecurrencyinneuralnetworksarecrucialtotheirabilitiesinimagesegmentationandbinocularvision.
Furthermore,researchersinimageprocessinglikeLaveenKanalhaveshowedthatiterativerelaxationalgorithmsarenecessaryeventoachievemoderatesuccessinsuchimageprocessingtasks.
ConceptuallytheSRNcanlearnanoptimaliterativealgorithm,buttheMLPcannotrepresentanyiterativealgorithms.
Insummary,thoughwearemostinterestedinbrain-likeintelligentcontrol,thedevelopmentofSRNscouldleadtoveryimportantapplicationsinareassuchasimageprocessinginthefuture.
Thenetworkdescribedinthispaperisuniqueinseveralrespects.
However,itiscertainlynottherstserioususeofarecurrentneuralnetwork.
Chapter3ofthispaperwilldescribetheexistingliteratureonrecurrentnetworks.
Itwilldescribetherelationshipbetweenthisnewdesignandotherdesignsinthe3literature.
Roughlyspeaking,thevastbulkofresearchinrecurrentnetworkshasbeenacademicresearchusingdesignsbasedonordinarydierentialequa-tions(ODE)toperformsometasksverydierentfromsupervisedlearning—taskslikeclustering,associativememoryandfeatureextraction.
ThesimpleHebbianlearningmethods[13]usedforthosetasksdonotleadtothebestper-formanceinsupervisedlearning.
Manyengineershaveusedanothertypeofrecurrentnetwork,thetimelaggedrecurrentnetwork(TLRN),wheretherecur-rencyisusedtoprovidememoryofpasttimeperiodsforuseinforecastingthefuture.
However,thatkindofrecurrencycannotprovidetheiterativeanalysiscapabilitymentionedabove.
VeryfewresearchershavewrittenaboutSRNs,atypeofrecurrentnetworkdesignedtominimizeerrorandlearnanoptimaliterativeapproximationtoafunction.
ThisiscertainlytherstuseofSRNstolearnaJfunctionfromdynamicprogrammingwhichwillbeexplainedmoreinchapter2.
ThismayalsobetherstempiricaldemonstrationoftheneedforadvancedtrainingmethodstopermitSRNstolearndicultfunctions.
Chapter4willexplaininmoredetailthetwotestproblemswehaveusedfortheSRNandtheMLP,aswellasthedetailsofarchitectureandlearningprocedure.
ThersttestproblemwasusedmainlyasaninitialtestofasimpleformofSRNs.
Inthisproblem,wetriedtotestthehypothesisthatanSRNcanalwayslearntoapproximatearandomlychosenMLP,butnotviceversa.
Althoughourresultsareconsistentwiththathypothesis,thereisroomformoreextensiveworkinthefuture,suchasexperimentswithdierentsizesofneuralnetworksandmorecomplexstatisticalanalysis.
ThemaintestprobleminthisworkwastheproblemoflearningtheJfunctionofdynamicprogramming.
Foramazenavigationproblem,manyneuralnetworkresearchershavewrittenaboutneuralnetworkswhichlearnanoptimalpolicyofactionforoneparticularmaze[5].
ThispaperwilladdressthemoredicultproblemoftraininganeuralnetworktoinputapictureofamazeandoutputtheJfunctionforthismaze.
WhentheJfunctionisknown,itisatriviallocalcalculationtondthebestdirectionofmovement.
Thiskindofneuralnetworkshouldnotrequireretrainingwheneveranewmazeisencountered.
Insteaditshouldbeabletolookatthemazeandimmediately"see"theoptimalstrategy.
Trainingsuchanetworkisaverydicultproblemwhichhasneverbeensolvedinthepastwithanykindofneuralnetwork.
Alsoitistypicalofthechallengesoneencountersintrueintelligentcontrolandplanning.
Thispaperhasdemonstratedaworkingsolutiontothisproblemforthersttime.
Nowthatasystemisworkingonaverysimpleformforthisproblem,itwouldbepossibleinthefuturetoperformmanytestsoftheabilityofthissystemtogeneralizeitssuccesstomanymazes.
Inordertosolvethemazeproblem,itwasnotsucientonlytouseanSRN.
TherearemanychoicestomakewhenimplementingthegeneralideaofSRNsorMLPs.
Chapter5willdescribeindetailhowthesechoicesweremadeinthiswork.
Themostimportantchoiceswere:41.
BothfortheMLPandforthefeed-forwardcoreoftheSRNweusedthegeneralizedMLPdesign[2]whicheliminatestheneedtodecideonthenumberoflayers.
