depletiongvtube.com

gvtube.com  时间:2021-04-09  阅读:()
AQUATICMICROBIALECOLOGYAquatMicrobEcolVol.
76:133–147,2015doi:10.
3354/ame01772PublishedonlineOctober22INTRODUCTIONDimethylsulfoniopropionate(DMSP)isatertiarysulfoniumcompoundsynthesizedbymanyspeciesofmarinephytoplanktonandsomemacroalgae.
DMSPisanimportantcomponentofthesulfurandcarboncycleswithinthemicrobialfoodweb,andalsohasseveralecophysiologicalfunctionswithinthemicro-bialcommunity.
Producedatintracellularconcentra-tionstypicallyrangingfrom1to400mM(Kelleretal.
1989,Stefels2000),DMSPsynthesiscontributesupto10%ofallcarbonfixedbyprimaryproduction(Matrai&Keller1994,Archeretal.
2001,Howardetal.
2006).
Whiletheevolutionarydriversleadingtotheallocationofsuchalargefractionofthealgae'sresourcesintoasinglecompoundarestillunclear,itiswellknownthatseveralmicro-andmacroalgaeuseitasacompatiblesolutetocopewithosmoticandthermalstresses(Dicksonetal.
1980,Reed1983,Dickson&Kirst1986,1987,Kirstetal.
1991,Karstenetal.
1992,Nishiguchi&Somero1992).
AdditionalfunctionsforDMSPincludeprotectionagainstoxida-tivestress,withDMSPanditsdegradationproductseffectivelyscavengingreactiveoxygenspeciesInter-Research2015·www.
int-res.
com*Correspondingauthor:jmotard-cote@disl.
orgOsmoprotectiveroleofdimethylsulfoniopropionate(DMSP)forestuarinebacterioplanktonJessieMotard-Cté1,2,*,RonaldP.
Kiene1,21DepartmentofMarineSciences,UniversityofSouthAlabama,Mobile,Alabama36688,USA2DauphinIslandSeaLab,101BienvilleBlvd,DauphinIsland,Alabama36528,USAABSTRACT:Dimethylsulfoniopropionate(DMSP)issynthesizedandusedbymarinephyto-planktonasanosmolyte.
PreviousstudieshaveshownthatsomeofthedissolvedDMSP(DMSPd)inseawateristakenupbybacterioplanktonandnotdegraded.
Wetestedthehypoth-esisthatretentionofDMSPprovidessomebenefitstomarinebacteria.
Inexperimentswithcoastalseawaterfiltratescontainingmainlybacteria,acuteosmoticstressesof+5and+10pptNaClsignificantlyinhibitedbacterialproduction(BP)over6h,whiletheavailabilityof20nMDMSPdrelievedmostoftheBPinhibition.
Partialreliefofsalt-inducedinhibitionofBPwasobservedwithDMSPdconcentrationsaslowas2.
5nM,andDMSPwasmoreeffectiveatre-lievingosmoticstressthanothercompoundstested.
OsmoticstressesresultedinafasterandgreateroveralluptakeofDMSPdandaccumulationofuntransformedDMSPinbacterialcells(DMSPcell).
RetainedDMSPreachedosmotically-significantintracellularconcentrationsof54mMinsalt-stressedbacterialpopulations.
RetentionofDMSPwasaccompaniedbyalowerproductionofmethanethiol(MeSH),suggestingadown-regulationofthedemethylation/demethiolationpathwayunderosmoticstress.
TheseresultsshowthatestuarinebacterioplanktoncanuseDMSPasanosmoprotectant,retainingupto54%oftheavailabledissolvedDMSPun-transformedintheircells.
ThisbenefitprovidedbyDMSPmayhelpexplainwhysomeDMSPisretainedinbacteriaintheocean,evenunderunchangingsalinity.
ThisretentionslowsdownthecyclingofDMSP,withpotentialimplicationsforthetrophictransferofDMSPanditscontributionstosulfurandcarbonfluxesintheocean.
KEYWORDS:Osmolyte·Compatiblesolute·Salinitystress·Saltinhibition·Osmolarity·Sulfurcycle·DMSPretention·DMSPfunctionResaleorrepublicationnotpermittedwithoutwrittenconsentofthepublisherAquatMicrobEcol76:133–147,2015(Sundaetal.
2002),andoverflowmetabolism,allow-ingphotosyntheticcellstodissipateexcessreducedcompoundsandenergyundernutrientlimitationorexcessivecarbonfixationrates,preventingpotentialnegativefeedbacksonmetabolicpathways(Stefels2000).
Afewecologicalfunctionshavealsobeenpro-posedforDMSP,suchasbeingagrazingdeterrent(Wolfeetal.
1997,VanAlstyneetal.
2001,Strometal.
2003)andchemoattractantformarinebacteria(Zimmer-Faustetal.
1996,Milleretal.
2004,Sey-mouretal.
2010).
Mostofthephytoplankton-DMSPloss(63to91%)ismediatedbymicrozooplanktongrazing(Archeretal.
2002,Simóetal.
2002).
IngestedDMSPcaneitherbereleasedasdissolvedDMSPorasdimethylsulfide(DMS)uponconversionbybacterialoralgalDMSPlyases,oritcanberetainedandeitherpassedupthefoodchainorassimilatedtosatisfysulfurrequire-ments.
About30%ofthephytoplankton-DMSPin-gestedbyherbivorousprotistsisretainedintheircells(Simóetal.
2002,Tang&Simó2003,Salóetal.
2009).
Thisretentionseemstobetemporary,andDMSP-sulfuriseventuallyassimilatedintothegrazer'sbiomass(Belvisoetal.
1990,Salóetal.
2009).
However,someDMSPcanbetransferredtohighertrophiclevels,presumablywhenDMSP-bearingpro-tistsareeatenbeforecompletingDMSPtransfor-mation.
DMSPhasbeenmeasuredinseveralomniv-orousandcarnivorouscopepodspeciesaftergutclearance,suggestingthatthisDMSPwaslocatedinbodytissues(Tangetal.
1999),makingitmorelikelytobetransferredtohighertrophiclevels.
DMSPhasalsobeenfoundintissuesofseveralotheranimals(bivalves,gastropods,crustaceansandfish)thatmostlikelyacquireditfromingestedfood(Tokunagaetal.
1977,Iida&Tokunaga1986,Daceyetal.
1994,Hilletal.
2000).
ThefactthatDMSPhasevenbeenfoundincarnivorousfishessuchascod(Levasseuretal.
1994),salmon(Motohiro1962)andmackerel(Ackmanetal.
1972)furtherindicatesthatDMSPcanbetransferredthroughmorethanonetrophiclevel.
Whenreleasedtotheextracellularenvironment,DMSPisrapidlytakenupanddegradedbyhetero-trophicprokaryotesforenergyandbiomass,usingoneof2alternativepathways.
Thedemethylation/demethiolationpathwayultimatelyproducesmeth-anethiol(MeSH;Kiene&Taylor1988),someofwhichisrapidlyincorporatedintomacromolecules(Gon-zálezetal.
1999,Kieneetal.
1999).
Thispathwayiswidespreadamongstbacterioplanktoninthesurfaceocean(Reischetal.
2011),highlightingtheimpor-tanceofDMSPdegradationforassimilationofre-ducedcarbonandsulfurbymarineheterotrophs.
Moreover,biogeochemicaldatashowthatDMSPcansatisfyasmuchas15and100%ofthebacterialrequirementsforcarbonandsulfur,respectively(Kiene&Linn2000a,Zubkovetal.
2001,Simóetal.
2002).
ThesecondpathwayismediatedbyDMSPlyases,whichcleaveDMSPtoDMSandacrylate(Yoch2002,Toddetal.
2007).
DMSemissionsfromtheoceancontributebetween0.
55and1.
1Tmolsul-furyr1totheglobalatmosphere(Lanaetal.
2011)andarehypothesizedtohaveacoolingeffectontheclimatebecauseDMSisoxidizedtoacidicproductsthateitherformoraddontoaerosolparticles(Charl-sonetal.
1987,Quinn&Bates2011).
DMSventilationacrosstheseaairboundaryisalsoamajormecha-nismfortransferringsulfurfromtheoceanstothecontinentsthroughtheatmosphere(Lovelocketal.
1972).
Addingtothesewell-documentedfunctions,thereisgrowingevidencethatDMSPcanserveasanosmolyteforbacteria.
Tomaintainorrestoretheirosmoticbalanceunderhighorchangingsalinity,marineprokaryotesneedtoaccumulateintracellu-larcompatiblesolutes,whichtheycaneithersyn-thesizedenovoortakeupfromtheirenvironment(Galinski1995).
Glycinebetaine(GBT),astructuralanalogueofDMSP,iswellrecognizedasoneofthemostefficientandwidespreadosmolytesusedbyanimals,plantsandbacteria(Yanceyetal.
1982andreferencestherein,Larsenetal.
1987,Anthonietal.
1991andreferencestherein),includingnatu-ralbacterialpopulations(Kiene&HoffmannWilliams1998).
MostmarinebacteriacantakeupGBTandDMSPfromtheenvironmentatnanomolarconcentrations,usingthesamehigh-affinitytrans-portsystem(Kieneetal.
1998).
Previousstudiesfocusingonprokaryotesshowedthatundercon-trolledconditions,availabilityofDMSPpromotesgrowthinhypersalinemediumforsinglestraincul-turesofEscherichiacoli(Chambersetal.
1987,Cosqueretal.
1999)andsomemarinebacteriaiso-lates(Diazetal.
1992,Wolfe1996).
However,whetherwholeassemblagesofmarinebacterio-planktoncantakeupandretainDMSPtocopewithosmoticstressinnaturalsystemshasnotbeenshown.
TogainosmoprotectionfromDMSP,themarinebacterioplanktonwouldhavetoretaintheDMSPuntransformedintheircellsforatleastafewhours,preventingoratleastdelayingitsdegrada-tionthroughthenormalpathways.
Infact,during35S-DMSPduptakeexperimentswithmarinebacte-rioplanktonfromtheGulfofMexico,2.
2%oftheaddedDMSPwasfounduntransformedincells12hafterthetraceraddition(Kiene&Linn2000a).
In134Motard-Cté&Kiene:DMSPasosmoprotectantforbacteria135similarexperimentswithseawatercollectednearHalifax,NovaScotia,Kiene&Linn(2000b)found15%ofaddedDMSPuntransformedinparticlesafter23h.
IntheMediterraneanSea,Belvisoetal.
(1993)measured9.
5%ofparticulateDMSP+DMSinthe0.
2to0.
7msizefraction(correspondingto3.
6nMDMSP+DMS).
However,atthepresenttimeitisnotclearwhetherretentionofDMSPinbacter-ialcellsprovidesanybenefittothosecells.
PreviousstudiesdemonstratingtheuptakeanduseofDMSPasanosmolytebyheterotrophicbacteriawereconductedundersomewhatartificialcondi-tions,usingmonospeciesculturesandhighlevelsofDMSP(≥100nM).
Inthepresentstudy,naturalbacte-rialassemblagesfromcoastalwatersweretestedfortheirabilitytotakeupandretainDMSPuntrans-formedintheircellsunderinducedsalinitystress.
BacterialproductionwasmeasuredtoexaminewhethertheretentionofDMSPenabledthecellstoalleviatethesalt-inducedinhibitionandrestorenor-malcellfunctioning.
Toourknowledge,ourstudyisthefirsttotestwhethernaturalbacterialcommuni-tiesareabletouseDMSPforosmoprotectionpur-posesatthelownanomolarlevelstypicallyfoundinnaturalmarinesystems.
MATERIALSANDMETHODSSamplecollection,preparationandsalinitystressexperimentsSurfacewatersampleswerecollectedfromtheDauphinIslandSeaLab(DISL)pierinMobileBay(GulfofMexico)fromFebruarytoAugust2014.
SalinityattheDISLpieroverthesamplingperiodwashighlyvariable,andsampledwaterrangedfrom10to25partsperthousand(ppt)forthedif-ferentexperiments.
Sampleswerecollectedusinganacid-cleanedbucketandimmediatelybroughtbacktothelaboratory.
Formostexperiments,sea-watersamplesweregravity-filteredthrough142mmdiameterWhatmanGF/Ffiltersusingapoly-carbonatein-linefilterholder(Geotech).
TheGF/Ffilterremovednearlyallofthephytoplanktoncom-munity,butallowedpassageofsomebacteria(typi-cally50to80%;Leeetal.
1995).
Thefiltratewaskeptinthedarkatroomtemperaturefor1to4dtoallowfordepletionofthebioavailabledissolvedDMSP(DMSPd)to0.
2m)withthetotalup-takereachingamaximumofabout48%oftheaddedradiolabelafter0.
8dofincubation(Fig.
1).
Asignifi-cantfraction(19%)ofthemaximumtotaluptake,equivalenttoabout9%oftheadded35S-DMSP,wasretaineduntransformedinthecellsforatleast2d.
Evenafter6dofincubation,therewasstill2.
4%oftheadded35S-DMSPremaininguntransformedinthecells.
Theseresultsindicatethataportionofthenat-uraldissolvedDMSPinseawateristakenupandretainedinmicrobialcellsforlongperiods,evenwhensalinityisstable.
ToaddressthequestionofwhetherDMSPretentionmighthavesomebenefitsforheterotrophicbacteria,wecarriedoutexperi-mentswithseawaterfiltratesinwhichacutesalinitystresswasimposed.
EffectofsalinitystressandDMSPavailabilityonbacterialproductionIna2dpre-incubatedseawaterfiltratecontainingbacteriaandverylowdissolvedDMSPconcentra-tions(0.