2.
Forthemazeproblem,weusedacellularorweight-sharingarchitecturewhichexploitsthespatialsymmetryoftheproblemandreducesdramaticallythenumberofweights.
Ineectwesolvedthemazeproblemusingonlyvedistinctneurons.
Thereareinterestingparallelsbetweenthisnetworkandthehippocampusofthehumanbrain.
3.
Forthemazeproblem,anadaptivelearningrate(ALR)procedurewasusedtopreventoscillationandensureconvergence.
4.
InitialvaluesfortheweightsandtheinitialinputvectorfortheSRNwerechosenessentiallyatrandom,byhand.
Inthefuture,moresystematicmethodsareavailable.
Butthiswassucientforsuccessinthiscase.
FinallyChapter6willdiscussthesimulationresultsinmoredetail,givetheconclusionsofthispaperandmentionsomepossibilitiesforfuturework.
2MotivationInthischapterwewillexplaintheimportanceofthiswork.
Asdiscussedabove,thepapershowshowtouseanewtypeofneuralnetworkinordertoachievebetterfunctionapproximationthanwhatisavailablefromthetypesofneu-ralnetworkswhicharepopulartoday.
Thischapterwilltrytoexplainwhybetterfunctionapproximationisimportanttoapproximatedynamicprogram-ming(ADP),intelligentcontrolandunderstandingthebrain.
ImageprocessingandotherapplicationshavealreadybeendiscussedintheIntroduction.
Thesethreetopics—ADP,intelligentcontrolandunderstandingthebrain—areallcloselyrelatedtoeachotherandprovidetheoriginalmotivationfortheworkofthispaper.
Thepurposeofthispaperistomakeacorecontributiontodevelopingthemostpowerfulpossiblesystemforintelligentcontrol.
Inordertobuildthebestintelligentcontrolsystems,weneedtocombinethemostsuitablemathematicstogetherwithsomeunderstandingofnaturalintelligenceinthebrain.
Thereisalotofinterestinintelligentcontrolintheworld.
Somecontrolsystemswhicharecalledintelligentareactuallyveryquickandeasythings.
Therearemanypeoplewhotrytomovestepbysteptoaddintelligenceintocontrol,butastep-by-stepapproachmaynotbeenoughbyitself.
Sometimestoachieveacomplexdicultgoal,itisnecessarytohaveaplan,thussomepartsoftheintelligentcontrolcommunityhavedevelopedamoresystematicvisionorplanforhowitcouldbepossibletoachieverealintelligentcontrol.
First,onemustthinkaboutthequestionofwhatisintelligentcontrol.
Then,insteadoftryingtoanswerthisquestioninonestep,wetrytodevelopaplantoreachthedesign.
Actuallytherearetwoquestions:51.
Howcouldwebuildanarticialsystemwhichreplicatesthemaincapa-bilitiesofbrain-likeintelligence,somehowuniedtogetherastheyareuniedtogetherinthebrain2.
Howcanweunderstandwhatarethecapabilitiesinthebrainandhowtheyareorganizedinafunctionalengineeringviewi.
e.
howarethosecircuitsinthehumanbrainarrangedtolearnhowtoperformdierenttasksItwouldbebesttounderstandhowthehumanbrainworksbeforebuildinganarticialsystem.
However,atthepresenttime,ourunderstandingofthebrainislimited.
Butatleastweknowthatlocalrecurrencyplayscriticalruleinthehigherpartofthehumanbrain[6][7][8][4].
AnotherreasontouseSRNsisthatSRNscanbeveryusefulinADPmath-ematically.
NowwewilldiscusswhatADPcandoforintelligentcontrolandunderstandingthebrain.
Theremainderofthischapterwilladdressthreequestionsinorder:1.
WhatisADP2.
WhatistheimportanceofADPtointelligentcontrolandunderstandingthebrain3.
WhatistheimportanceofSRNstoADP2.
1WhatisADPandJFunctionToexplainwhatisADP,letusconsidertheoriginalBellmanequation[9]:J(R(t))=maxu(t)(U(R(t),u(t))+)/(1+r)U0(1)whererandu0areconstantsthatareusedonlyininnite-time-horizonproblemsandthenonlysometimes,andwheretheanglebracketsrefertoexpectationvalue.
Inthispaperweactuallyuse:J(R(t))=maxu(t)(U(R(t),u(t))+)(2)sincethemazeproblemdonotinvolveaninnitetime-horizon.
InsteadofsolvingforthevalueofJineverypossiblestate,R(t),wecanuseafunctionapproximationmethodlikeneuralnetworkstoapproximatetheJfunction.