2minunfilteredestuarinewaterfromMobileBay(15pptsalinity).
Totaluptakerepre-sentsthe35S-activityinparticlesretainedon0.
2mNylonfilters.
Parallelfiltersateachtimepointweretreatedwith1MNaOH,andthenon-hydrolyzablefractionrepresentstheremaining35Sactivityonthefiltersafteralkalinetreat-ment(non-DMSP35S).
Thedifferencebetweentotaluptakeandnon-hydrolyzable35SrepresentsuntransformedDMSPinparticles>0.
2mFig.
2.
Bacterialproductionrateatambientsalinity(10ppt),+5and+10pptsalinityinaGF/Ffiltrateincubationwithoutdi-methylsulfoniopropionate(DMSP)andwith20nMDMSPadded(A)2hand(B)6haftersaltandDMSPadditions.
ErrorbarsrepresentSDMotard-Cté&Kiene:DMSPasosmoprotectantforbacteria(Fig.
4B).
TheamountofDMSPcell(expressedinnMdissolvedequivalents)after6hwas1.
13nMfortheambientsalinitycontrol,andincreasedto3.
19and4.
56nMforthe+5and+10ppttreatments(ANOVA,p0.
2m;(B)fractionofconsumedDMSPconvertedtodimethylsulfide(DMS);(C)fractionofconsumedDMSPconvertedtomethanethiol(MeSH).
ErrorbarsrepresentSD.
Theseawaterfiltratewaspre-incubatedtoallowendoge-nousDMSPtobeconsumedtolowlevels(<1nM).
ThetimecoursestartedwiththeadditionofNaCl,20nMDMSP,andaspikeoftracer-level35S-DMSPAquatMicrobEcol76:133–147,2015142significantfractionoftheDMSPtakenupwasretaineduntransformedinthecells.
ThisobservationisconsistentwithresultsfromKiene&Linn(1999),whoshowedthatafterincubatingGF/F-filteredseawaterwith35S-DMSPfor25h,11%ofthe35Srecoveredintheparticulatefractionwasuntrans-formedDMSP.
IncreasingsalinityresultedinafasterandgreateroveralluptakeofDMSPafter6h(Fig.
4),andcausedthebacteriatoaccumulateadditionalDMSPandkeepitintactintheircells.
ThefactthatbacteriasubjectedtosalinitystressaccumulateDMSP(Fig.
4)andthatDMSPalleviatessaltinhibi-tionofbacterialproduction(Figs.
1&2)representsstrongevidencethatDMSPisusedasanosmolytebynaturalheterotrophicprokaryotes.
TheintracellularDMSPconcentrationaccumu-latedundersaltadditionwashighenough(13to54mM)toprovidebacterialcellswithsomelevelofosmoprotection(Table1).
Duringsimilarexperi-mentsdonewithGBT,Kiene&HoffmannWilliams(1998)alsofoundincreasingretentionofGBTinthecellsasthesalinityincreased,withintracellularGBTconcentrationsof16,28and43mMfor7,14and25pptsalinitytreatments,respectively,incloseagreementwithourintracellularDMSPconcentra-tions.
Ourestimationoftheintracellularconcentra-tionofDMSPassumesthat100%ofcellscountedbyflowcytometrywereaccumulatingDMSP,whichisunlikelytohappeninanaturalmicrobialassem-blage.
Amorereasonableassumptionmightbethatca.
50%ofthemicrobialcellsinthenaturalsystemareactuallytakingupDMSP(seebelow),inwhichcasetheintracellularconcentrationestimatedinTable1wouldbedoubled,andcouldreach109mMforthe+10ppttreatment.
Also,inthepossibleeventofshrinkageofthecytoplasmicvolumeduetotheincreaseinexternalosmolarity(Csonka1989andreferencestherein),theintracellularDMSPconcentrationwouldbeevenhigher.
Forexample,ifthehyperosmoticshockcausedthebacterialbiovol-umetodecreaseto0.
04m3fromtheassumedvalueof0.
07m3,theintracellularDMSPconcen-trationwouldbe95mMinthe+10ppttreatmentif100%ofthecellstookuptheDMSP,and190mMifonly50%ofthecellstookupDMSP.
Theseintra-cellularconcentrationsareintherangeproducedbyphytoplankton,whichuseDMSPasanosmolyte(Reed1983,Dickson&Kirst1986,1987,Karstenetal.
1992).
Thatnotallbacterioplanktoncellswouldpartici-pateinDMSPuptakeissupportedbyseverallinesofevidence.
Firstly,asignificantfractionofthebac-terioplanktonisnotmetabolicallyactive,andthusnotlikelytoparticipateintheuptakeofDMSP.
Basedonsingle-cellassaysusingfluorescenceinsituhybridization,itisestimatedthatabout60%ofthebacterialcellsinmarinewatersaremetaboli-callyactive,althoughthisfractionishighlyvariablebothseasonallyandspatially(Lennon&Jones2011andreferencestherein).
Secondly,severalstudieslookingatthesingle-celluptakeof35S-DMSPindif-ferentenvironmentsshowedthattypically,ca.
50%oftheheterotrophicprokaryotecommunityisabletotakeupandassimilatesulfurfromDMSP(Malm-strometal.
2004,Vilaetal.
2004,Motard-Ctéetal.
2012).
Thisnumbershould,however,beconsideredasamaximumestimate,sincetheselongincuba-tions(ca.
24h)canallowfortheconversionof35S-DMSPto35S-MeSH,whichcouldthenbeassimi-latedbyorganismslackingthecapacitytoimportDMSP.
Additionally,theuptakeofDMSPrequiresspecificmembranetransporters,whosedistributionamongmarinebacterioplanktonisnotwellknown,andmightnotbefoundinalltaxa.
TransportersimportingDMSPinthecellsbelongto2superfami-lies:theATP-bindingcassette(ABC)-type(Kempf&Bremer1998)andthebetaine-choline-carnitinetransporter(BCCT)-type(Toddetal.
2010,Ziegleretal.
2010).
TheABCtransportsystemsOpuAandOpuCidentifiedinBacillussubtilisaresimilartotheProPandProUsystemsinEscherichiacoli(Boncom-pagnietal.
2000,Sleatoretal.
2001).
OpuAhasonlyalowaffinityforDMSP(inhibitionconstant,Ki=912M),whereasOpuChasahighaffinityforDMSP(Ki=39M)aswellasseveralofitsderiva-tives(Broyetal.
2015).
OneBCCT-typetransportermediatingDMSPimportiscalledOpuDinB.
sub-tilis,similartoBetPinCorynebacteriumglutamicumandCaiTinE.
coli.
Recently,anotherBCCT-typetransporteridentifiedfromMarinomonasMWYL1,DddT,hasbeenshowntomediateuptakeofDMSP.
GenessimilartodddTwerealsofoundinthe2mar-inespeciesHalomonasHTNK1andSagittulastel-lataE37(Toddetal.
2007,2010,Johnstonetal.