Thisiscalledapproximatedynamicprogramming(ADP).
ThispaperisnotdoingtrueADPbecauseintrueADPwedonotknowwhattheJfunctionisandmustthereforeuseindirectmethodstoapproximateit.
However,beforewetrytouseSRNsasacomponentofanADPsystem,itmakessensetorsttesttheabilityofanSRNtoapproximateaJfunction,inprinciple.
NowwewilltrytoexplainwhatistheintuitivemeaningoftheBellmanequation(Equation(1))andtheJfunctionaccordingtothetreatmenttakenfrom[2].
TounderstandADP,onemustrstreviewthebasicsofclassicaldynamicprogramming,especiallytheversionsdevelopedbyHoward[28]andBertsekas.
6Classicaldynamicprogrammingistheonlyexactandecientmethodtocom-putetheoptimalcontrolpolicyovertime,inageneralnonlinearstochasticenvi-ronment.
Theonlyreasontoapproximateitistoreducecomputationalcost,soastomakethemethodaordable(feasible)acrossawiderangeofapplications.
Indynamicprogramming,theusersuppliesautilityfunctionwhichmaytaketheformU(R(t),u(t))—wherethevectorRisaRepresentationorestimateofthestateoftheenvironment(i.
e.
thestatevector)—andastochasticmodeloftheplantorenvironment.
Then"dynamicprogramming"(i.
e.
solutionoftheBellmanequation)givesusbackasecondaryorstrategicutilityfunctionJ(R).
ThebasictheoremisthatmaximizingU(R(t),u(t))+J(R(t+1))yieldstheoptimalstrategy,thepolicywhichwillmaximizetheexpectedvalueofUaddedupoverallfuturetime.
Thusdynamicprogrammingconvertsadicultprob-leminoptimizingovermanytimeintervalsintoastraightforwardprobleminshort-termmaximization.
Inclassicaldynamicprogramming,wendtheexactfunctionJwhichexactlysolvestheBellmanequation.
InADP,welearnakindof"model"ofthefunctionJ;this"model"iscalleda"Critic.
"(Alternatively,somemethodslearnamodelofthederivativesofJwithrespecttothevariablesRi;thesecorrespondtoLagrangemultipliers,λi,andtothe"pricevariables"ofmicroeconomictheory.
SomemethodslearnafunctionrelatedtoJ,asintheAction-DependentAdaptiveCritic(ADAC)[29].
2.
2IntelligentControlandRobustControlTounderstandthehumanbrainscientically,wemusthavesomesuitablemath-ematicalconcepts.
Sincethehumanbrainmakesdecisionslikeacontrolsystem,itisanexampleofanintelligentcontrolsystem.
Neuroscientistsdonotyetun-derstandthegeneralabilityofthehumanbraintolearntoperformnewtasksandsolvenewproblemseventhoughtheyhavestudiedthebrainfordecades.
Somepeoplecomparethepastresearchinthiseldtowhatwouldhappenifwespentyearstostudyradioswithoutknowingthemathematicsofsignalprocessing.
Werstneedsomemathematicalideasofhowitispossibleforacomputingsystemtohavethiskindofcapabilitybasedondistributedparallelcomputation.
Thenwemustaskwhatarethemostimportantabilitiesofthehumanbrainwhichunifyallofitsmorespecicabilitiesinspecictasks.
Itwouldbeseenthatthemostimportantabilityofbrainistheabilitytolearnovertimehowtomakebetterdecisionsinordertobettermaximizethegoalsoftheorganism.
Thenaturalwaytoimitatethiscapabilityinengineeringsystemsistobuildsystemswhichlearnovertimehowtomakedecisionswhichmaximizesomemeasureofsuccessorutilityoverfuturetime.
Inthiscontext,dynamicprogrammingisimportantbecauseitistheonlyexactandecientmethodformaximizingutilityoverfuturetime.
Inthegeneralsituation,whererandomdisturbancesandnonlinearityareexpected,ADPisimportantbecauseitprovidesboththelearningcapabilityandthepossibilityofreducingcomputationalcosttoan7aordablelevel.
Forthisreason,ADPistheonlyapproachwehavetoimitatingthiskindofabilityofthebrain.
ThesimilaritybetweensomeADPdesignsandthecircuitryofthebrainhasbeendiscussedatlengthin[10]and[11].
Forexample,thereisanimportantstructureinthebraincalledthelimbicsystemwhichperformssomekindsofevaluationorreinforcementfunctions,verysimilartothefunctionsoftheneuralnetworksthatmustapproximatetheJfunctionofdynamicprogramming.
Thelargestpartofthelimbicsystem,calledthehippocampus,isknowntopossessahigherdegreeoflocalrecurrency[8].
Ingeneral,therearetwowaystomakeclassicalcontrollersstabledespitegreatuncertaintyaboutparametersoftheplanttobecontrolled.
Forexample,incontrollingahighspeedaircraft,thelocationofthecenterofthegravityisnotknown.
Thecenterofgravityisnotknownexactlybecauseitdependsonthecargooftheairplaneandthelocationofthepassengers.
Onewaytoaccountforsuchuncertaintiesistouseadaptivecontrolmethods.
Wecangetsimilarresults,butmoreassuranceofstabilityinmostcases[16]byusingrelatedneuralnetworkmethods,suchasadaptivecriticswithrecurrentnetworks.
Itislikeadaptivecontrolbutmoregeneral.
ThereisanotherapproachcalledrobustcontrolorH∞control,whichtrystodesignaxedcontrollerwhichremainsstableoveralargerangeinparameterspace.
BarasandPatel[31]haveforthersttimesolvedthegeneralproblemofH∞controlforgeneralpartiallyobservednonlinearplants.
Theyhaveshownthatthisproblemreducestoaprobleminnonlinear,stochasticoptimization.
Adaptivedynamicprogrammingmakesitpossibletosolvelargescaleproblemsofthistype.
2.
3ImportanceoftheSRNtoADPADPsystemsalreadyexistwhichperformrelativelysimplecontroltaskslikestabilizinganaircraftasitlandsunderwindyconditions[12].
Howeverthiskindoftaskdoesnotreallyrepresentthehighestlevelofintelligenceorplanning.
Trueintelligentcontrolrequirestheabilitytomakedecisionswhenfuturetimeperiodswillfollowacomplicated,unknownpathstartingfromtheinitialstate.
Oneexampleofachallengeforintelligentcontrolistheproblemofnavigatingamazewhichwewilldiscussinchapter4.
Atrueintelligentcontrolsystemshouldbeabletolearnthiskindoftask.
However,theADPsystemsinusetodaycouldneverlearnthiskindoftask.
TheyuseconventionalneuralnetworkstoapproximatetheJfunction.
BecausetheconventionalMLPcannotapproximatesuchaJfunction,wemaydeducethatADPsystemconstructedonlyfromMLPswillneverbeabletodisplaythiskindofintelligentcontrol.
Therefore,itisessentialthatwecanndakindofneuralnetworkwhichcanperformthiskindoftask.
Aswewillshow,theSRNcanllthiscrucialgap.
ThereareadditionalreasonsforbelievingthattheSRNmaybecrucialtointelligentcontrolasdiscussedinchapter13of[9].
83AlternativeFormsofRecurrentNetworks3.
1RecurrentNetworksinGeneralThereisahugeliteratureonrecurrentnetworks.
Biologistshaveusedmanyrecurrentmodelsbecausetheexistenceofrecurrencyinthebrainisobvious.
However,mostoftherecurrentnetworksimplementedsofarhavebeenclas-sicstylerecurrentnetworks,asshownonthelefthandofFigure2.
Mostofthesenetworksareformulatedfromordinarydierentialequation(ODE)sys-tems.
UsuallytheirlearningisbasedonarestrictedconceptofHebbianlearn-ing.
Originallyintheneuralnetworkeld,themostpopularneuralnetworkswererecurrentnetworkslikethosewhichHopeld[14]andGrossberg[15]usedtoprovideassociativememory.
FEATUREEXTRACTIONART,SOM,.
.
.
MINIMIZATIONHOPFIELD,CAUCHYCLASSICALRECURRENTNETWORKSRECURRENTNETWORKSTLRNSRN(DynamicSystems,Prediction)(Betterfunctionapproximation)ASSOCIATIVEMEMORYSTATICFUNCTIONCLUSTERINGHOPFIELD,HASSOUNFigure2:RecurrentnetworksAssociativememorynetworkscanactuallybeappliedtosupervisedlearning.
Butinactualitytheircapabilitiesareverysimilartothoseoflook-uptablesandradialbasisfunctions.
Theymakepredictionsbasedonsimilaritytoprevious9examplesorprototypes.
Theydonotreallytrytoestimategeneralfunctionalrelationships.
Asaresultthesemethodshavebecomeunpopularinpracticalapplicationsofsupervisedlearning.