2008)and2isolatesfromthegutofAtlanticherring,PseudomonasandPsychrobacter(Cursonetal.
2010).
Interestingly,thegenesfortheDddTuptakesystemareoftenfoundclusteredwithotherdddgenesinvolvedinDMSPdegradation.
Onlythese4transportsystems(OpuA,OpuC,OpuDandDddT)andtheirhomologsareknowntomediateuptakeofDMSPincells.
Abetterknowledgeoftheirdistribu-tionamongthemarinebacterioplanktontaxawouldimproveourunderstandingofthepotentialglobalimportanceoftheDMSPretentionmechanismanditseffectontheglobalcyclingofDMSP.
Motard-Cté&Kiene:DMSPasosmoprotectantforbacteria143DMSPprovidesosmoprotectionatlowambientconcentrationDMSPprovidedsignificantosmoprotectionat2.
5nM(Fig.
5),aconcentrationwithintherangethatistypicallymeasuredindifferentenvironments(Kiene&Slezak2006).
MoreDMSPprovidedmoreprotection,andinhibitionofBPbyacute+10pptsalinityincreasewasalmostcompletelyrelievedbya12nMDMSPaddition,aconcentrationthatcouldbefoundduringbloomconditionsorinmicroenviron-mentsaroundleakingcells(Mitchelletal.
1985,Wolfe2000).
Ourresults(e.
g.
Fig.
6)suggestthatretentionofDMSPinnaturalsystemscouldbeenhancedinoceanicorestuarinewaters,wheresalinityishighorsubjecttostrongandrapidfluctuations.
RetentioncouldalsobepromotedathigherenvironmentalDMSPdlevels,whicharelikelytohappeninrelativelyproductiveenvironmentsandwhereintensegrazingactivitymightreleasemoreDMSPd(Archeretal.
2002,Simóetal.
2002).
However,theseresultsalsoshowthatsomeDMSPisretainedinthemicrobialcellsevenatverylowambientDMSPdlevels(0.
5nMinthisstudy;Fig.
6).
Thus,DMSPaccumulationislikelytooccurinlessproductiveenvironmentsaswell.
Asmentionedabove,DMSPretentioninbacter-ialcellshasbeenobservedinopenoceansampleswithpresumablystablesalinityandlowsteadystateDMSPdconcentrations(1.
7nM)(Kiene&Linn2000a).
Inourexperimentswithpre-incubatedfiltratescontainingonlybacteria,thereseemedtobeathresholdatwhichtheavailabilityofDMSPwashighenoughthatthecellscouldaffordtokeepsomeofitintactforacertaintime.
ForDMSPadditionsof2.
5nMandbelow(Fig.
6),theamountofDMSPincellswasthesameatambientand+10pptsalinity.
Withtheseloweradditions,mostoftheDMSPisprobablydegradedandusedtomeetbacterialenergy,carbonandsulfurdemands,leavinglittleexcessDMSPtobeaccumulated.
Thisthreshold,orinotherwordsthelevelofDMSPrequiredtoachieveasignificantaccumulationandosmoprotectiveeffect,probablydependsonthebacterialactivitylevel(hencethebacterialdemands),andisthusexpectedtobelowerinlessproductiveenvironments.
Addi-tionalstudieswillbeneededtotestthishypothesis.
DecreasedproductionofMeSHundersalinitystressExperimentalincreasesinsalinityresultedinalowernetproductionofMeSH,suggestingadown-regulationofthedemethylation/demethiolationpath-way,whilealargerfractionoftheDMSPtakenupwasretainedandaccumulatedinthecellsforosmo-protection.
Consistentwithourresults,Kiene&Hoff-mannWilliams(1998)alsosawadecreasein14CO2productionalongwithahigheraccumulationof14C-GBTinthecellsathighersalinity,indicatingare-tardeddegradationofGBT.
Salgadoetal.
(2014)reportedadifferentpatternwithculturesofRuegeriapomeroyi,wheresalinityincreasesresultedinlowerDMSbutenhancedMeSHproductions.
However,theirDMSPamendmentswere50and500M,whichis3and4ordersofmagnitudehigherthanwhatwasaddedinthisstudy,andcouldexplainthedifferentresponseobserved.
SignificanceandimplicationsofbacterialretentionfortheDMSPcycleRetentionofuntransformedDMSPinprokaryotecellsforosmoticpurposesisverylikelytohappenundernaturalconditions.
PreviousstudiesshowingthisphenomenonaddedhighlevelsofDMSPtodensebacterialcultures(Wolfe1996),whichinmostcaseswereentericbacteriathatdonotnaturallyencounterDMSPintheirenvironment(Mason&Blunden1989,Diazetal.
1992,Cosqueretal.
1999).
Here,weshowedthatthenaturalbacterialassemblagefromGF/F-filteredcoastalseawaterretainedasignificantfractionofDMSPdintheircells,evenatextremelylowambientDMSPdconcentrations(0.
5nM;Fig.
5).
Thismicrobially-retainedpoolincreasedwithboththeavailabilityofDMSPdandthelevelofosmoticstress,anddidprovideosmoprotectiontothecellsatDMSPdconcentrationaslowas2.
5nM,whichisintherangeofconcentrationoccurringinmostmarineenvironments.
Whileourexperimentsfocusedonsalinitystress,itremainspossiblethatDMSPreten-tioncouldbeprotectiveagainstotherstressesexperi-encedbybacteria,suchasoxidativestress,nutrientstarvation,andthermalshock.
TounderstandtheimpactsofthisaccumulationmechanismontheDMSPcyclinginmarinewaters,wefirstneedtoestablishwhetherthispoolcanrepre-sentasignificantfractionofthetotalanddissolvedDMSPpools.
Fig.
5showsstrongrelationshipsbe-tweentheaccumulationofintracellularDMSPandtheexternalDMSPconcentration,atambientandin-creasedsalinity.
Under+10pptsalinity,thisaccumu-lationwaslinear,and54%oftheDMSPdinitiallypro-videdwasfoundinthecellsafter1.
5h.
TheambientsalinitytreatmentfollowedthesametrendatlowerDMSPdlevels.
WhileretentioncontinuedtoincreaseAquatMicrobEcol76:133–147,2015144above3.
5nMaddedDMSPdintheambientsalinitytreatment,thefractionofaddedDMSPdaccumulateddecreasedabove3.
5nM,andwasca.
33%oftheDMSPadditionatthe12nMlevel.
Themicrobiallyretainedpoolthusrangedfrom33to54%oftheextra-cellularpoolofdissolvedDMSP,whichishigherthanpreviousestimates(10to15%oftheDMSPdpool)fromwholeseawater(Fig.
1)andin1doldfiltratein-cubations(10to37%;Lietal.
2015).
Lowlevelsofla-bileorganicnutrientsinour3to4doldGF/Ffiltratelikelyresultedinalowbacterialgrowthrate(Mc-Manusetal.
2004).