ThetheoremsofBarrondiscussedintheIntroductionshowthatMLPsdoprovidebetterfunctionapproximationthandosimplemethodsbasedonsimilarity.
Therehasbeensubstantialprogressinthepastfewyearsindevelopingnewassociativememorydesigns.
Nevertheless,theMLPisstillbetterforthespecictaskoffunctionapproximationwhichisthefocusofthispaper.
Inasimilarway,classicrecurrentnetworkshavebeenusedfortaskslikeclustering,featureextractionandstaticfunctionoptimization.
Butthesearedierentproblemsfromwhatwearetryingtosolvehere.
Actuallytheproblemofstaticoptimizationwillbeconsideredinfuturestagesofthisresearch.
WehopethattheSRNcanbeusefulinsuchappli-cationsafterwehaveuseditforsupervisedlearning.
WhenpeopleusetheclassicHopeldnetworksforstaticoptimization,theyspecifyalltheweightsandconnectionsinadvance[14].
Thishaslimitedthesuccessofthiskindofnetworkforlargescaleproblemswhereitisdiculttoguesstheweights.
WiththeSRNwehavemethodstotraintheweightsinthatkindofstructure.
Thustheguessingisnolongerneeded.
However,touseSRNsinthatapplicationrequiresrenementbeyondthescopeofthispaper.
TherehavealsobeenresearchersusingODEneuralnetworkswhohavetriedtousetrainingschemesbasedonaminimizationoferrorinsteadofHebbianapproaches.
However,inpracticalapplicationsofsuchnetworks,itisimportanttoconsidertheclockratesofcomputationanddatasampling.
Forthatreason,itisbotheasierandbettertouseerrorminimizingdesignsbasedondiscretetimeratherthanODE.
3.
2StructureofDiscrete-TimeRecurrentNetworksIftheimportanceofneuralnetworksismeasuredbythenumberofwordspub-lished,thentheclassicnetworksdominatetheeldofrecurrentnetworks.
How-ever,ifthevalueismeasuredbasedoneconomicvalueofpracticalapplication,thentheeldisdominatedbytime-laggedrecurrentnetworks(TLRNs).
ThepurposeoftheTLRNistopredictorclassifytime-varyingsystemsusingre-currencyasawaytoprovidememoryofthepast.
TheSRNhassomerelationwiththeTLRNbutitisdesignedtoperformafundamentallydierenttask.
TheSRNusesrecurrencytorepresentmorecomplexrelationshipsbetweenoneinputvectorX(t)andoneoutputY(t)withoutconsiderationoftheothertimest.
Figure3andFigure4showusmoredetailsabouttheTLRNandtheSRN.
Incontrolapplications,u(t)representsthecontrolvariableswhichweusetocontroltheplant.
Forexample,ifwedesignacontrollerforacarengine,theX(t)variablesarethedatawegetfromoursensors.
Theu(t)variableswouldincludethevalvesettingswhichweusetotrytocontroltheprocessofcombustion.
TheR(t)variablesprovideawayfortheneuralnetworkstorememberpasttime10Z-1X(t)R(t)X(t+1)u(t)TLRNFigure3:Timelaggedrecurrentnetwork(TLRN)XfyFigure4:Simultaneousrecurrentnetwork(SRN)11cycles,andtoimplicitlyestimateimportantvariableswhichcannotbeobserveddirectly.
Infact,theapplicationofTLRNstoautomobilecontrolisthemostvaluableapplicationofrecurrentnetworkseverdevelopedsofar.
Asimultaneousrecurrentnetwork(Figure4)isdenedasamapping:Y(t)=F(X(t),W)(3)whichiscomputedbyiteratingoverthefollowingequation:y(n+1)(t)=f(y(n)(t),X(t),W)(4)wherefissomesortoffeed-forwardnetworkorsystem,andYisdenedas:Y(t)=limn→∞y(n)(t)(5)WhenweuseYinthispaper,weusen=20insteadof∞here.
InFigure4,theoutputsoftheneuralnetworkcomebackagainasinputstothesamenetwork.
However,inconceptthereisnotimedelay.
Theinputsandoutputsshouldbesimultaneous.
Thatiswhyitiscalledasimultaneousrecurrentnetwork(SRN).
Inpractice,ofcourse,therewillalwaysbesomephys-icaltimedelaybetweentheoutputsandtheinputs.
HoweveriftheSRNisimplementedinfastcomputers,thistimedelaymaybeverysmallcomparedtothedelaybetweendierentframesofinputdata.
InFigure4,Xreferstotheinputdataatthecurrenttimeframet.
Thevectoryrepresentsthetemporaryoutputofthenetwork,whichisthenrecycledasanadditionalsetofinputstothenetwork.
AtthecenteroftheSRNisactuallythefeed-forwardnetworkwhichimplementsthefunctionf.
(IndesigninganSRN,youcanchooseanyfeed-forwardnetworkorsystemasyoulike.
Thefunctionfsimplydescribeswhichnetworkyouuse).
TheoutputoftheSRNatanytimetissimplythelimitofthetemporaryoutputy.
InEquation(3)and(4),noticethattherearetwointegers—nandt—whichcouldbothrepresentsomekindoftime.
Theintegertrepresentsaslowerkindoftimecycle,likethedelaybetweenframesofincomingdata.
Theintegernrepresentsafasterkindoftime,likethecomputingcycleofafastelectronicchip.
Forexample,ifwebuildacomputertoanalyzeimagescomingfromamoviecamera,"t"and"t+1"representtwosuccessiveincomingpictureswithamoviecamera.
Thereareusuallyonly32framespersecond.
(Inthehumanbrain,itseemsthatthereareonlyabout10framespersecondcomingintotheneocortex.
)Butifweuseafastneuralnetworkchip,thecomputationalcycle—thetimebetween"n"and"n+1"—couldbeassmallasamicrosecond.
Inactuality,itisnotnecessarytochoosebetweentime-laggedrecurrency(fromttot+1)andsimultaneousrecurrency(fromnton+1).
Itispossibletobuildahybridsystemwhichcontainsbothtypesofrecurrency.
Thiscouldbeveryusefulinanalyzingdatalikemoviepictures,whereweneedbothmemoryandsomeabilitytosegmenttheimages.
[9]discusseshowtobuildsuchahybrid.
12However,beforebuildingsuchahybrid,wemustrstlearntomakeSRNsworkbythemselves.
Finally,pleasenotethattheTLRNisnottheonlykindofneuralnetworkusedinpredictingdynamicalsystems.
Evenmorepopularisthetimedelayedneuralnetwork(TDNN),showninFigure5.
TheTDNNispopularbecauseitiseasytouse.
However,ithaslesscapability,inprinciple,becauseithasnoabilitytoestimateunknownvariables.
Itisespeciallyweakwhensomeofthesevariableschangeslowlyovertimeandrequirememorywhichpersistsoverlongtimeperiods.
Inaddition,theTLRNtstherequirementsofADPdirectly,whiletheTDNNdoesnot[9][16].
X(t)X(t-1)X(t-k)TDNNX(t+1)u(t-k)u(t-1)u(t)Figure5:Timedelayedneuralnetwork(TDNN)3.
3TrainingofSRNsandTLRNsTherearemanytypesoftrainingthathavebeenusedforrecurrentnetworks.
Dierenttypesoftraininggiverisetodierentkindsofcapabilitiesfordierenttasks.
ForthetaskswhichwehavedescribedfortheSRNandtheTLRN,theproperformsoftrainingallinvolvesomecalculationofthederivativesoferrorwithrespectstotheweights.
Usuallyafterthesederivativesareknown,theweightsareadaptedaccordingtoasimpleformulaasfollows:newWi,j=oldWi,jLRErrorWi,j(6)whereLRiscalledthelearningrate.
TherearevemainwaystotrainSRNs,allbasedondierentmethodsforcalculatingorapproximatingthederivatives.
FourofthesemethodscanalsobeusedwithTLRNs.
Somecanbeusedforcontrolapplications.
Butthedetailsofthoseapplicationsarebeyondthescopeofthispaper.
Theseve13typesoftrainingarelistedinFigure6.
Forthispaper,wehaveusedtwoofthesemethods:Backpropagationthroughtime(BTT)andTruncation.
TypesofSRNSimultaneousBackpropagationBackpropagationThroughTimeForwardPropagationTrainingTruncationErrorCriticsFigure6:TypesofSRNTrainingThevemethodsare:1.
Backpropagationthroughtime(BTT).
Thismethodandforwardpropa-gationarethetwomethodswhichcalculatethederivativesexactly.
BTTisalsolessexpensivethanforwardpropagation.
2.
Truncation.
Thisisthesimplestandleastexpensivemethod.
Itusesonlyonesimplepassofbackpropagationthroughthelastiterationofthemodel.
TruncationisprobablythemostpopularmethodusedtoadaptSRNseventhoughthepeoplewhouseitmostlyjustcallitordinarybackpropagation.
3.
Simultaneousbackpropagation.