AfastergrowingcommunitywouldprobablydegradeDMSPfaster,leadingtoalowerretentionofuntransformedDMSPinthecells.
Nevertheless,themicrobially-retainedpoolofDMSPcanbeasignificantfractionoftheoperationally-definedDMSPdpool,andcouldimpairthemeasure-mentoftrulydissolvedDMSPsincethetraditionalmethodsforDMSPdinvolvefiltrationthroughGF/F-typefilters,whichletsomebacteriapassthrough(Leeetal.
1995).
Therefore,theoperationally-definedDM-SPdwilloverestimatethe'dissolved'DMSPpoolifthesebacteriahaveaccumulatedDMSPintheircells(seealsoLietal.
2015).
SuchanoverestimationcouldalsoindirectlyaffecttheDMSPturnoverratecalcula-tionsthatarebasedontheDMSPdconcentration.
WhetherbacteriasignificantlyaffecttheturnoverofDMSPbytakingupandretainingDMSPwithintheircellsisanotherimportantquestion.
Witharesi-dencetimeofdays,themicrobially-retainedpoolap-pearstoturnovermuchmoreslowlythantheextra-cellularDMSPpool,slowingdowntheoverallDMSPcyclingandthefluxesofsulfurandcarbonwithinthemicrobialfoodweb.
AccumulationofDMSPinbacte-rialcellscouldalsoenhancethetransferofDMSP-sulfurtohighertrophiclevelsthroughbacterivory.
ThefateofingesteduntransformedDMSPviagraz-ingisstillpoorlyunderstood.
Moststudiesaddress-ingthisquestionhavefocusedontheassimilationofphytoplankton-DMSPbyherbivores.
Salóetal.
(2009)foundthat32%oftheDMSP-sulfuringestedbythedinoflagellateOxyrrhismarinapreyingonthediatomThalassiosirapseudonanawasassimilatedintobiomass,whilethebiggestfractionwaseitherconvertedtoDMSorreleasedasDMSPdtotheextra-cellularenvironment.
Innaturalconditionshowever,grazersmightbeeatenbypredatorsbeforedigestingalltheDMSP,passingafractionofituptohighertrophiclevels(Tang&Simó2003).
NostudysofarhaslookedatthefateofDMSPingestedbyprotists(ciliatesandflagellates)feedingonbacteria.
Itisgen-erallyassumedthatthemajorimpactofmicrozoo-planktongrazingontheDMSPcycleistoenhancetheoverallproductionofDMS(Wolfe&Steinke1996)bydesegregatingtheDMSPandDMSP-lyaseduringthedigestiveprocess,andthusreducingtheoverallassimilationofDMSP-sulfurbythetrophicweb.
ThisDMSproductionviagrazingcouldbefur-therincreasedifDMSPretentionbybacteriasome-howmakesthemmoreappealingtomicrograzers,forexamplebyallowingthemtoattaingreatersize(viagreaterosmoticvolume).
Overall,themajorimpactofaccumulationandretentionofDMSPintobacterialcellsislikelytobeageneralslowingdownoftheturnover,andpotentiallyahighertrophictransfertograzers.
Ontheotherhand,theretentionofDMSPprovidesbacteriawithaquickandefficientprotec-tionagainstosmoticstresses,whichallowsthemtoprocessorganicmatterandrecyclenutrientsunderawiderrangeofosmoticconditions,maintaininghealthyecosystemfunctioning.
CONCLUSIONSDMSPiswellrecognizedasamajorsourceofre-ducedsulfurandcarbonforbacteria.
Itismostoftenregardedasanextremelylabilecompoundinthedis-solvedorganicmatterpool,withafastturnovertime.
OurresultssuggestanosmoprotectiveroleforDMSPinmarinebacterioplankton,expandingtheroleofmarinebacteriainDMSPcyclingbeyondtheirabilitytodegradeDMSP.
WehaveshownthatDMSPisaccu-mulatedinthecellsandusedasanosmolytebypro-karyotesinanaturalmarinesystem,relievingacuteosmoticstressevenatlowDMSPdconcentrationstyp-icallyfoundinthesenaturalsystems.
DMSPcanberetainedinbacterialcellsforseveraldays,leadingtoaslowturnoverofthispoolcomparedtoextracellularlabileDMSP.
EnhancedretentionofDMSPinbacteriaundersalinitystressappearstobedue,inpart,totheinhibitionofthedemethylation/demethiolationdegra-dationpathway.
BydivertingDMSPfromfasterde-gradationpathways,thismicrobially-retainedpool,whichcanrepresentasignificantfractionoftheoper-ationally-definedDMSPdstandingstock,canslowdowntheoverallcyclingofDMSPandallowtrophictransferofDMSPtobacterialgrazers.
Acknowledgements.
WethankA.
Ortmann(UniversityofSouthAlabama/DISL)forherhelpwiththeflowcytometrytechnique.
SupportforthisresearchwasprovidedbygrantsfromtheNSF(OCE-1342699,OCE-1436576)toR.
P.
K.
J.
M.
-C.
wassupportedbytheUniversityofSouthAlabamaandfel-lowshipsfromtheDauphinIslandSeaLabandtheFondsquébécoisdelarecherchesurlanatureetlestechnologies(FQRNT).
Motard-Cté&Kiene:DMSPasosmoprotectantforbacteriaLITERATURECITEDAckmanRG,HingleyJ,MacKayKT(1972)DimethylsulfideasanodorcomponentinNovaScotiafallmackerel.
JFishResBoardCan29:10851088AnthoniU,ChristophersenC,HougaardL,NielsenPH(1991)Quaternaryammoniumcompoundsinthebio-sphere—anexampleofaversatileadaptivestrategy.
CompBiochemPhysiolB99:118ArcherSD,WiddicombeCE,TarranGA,ReesAP,BurkillPH(2001)ProductionandturnoverofparticulatedimethylsulphoniopropionateduringacoccolithophorebloominthenorthernNorthSea.
AquatMicrobEcol24:225241ArcherSD,SmithGC,NightingalePD,WiddicombeCE,TarranGA,ReesAP,BurkillPH(2002)DynamicsofparticulatedimethylsulphoniopropionateduringaLagrangianexperimentinthenorthernNorthSea.
Deep-SeaResII49:29792999BelvisoS,KimSK,RassoulzadeganF,KrajkaB,NguyenBC,MihalopoulosN,Buat-MénardP(1990)Productionofdimethylsulfoniumpropionate(DMSP)anddimethyl-sulfide(DMS)byamicrobialfoodweb.
LimnolOceanogr35:18101821BelvisoS,Buat-MénardP,PutaudJP,NguyenBC,ClaustreH,NeveuxJ(1993)Sizedistributionofdimethylsulfonio-propionate(DMSP)inareasofthetropicalnortheasternAtlanticOceanandtheMediterraneanSea.