Thisismorecomplexthantruncation,butitstillcanbeusedinrealtimelearning.
Itcalculatesderivativeswhichareexactintheneighborhoodofequilibriumbutitdoesnotaccountforthedetailsofthenetworkbeforeitreachestheneighborhoodofequilibrium.
4.
Errorcritics(showninFigure7).
ThisprovidesageneralapproximationtoBTTwhichissuitableforuseinreal-timelearning[9].
14TLRNTLRNCriticErrorCriticErrorErrorErrorR(t)X(t)u(t)X(t)u(t)X(t+1)X(t+1)X(t=1)u(t+1)R(t+1)λ^(t)λ^λ(t)(t+1)Figure7:ErrorCritics155.
Forwardpropagation.
This,likeBTT,calculatesexactderivatives.
Itisoftenconsideredsuitableforreal-timelearningbecausethecalculationsgoforwardintime.
However,whentherearenneuronsandmconnections,thecostofthismethodperunitoftimeisproportionaltonm.
Becauseofthishighcost,forwardpropagationisnotreallybrain-likeanymorethanBTT.
3.
3.
1Backpropagationthroughtime(BTT)BTTisageneralmethodforcalculatingallthederivativeofanyoutcomeorresultofaprocesswhichinvolvesrepeatedcallstothesamenetworkornet-worksusedtohelpcalculatesomekindofnaloutcomevariableorresultE.
Insomeapplications,Ecouldrepresentutility,performance,costorothersuchvariables.
Butinthispaper,Ewillbeusedtorepresenterror.
BTTwasrstproposedandimplementedin[17].
ThegeneralformofBTTisasfollows:fork=1toTdoforwardcalculation(k);calculateresultE;calculatedirectderivativesofEwithrespecttooutputsofforwardcalculations;fork=Tto1backpropagatethroughforwardscalculation(k),calculatingrun-ningtotalswhereappropriate.
ThesestepsareillustratedinFigure8.
Noticethatthisalgorithmcanbeappliedtoallkindsofcalculations.
ThuswecanapplyittocaseswherekrepresentsdataframestasintheTLRNs,ortocaseswherekrepresentsinternaliterationsnasintheSRNs.
AlsonotethateachboxofcalculationreceivesinputfromsomedashedlineswhichrepresentthederivativesofEwithrespecttotheoutputofthebox.
Inordertocalculatethederivativescomingoutofeachcalculationbox,onesimplyusesbackpropagationthroughthecalculationofthatboxstartingoutfromtheincomingderivatives.
WewillexplaininmoredetailhowthisworksintheSRNcaseandtheTLRNcase.
SofarasweknowBTThasbeenappliedinpublishedworkingsystemsforTLRNsandforcontrol,butnotyetforSRNsuntilnow.
However,Rumelhart,HintonandWilliams[18]didsuggestthatsomeoneshouldtrythis.
TheapplicationofBTTforTLRNsisdescribedatlengthin[2]and[9].
TheprocedureisillustratedinFigure9.
Inthisexamplethetotalerrorisactuallythesumoferrorovereachtimetwheretgoesfrom1toT.
ThereforetheoutputsoftheTLRNateachtimet(t#include#include#includevoidF_NET2(doubleF_Yhat,doubleW[30][30],doublex[30],intn,intm,intN,doubleF_W[30][30],doubleF_net[30],doubleF_Ws[30],doubleWs,doubleF_x[30]);voidNET(doubleW[30][30],doublex[30],doubleww[30],intn,intm,intN,doubleYhat[30]);41voidsynthesis(intB[30][30],intA[30][30],intn1,intn2);voidpweight(doubleWs,doubleF_Ws_T,doubleww[30],doubleF_net_T[30],doubleW[30][30],doubleF_W_T[30][30],intn,intN,intm);intminimum(ints,intt,intu,intv);intmin(intk,intl);doublef(doublex);voidmain(){inti,j,it,iz,ix,iy,lt,m,maxt,n,n1,n2,nn,nm,N,p,q,po,t,TT;intA[30][30],B[30][30];doublea,b,dot,e,e1,e2,es,mu,s,sum,F_Ws_T,Ws,F_Yhat,wi;doubleW[30][30],x[30],F_net_T[30],F_Ws[30],F_W_O[30][30],F_W[30][30];doubleF_W_T[30][30],F_net[30],ww[30],yy[21][12][8][8];doubleYhat[30],F_y[21][12][8][8],F_x[30],F_Jhat[30][30];doubleS_F_W1,S_F_W2,Lr_W,S_F_net1,S_F_net2,Lr_ww,Lr_Ws,F_Ws_O;doubley[50][50],F_net_O[50],F_Ws1,F_Ws2,W_O[50][50],ww_O[50],Ws_O;FILE*f;/*Numberofinputs,neuronsandoutput:7,3,1*//*'n'isthenumberoftheactiveneurons*//*'m'and'N'botharethenumberofinputs*//*'nm'isthenumberofmemoryis:5*//*'nn+1'*'nn+1'isthesizeofthemaze'*//*'TT'isthenumberoftrials*//*'lt'isthenumberoftheintervaltime*//*'maxt'isthemaxnumberforTinfigure[8]*//*Lr-Ws,Lr_wwandLr_WarethelearningratesforWs,wwandW*/a=0.