MarChem44:5571BoncompagniE,DupontL,MignotT,stersM,LambertA,PoggiMC,LeRudulierD(2000)CharacterizationofaSinorhizobiummelilotiATP-bindingcassettehistidinetransporteralsoinvolvedinbetaineandprolineuptake.
JBacteriol182:37173725BroyS,ChenC,HoffmannT,BrockNLandothers(2015)Abioticstressprotectionbyecologicallyabundantdimethylsulfoniopropionateanditsnaturalandsyntheticderivatives:insightsfromBacillussubtilis.
EnvironMicrobiol17:2362–2378BrussaardCPD(2004)Optimizationofproceduresforcount-ingvirusesbyflowcytometry.
ApplEnvironMicrobiol70:15061513ChambersST,KuninCM,MillerD,HamadaA(1987)DimethylthetincansubstituteforglycinebetaineasanosmoprotectantmoleculeforEscherichiacoli.
JBacteriol169:48454847CharlsonRJ,LovelockJE,AndreaeMO,WarrenSG(1987)Oceanicphytoplankton,atmosphericsulphur,cloudalbedoandclimate.
Nature326:655661CosquerA,PichereauV,PocardJA,MinetJ,CormierM,BernardT(1999)Nanomolarlevelsofdimethylsul-foniopropionate,dimethylsulfonioacetate,andglycinebetainearesufficienttoconferosmoprotectiontoEscherichiacoli.
ApplEnvironMicrobiol65:33043311CsonkaLN(1989)Physiologicalandgeneticresponsesofbacteriatoosmoticstress.
MicrobiolRev53:121147CursonARJ,SullivanMJ,ToddJD,JohnstonAWB(2010)IdentificationofgenesfordimethylsulfideproductioninbacteriainthegutofAtlanticherring(Clupeaharengus).
ISMEJ4:144146DaceyJWH,KingGM,LobelPS(1994)Herbivorybyreeffishesandtheproductionofdimethylsulfideandacrylicacid.
MarEcolProgSer112:6774DiazMR,VisscherPT,TaylorBF(1992)Metabolismofdimethylsulfoniopropionateandglycinebetainebyamarinebacterium.
FEMSMicrobiolLett96:6165DicksonDMJ,KirstGO(1986)Theroleofβ-dimethylsul-phoniopropionate,glycinebetaineandhomarineintheosmoacclimationofPlatymonassubcordiformis.
Planta167:536543DicksonDMJ,KirstGO(1987)Osmoticadjustmentinmarineeukaryoticalgae:theroleofinorganicions,quaternaryammonium,tertiarysulphoniumandcarbo-hydratesolutes.
NewPhytol106:645655DicksonDM,JonesRGW,DavenportJ(1980)SteadystateosmoticadaptationinUlvalactuca.
Planta150:158165GalinskiEA(1995)Osmoadaptationinbacteria.
In:PooleRK(ed)Advancesinmicrobialphysiology,Vol37.
AcademicPress,SanDiego,CA,p273328GonzálezJM,KieneRP,MoranMA(1999)Transformationofsulfurcompoundsbyanabundantlineageofmarinebacteriaintheα-subclassoftheclassProteobacteria.
ApplEnvironMicrobiol65:38103819HillRW,DaceyJW,EdwardA(2000)Dimethylsulfonio-propionateingiantclams(Tridacnidae).
BiolBull(WoodsHole)199:108115HowardEC,HenriksenJR,BuchanA,ReischCRandothers(2006)Bacterialtaxathatlimitsulfurfluxfromtheocean.
Science314:649652IidaH,TokunagaT(1986)Dimethylsulfideanddimethyl-β-propiothetininshellfish.
BullJpnSocSciFish52:557563(inJapanesewithEnglishAbstract)JohnstonAWB,ToddJD,SunL,Nikolaidou-KatsaridouMN,CursonARJ,RogersR(2008)Moleculardiversityofbac-terialproductionoftheclimate-changinggas,dimethylsulphide,amoleculethatimpingesonlocalandglobalsymbioses.
JExpBot59:10591067KarstenU,WienckeC,KirstGO(1992)Dimethylsulphonio-propionate(DMSP)accumulationingreenmacroalgaefrompolartotemperateregions:interactiveeffectsoflightversussalinityandversustemperature.
PolarBiol12:603607KellerMD,BellowsWK,GuillardRRL(1989)Dimethylsul-fideproductioninmarinephytoplankton.
In:SaltzmanES,CooperWJ(eds)Biogenicsulfurintheenvironment.
AmericanChemicalSociety,Washington,DC,p167182KempfB,BremerE(1998)StressresponsesofBacillussub-tilistohighosmolarityenvironments:uptakeandsynthe-sisofosmoprotectants.
JBiosci23:447455KieneRP,HoffmannWilliamsLP(1998)Glycinebetaineuptake,retention,anddegradationbymicroorganismsinseawater.
LimnolOceanogr43:15921603KieneRP,LinnLJ(1999)Filter-typeandsamplehandlingaffectdeterminationoforganicsubstrateuptakebybacterioplankton.
AquatMicrobEcol17:311321KieneRP,LinnLJ(2000a)Distributionandturnoverofdis-solvedDMSPanditsrelationshipwithbacterialproduc-tionanddimethylsulfideintheGulfofMexico.
LimnolOceanogr45:849861KieneRP,LinnLJ(2000b)Thefateofdissolveddimethylsul-foniopropionate(DMSP)inseawater:tracerstudiesusing35S-DMSP.
GeochimCosmochimActa64:27972810KieneRP,ServiceSK(1991)DecompositionofdissolvedDMSPandDMSinestuarinewater:dependenceontem-peratureandsubstrateconcentration.
MarEcolProgSer76:111KieneRP,SlezakD(2006)LowdissolvedDMSPconcentra-tionsinseawaterrevealedbysmall-volumegravityfiltra-tionanddialysissampling.
LimnolOceanogr4:8095KieneRP,TaylorBF(1988)Demethylationofdimethylsulfo-145AquatMicrobEcol76:133–147,2015niopropionateandproductionofthiolsinanoxicmarinesediments.
ApplEnvironMicrobiol54:22082212KieneRP,HoffmannWilliamsLP,WalkerJE(1998)Sea-watermicroorganismshaveahighaffinityglycinebetaineuptakesystemwhichalsorecognizesdimethyl-sulfoniopropionate.
AquatMicrobEcol15:3951KieneRP,LinnLJ,GonzálezJM,MoranMA,BrutonJA(1999)Dimethylsulfoniopropionateandmethanethiolareimportantprecursorsofmethionineandprotein-sulfurinmarinebacterioplankton.
ApplEnvironMicrobiol65:45494558KirchmanD,K'neesE,HodsonR(1985)Leucineincorpora-tionanditspotentialasameasureofproteinsynthesisbybacteriainnaturalaquaticsystems.
ApplEnvironMicro-biol49:599607KirstGO,ThielC,WolffH,NothnagelJ,WanzekM,UlmkeR(1991)Dimethylsulfoniopropionate(DMSP)inice-algaeanditspossiblebiologicalrole.
MarChem35:381388LanaA,BellTG,SimóR,VallinaSMandothers(2011)Anupdatedclimatologyofsurfacedimethylsulfidecon-centrationsandemissionfluxesintheglobalocean.
GlobalBiogeochemCycles25,GB1004,doi:10.
1029/2010GB003850LarsenPI,SydnesLK,LandfaldB,StrmAR(1987)Osmo-regulationinEscherichiacolibyaccumulationoforganicosmolytes:betaines,glutamicacid,andtrehalose.
ArchMicrobiol147:17LeeS,FuhrmanJA(1987)Relationshipbetweenbiovolumeandbiomassofnaturallyderivedmarinebacterioplank-ton.
ApplEnvironMicrobiol53:12981303LeeS,KangYC,FuhrmanJA(1995)Imperfectretentionofnaturalbacterioplanktoncellsbyglassfiberfilters.
MarEcolProgSer119:285290LennonJT,JonesSE(2011)Microbialseedbanks:theeco-logicalandevolutionaryimplicationsofdormancy.
NatRevMicrobiol9:119130LevasseurM,KellerMD,BonneauE,D'AmoursD,BellowsWK(1994)OceanographicbasisofaDMS-relatedAtlanticcod(Gadusmorhua)fisheryproblem:black-berryfeed.
CanJFishAquatSci51:881889LiC,YangG,KieberDJ,Motard-CtéJ,KieneRP(2015)AssessmentofDMSPturnoverrevealsanon-bioavail-ablepoolofdissolvedDMSPincoastalwatersoftheGulfofMexico.
EnvironChem,doi:10.
1071/EN15052LovelockJE,MaggsRJ,RasmussenRA(1972)Atmosphericdimethylsulphideandthenaturalsulphurcycle.
Nature237:452453MalmstromRR,KieneRP,CottrellMT,KirchmanDL(2004)ContributionofSAR11bacteriatodissolveddimethylsul-foniopropionateandaminoaciduptakeintheNorthAtlanticOcean.
ApplEnvironMicrobiol70:41294135MarieD,BrussaardCPD,ThyrhaugR,BratbakG,VaulotD(1999)Enumerationofmarinevirusesincultureandnat-uralsamplesbyflowcytometry.
ApplEnvironMicrobiol65:4552MasonTG,BlundenG(1989)Quaternaryammoniumandtertiarysulfoniumcompoundsofalgaloriginasallevia-torsofosmotic-stress.
BotMar32:313316MatraiPA,KellerMD(1994)Totalorganicsulfuranddimethylsulfoniopropionateinmarine-phytoplankton:intracellularvariations.
MarBiol119:6168McManusGB,GriffinPM,PennockJR(2004)Bacterio-planktonabundanceandgrowthinariver-dominatedestuary:relationshipswithtemperatureandresources.
AquatMicrobEcol37:2332MillerTR,HnilickaK,DziedzicA,DesplatsP,BelasR(2004)ChemotaxisofSilicibactersp.
strainTM1040towarddinoflagellateproducts.
ApplEnvironMicrobiol70:46924701MitchellJG,OkuboA,FuhrmanJA(1985)Microzonessur-roundingphytoplanktonformthebasisforastratifiedmarinemicrobialecosystem.
Nature316:5859Motard-CtéJ,LevasseurM,ScarrattMG,MichaudSandothers(2012)Distributionandmetabolismofdimethyl-sulfoniopropionate(DMSP)andphylogeneticaffiliationofDMSP-assimilatingbacteriainnorthernBaffinBay/LancasterSound.
JGeophysRes117,C00G11,doi:10.
1029/2011JC007330MotohiroT(1962)Studiesonthepetroleumodourincannedchumsalmon.
MemFacFishHokkaidoUniv10:165NishiguchiMK,SomeroGN(1992)Temperature-andcon-centration-dependenceofcompatibilityoftheorganicosmolyteβ-dimethylsulfoniopropionate.
Cryobiology29:118124QuinnPK,BatesTS(2011)Thecaseagainstclimateregula-tionviaoceanicphytoplanktonsulphuremissions.
Nature480:5156ReedRH(1983)TheosmoticresponsesofPolysiphonialanosa(L.
)Tandyfrommarineandestuarinesites:evi-denceforincompleterecoveryofturgor.
JExpMarBiolEcol68:169193ReischCR,StoudemayerMJ,VaraljayVA,AmsterIJ,MoranMA,WhitmanWB(2011)Novelpathwayforassimilationofdimethylsulphoniopropionatewidespreadinmarinebacteria.
Nature473:208211SalgadoP,KieneR,WiebeW,MagalhesC(2014)SalinityasaregulatorofDMSPdegradationinRuegeriapomeroyiDSS-3.
JMicrobiol52:948954SalóV,SimóR,Vila-CostaM,CalbetA(2009)Sulfuras-similationbyOxyrrhismarinafeedingona35S-DMSP-labelledprey.
EnvironMicrobiol11:30633072SeymourJR,SimóR,AhmedT,StockerR(2010)Chemo-attractiontodimethylsulfoniopropionatethroughoutthemarinemicrobialfoodweb.
Science329:342345SimóR,ArcherSD,Pedrós-AlióC,GilpinL,Stelfox-Widdi-combeCE(2002)Coupleddynamicsofdimethylsulfonio-propionateanddimethylsulfidecyclingandthemicro-bialfoodwebinsurfacewatersoftheNorthAtlantic.
LimnolOceanogr47:5361SleatorRD,WoutersJ,GahanCGM,AbeeT,HillC(2001)AnalysisoftheroleofOpuC,anosmolytetransportsys-tem,insalttoleranceandvirulencepotentialofListeriamonocytogenes.
ApplEnvironMicrobiol67:26922698SlezakD,KieneRP,TooleDA,SimóR,KieberDJ(2007)EffectsofsolarradiationonthefateofdissolvedDMSPandconversiontoDMSinseawater.
AquatSci69:377393SmithDC,AzamF(1992)Asimple,economicalmethodformeasuringbacterialproteinsynthesisratesinseawaterusing3H-leucine.
MarMicrobFoodWebs6:107114StefelsJ(2000)PhysiologicalaspectsoftheproductionandconversionofDMSPinmarinealgaeandhigherplants.
JSeaRes43:183197StromS,WolfeG,SlajerA,LambertS,CloughJ(2003)ChemicaldefenseinthemicroplanktonII:inhibitionofprotistfeedingbybeta-dimethylsulfoniopropionate(DMSP).
LimnolOceanogr48:230237SundaW,KieberDJ,KieneRP,HuntsmanS(2002)AnantioxidantfunctionforDMSPandDMSinmarinealgae.
Nature418:317320146Motard-Cté&Kiene:DMSPasosmoprotectantforbacteria147TangKW,SimóR(2003)TrophicuptakeandtransferofDMSPinsimpleplanktonicfoodchains.