9;b=0.
2;n=5;m=11;N=11;nn=6;nm=5;TT=30000;lt=50;maxt=20;wi=25;Ws=40;e=0;po=pow(2,31)-1;/*InitialvaluesofOld*/F_Ws_O=1;for(i=m+1;i-1;q--){for(ix=0;ixS_F_W2)||(S_F_W1==S_F_W2))Lr_W=Lr_W*(a+b);elseif(S_F_W1S_F_net2)||(S_F_net1==S_F_net2))Lr_ww=Lr_ww*(a+b);elseif(S_F_net1F_Ws2)||(F_Ws1==F_Ws2))Lr_Ws=Lr_Ws*(a+b);elseif(F_Ws1m;i--){for(j=i+1;j0;i--)for(j=m+1;jl)r=l;elser=k;returnr;}voidpweight(doubleWs,doubleF_Ws_T,doubleww[30],doubleF_net_T[30],doubleW[30][30],doubleF_W_T[30][30],intn,intN,intm){inti,j;for(i=m+1;i
DiyVM是一家成立于2009年的国人主机商,提供的产品包括VPS主机、独立服务器租用等,产品数据中心包括中国香港、日本大阪和美国洛杉矶等,其中VPS主机基于XEN架构,支持异地备份与自定义镜像,VPS和独立服务器均可提供内网IP功能。商家VPS主机均2GB内存起步,三个地区机房可选,使用优惠码后每月69元起;独立服务器开设在香港沙田电信机房,CN2线路,自动化开通上架,最低499元/月起。下面以...
Webhosting24宣布自7月1日起开始对日本机房的VPS进行NVMe和流量大升级,几乎是翻倍了硬盘和流量,价格依旧不变。目前来看,日本VPS国内过去走的是NTT直连,服务器托管机房应该是CDN77*(也就是datapacket.com),加上高性能平台(AMD Ryzen 9 3900X+NVMe),还是有相当大的性价比的。此外在6月30日,又新增了洛杉矶机房,CPU为AMD Ryzen 9...
腾讯云轻量应用服务器又要免费升级配置了,之前已经免费升级过一次了(腾讯云轻量应用服务器套餐配置升级 轻量老用户专享免费升配!),这次在上次的基础上再次升级。也许这就是良心云吧,名不虚传。腾讯云怎么样?腾讯云好不好。腾讯云轻量应用服务器 Lighthouse 是一种易于使用和管理、适合承载轻量级业务负载的云服务器,能帮助个人和企业在云端快速构建网站、博客、电商、论坛等各类应用以及开发测试环境,并提供...
exhentai.org为你推荐
对对塔101,简单学习网,对对塔三个哪个好刘祚天你们知道21世纪的DJ分为几种类型吗?(答对者重赏)porntimesexy time 本兮 MP3地址ip在线查询我要用eclipse做个ip在线查询功能,用QQwry数据库,可是我不知道怎么把这个数据库放到我的程序里面去,高手帮忙指点下,小弟在这谢谢了抓站工具大家在家用什么工具练站?怎么固定?面壁思过?在医院是站站立架斗城网女追男有多易?喜欢你,可我不知道你喜不喜欢我!!平安夜希望有他陪我过www.diediao.com这是什么电影盗车飞侠请教:游戏盗车飞侠4怎么开飞机,怎么买枪,怎么开坦克啊?bihaiyinsha以前在碧海银沙游戏城的那个打气球的游戏叫什么?莱姿蔓不蔓不枝的蔓是什么意思
绍兴服务器租用 北京租服务器 双线vps 中国域名网 新加坡主机 mediafire idc评测网 100x100头像 193邮箱 中国网通测速 789 上海电信测速 英国伦敦 国外在线代理服务器 免费的域名 华为k3 阿里云邮箱申请 免费赚q币 ncp 中美互联网论坛 更多