AquatMicrobEcol31:193202TangKW,DamHG,VisscherPT,FennTD(1999)Dimethyl-sulfoniopropionate(DMSP)inmarinecopepodsanditsrelationwithdietsandsalinity.
MarEcolProgSer179:7179ToddJD,RogersR,LiYG,WexlerMandothers(2007)Structuralandregulatorygenesrequiredtomakethegasdimethylsulfideinbacteria.
Science315:666669ToddJD,CursonARJ,Nlikolaidou-KatsaraidouN,BrearleyCAandothers(2010)Moleculardissectionofbacterialacrylatecatabolism—unexpectedlinkswithdimethylsul-foniopropionatecatabolismanddimethylsulfideproduc-tion.
EnvironMicrobiol12:327343TokunagaT,IidaH,NakamuraK(1977)FormationofdimethylsulfideinAntarctickrill,Euphausiasuperba.
BullJpnSocSciFish43:12091217VanAlstyneKL,WolfeGV,FreidenburgTL,NeillA,HickenC(2001)Activateddefensesystemsinmarinemacro-algae:evidenceforanecologicalroleforDMSPcleav-age.
MarEcolProgSer213:5365VilaM,SimóR,KieneRP,PinhassiJ,GonzálezJM,MoranMA,Pedrós-AlióC(2004)Useofmicroautoradiographycombinedwithfluorescenceinsituhybridizationtodeterminedimethylsulfoniopropionateincorporationbymarinebacterioplanktontaxa.
ApplEnvironMicrobiol70:46484657Vila-CostaM,Rinta-KantoJM,PoretskyRS,SunS,KieneRP,MoranMA(2014)MicrobialcontrolsonDMSPdegradationandDMSformationintheSargassoSea.
Biogeochemistry120:295305WolfeG(1996)AccumulationofdissolvedDMSPbymarinebacteriaanditsdegradationviabacterivory.
In:KieneR,VisscherP,KellerM,KirstG(eds)Biologicalandenvi-ronmentalchemistryofDMSPandrelatedsulfoniumcompounds.
PlenumPress,NewYork,NY,p277291WolfeGV(2000)Thechemicaldefenseecologyofmarineunicellularplankton:constraints,mechanisms,andimpacts.
BiolBull(WoodsHole)198:225244WolfeGV,SteinkeM(1996)Grazing-activatedproductionofdimethylsulfide(DMS)bytwoclonesofEmilianahuxleyi.
LimnolOceanogr41:11511160WolfeGV,SteinkeM,KirstGO(1997)Grazing-activatedchemicaldefenseinaunicellularmarinealga.
Nature387:894897YanceyPH(2005)Organicosmolytesascompatible,meta-bolicandcounteractingcytoprotectantsinhighosmolar-ityandotherstresses.
JExpBiol208:28192830YanceyPH,ClarkME,HandSC,BowlusRD,SomeroGN(1982)Livingwithwaterstress:evolutionofosmolytesystems.
Science217:12141222YochDC(2002)Dimethylsulfoniopropionate:itssources,roleinthemarinefoodweb,andbiologicaldegrada-tiontodimethylsulfide.
ApplEnvironMicrobiol68:58045815ZieglerC,BremerE,KrmerR(2010)TheBCCTfamilyofcarriers:fromphysiologytocrystalstructure.
MolMicrobiol78:1334Zimmer-FaustRK,deSouzaMP,YochDC(1996)Bacterialchemotaxisanditspotentialroleinmarinedimethyl-sulfideproductionandbiogeochemicalsulfurcycling.
LimnolOceanogr41:13301334ZubkovMV,FuchsBM,ArcherSD,KieneRP,AmannR,BurkillPH(2001)Linkingthecompositionofbacterio-planktontorapidturnoverofdissolveddimethylsulfonio-propionateinanalgalbloomintheNorthSea.
EnvironMicrobiol3:304311Editorialresponsibility:JosepGasol,Barcelona,SpainSubmitted:June17,2015;Accepted:August19,2015Proofsreceivedfromauthor(s):October18,2015

QQ防红跳转短网址生成网站源码(91she完整源码)

使用此源码可以生成QQ自动跳转到浏览器的短链接,无视QQ报毒,任意网址均可生成。新版特色:全新界面,网站背景图采用Bing随机壁纸支持生成多种短链接兼容电脑和手机页面生成网址记录功能,域名黑名单功能网站后台可管理数据安装说明:由于此版本增加了记录和黑名单功能,所以用到了数据库。安装方法为修改config.php里面的数据库信息,导入install.sql到数据库。...

LOCVPS洛杉矶CN2线路KVM上线,洛杉矶/香港云地/香港邦联7折

LOCVPS发来了新的洛杉矶CN2线路主机上线通知,基于KVM架构,目前可与香港云地、香港邦联机房XEN架构主机一起适用7折优惠码,优惠后最低美国洛杉矶CN2线路KVM架构2GB内存套餐月付38.5元起。LOCPVS是一家成立较早的国人VPS服务商,目前提供洛杉矶MC、洛杉矶C3、和香港邦联、香港沙田电信、香港大埔、日本东京、日本大阪、新加坡、德国和荷兰等机房VPS主机,基于KVM或者XEN架构。...

RAKsmart推出7.59美元/月,云服务器产品Cloud Server,KVM架构1核1G内存40G硬盘1M带宽基础配置

近期RAKsmart上线云服务器Cloud Server产品,KVM架构1核1G内存40G硬盘1M带宽基础配置7.59美元/月!RAKsmart云服务器Cloud Server位于美国硅谷机房,下单可选DIY各项配置,VPC网络/经典网络,大陆优化/精品网线路,1-1000Mbps带宽,支持Linux或者Windows操作系统,提供Snap和Backup。RAKsmart机房是一家成立于2012年...

gvtube.com为你推荐
怎么查询商标想要知道一个商标是否被注册,在哪里查到的比较权威?access数据库Access数据库对象的操作包括哪五种?18comic.fun18岁以后男孩最喜欢的网站seo优化工具想找一个效果好的SEO优化软件使用,在网上找了几款不知道哪款好,想请大家帮忙出主意,用浙江哪款软件效果好鹤城勿扰黑龙江省的那个 城市是被叫做鹤城?月风随笔关于中秋作文蜘蛛机器人在《红色警戒2共和国之辉》中,对付“蜘蛛机器人”的最好武器是什么?chudian365最近触电会的员工在抖音上好像挺火的,听说是触电会创始人龚文祥指导他们玩的chudian365陈译贤的《触电》 歌词红玉头冠和田红玉和糖玉怎么区分
到期域名查询 enom 服务器评测 technetcal vpsio payoneer css样式大全 免费个人空间 美国堪萨斯 福建铁通 web服务器搭建 申请网站 湖南idc lamp是什么意思 lamp架构 阿里云邮箱登陆地址 wordpress空间 windowssever2008 asp.net虚拟主机 赵蓉 更多