algorithm23ise.com

23ise.com  时间:2021-04-09  阅读:()
Developingcomputationalthinkingintheclassroom:aframework!
June2014!
Workinggroupofauthors:!
Prof.
PaulCurzonQueenMaryUniversityofLondon,SchoolofElectronicEngineeringandComputerScienceTeachingLondonComputingProject(http://www.
teachinglondoncomputing.
org/),fundedbytheMayorofLon-donandDepartmentofEducationthroughtheLondonSchool'sExcellenceFund!
MarkDorlingBCS,TheCharteredInstituteforITandComputingAtSchoolNetworkofExcellenceproject(http://www.
com-putingatschool.
org.
uk),fundedbytheDepartmentforEducation,industrypartnersandawardingbodiesDigitalSchoolhouseLondonProject(http://www.
digitalschoolhouse.
org.
uk),fundedbytheMayorofLondonandDepartmentofEducationthroughtheLondonSchool'sExcellenceFund!
ThomasNgWestBerkshireCouncilSchoolImprovementAdviser(ICT&Assessment)!
Dr.
CynthiaSelbyBayHouseSchoolandSixthForm,Gosport,HampshireSouthamptonEducationSchool,UniversityofSouthampton!
Dr.
JohnWoollardSouthamptonEducationSchool,UniversityofSouthamptonBCS,CharteredInstituteforITBarefootComputingproject(http://www.
barefootcas.
org.
uk),fundedbytheDe-partmentforEducation!
!
!
!
!
!
!
!
!
!
!
!
Copyright2014ComputingAtSchoolThisworkislicensedundertheCreativeCommonsAttribution-NonCommerciallicense;seehttp://cre-ativecommons.
org/licenses/by-nc/3.
0/fordetails.
!
!
IntroductionComputationalthinkingsitsattheheartofthenewstatutoryprogrammeofstudyforComputing:"Ahighqualitycomputingeducationequipspupilstousecomputationalthinkingandcreativitytounder-standandchangetheworld"(DepartmentforEducation,2013,p.
188).
Thisdocumentaimstosupportteacherstoteachcomputationalthinking.
Itdescribesaframeworkthathelpsexplainwhatcomputationalthinkingis,describespedagogicapproachesforteachingitandgiveswaystoas-sessit.
PupilprogressionwiththepreviousICTcurriculumwasoftendemonstratedthrough'how'(forexample,asoft-wareusageskill)or'what'thepupilproduced(forexample,aposter).
Thiswaspartlyduetotheneedsofthebusinessworldforofficeskills.
Suchuseofpreciouscurriculumtimehoweverhasseveralweaknesses.
Firstly,thecountry'seconomydependsontechnologicalinnovationnotjustoneffectiveuseoftechnology.
Secondly,thepaceoftechnologyandorganisationalchangeisfastinthattheICTskillslearntareoutofdatebeforeapupilleavesschool.
Thirdly,technologyinvadesallaspectsofourlifeandthetypicallytaughtofficepracticeisonlyasmallpartoftechnologyusetoday.
Incontrast,thenewComputingcurriculumhasanenrichedcomputerscienceelement.
Computerscienceisanacademicdisciplinewithitsownbodyofknowledgethatcanequippupilstobecomeindependentlearners,evaluatorsandpotentiallydesignersofnewtechnologies.
Instudyingcomputerscience,pupilsgainnotonlyknowledgebutalsoauniquewayofthinkingaboutandsolvingproblems:computationalthinking.
Itallowsthepupilstounderstandthedigitalworldinadeeperway:justasphysicsequipspupilstobetterunderstandthephysicalworldandbiologythebiologicalworld.
SimonPeyton-Jonesgivesanaccountofwhylearningcom-puterscienceandcomputationalthinkingisacorelifeandtransferableskillinatalkfilmedatTEDxExeter(Peyton-Jones,2014).
Toprepareourpupilstounderstandtheconsequencesoftechnologicalchange,adaptwhenusingtechnolo-gies,developnewtechnologiesoreventoworkinjobsthathaven'tyetbeeninvented,notonlydoesthe'what'and'how'ofthesubjectneedtobetaught,pupilsalsoneedtodeveloptechniquestoaskandbeabletoanswerthequestion'why'.
Computationalthinkingsupportsdoingso.
Computationalthinkingskillsarethesetofmentalskillsthatconvert"complex,messy,partiallydefined,realworldproblemsintoaformthatamind-lesscomputercantacklewithoutfurtherassistancefromahuman.
"(BCS,2014)Today,however,thereisaninterpretation,ledbythepopularmedia,implyingthatthenewcomputingcurricu-lumfocuseson'coding'(Crow,2014;Nettleford,2013).
Thisgivesamisleadingmessage,especiallytothosenewtothediscipline.
Incontrast,ourframeworkpresentedbelowaimstosupportteachers'understandingofcomputationalthinkingacrossthefullbreadthanddepthofthesubjectofComputingandoffersawaytoeasilyandeffectivelyintegrateitintoclassroompractice.
!
!
!
TheframeworkTherearefourinterconnectedstagesofdevelopmenttoourcomputationalthinkingframework:Stage1:DefinitionStage2:ConceptsStage3:ClassroomtechniquesStage4:AssessmentWeovervieweachinthesubsequentsections.
Stage1:DefinitionTosupportthesharingofcurriculummaterialsandclassroompractices,anagreeddefinitionthatissuitablefortheclassroomisneeded.
WeusetheinterpretationforwardedbyProfessorJeannetteWing,whooriginallypopularisedtheideaofcomputationalthinking.
Shedefinesitas:"…thethoughtprocessesinvolvedinformulatingproblemsandtheirsolutionssothatthesolutionsarerepresentedinaformthatcanbeeffectivelycarriedoutbyaninformation-processingagent"(Cuny,Snyder,Wing,2010,citedinWing,2011,p.
20).
.
.
"thesesolutionscanbecarriedoutbyanyprocessingagent,whetherhuman,computer,oracombinationofboth"(Wing,2006).
WechosethisdefinitionbecauseitisbasedonWing'soriginaldefinitionandhasgainedconsensusamongstacademics.
Itsemphasisisonpupilsperformingathoughtprocess,notontheproductionofartefactsorevi-dence.
Itthereforefitsthedirectionofchangeinthecurrentcurriculumdevelopment.
Stage2:ConceptsThenextstageistodefinethecoreconceptsinvolvedincomputationalthinking.
Basedonareviewofacade-micreferences,SelbyandWoollard(2013)suggestthefollowingarekey:algorithmicthinkingevaluationdecompositionabstractiongeneralisationWeoutlinetheseconceptswithexamplesbelow,givinglinkedclassroomtechniquesinthenextsection.
Algorithmicthinkingisawayofgettingtoasolutionthroughcleardefinitionofthesteps-nothinghappensbymagic.
Ratherthancomingupwithasingleanswer,like42,thepupilsdevelopasetofinstructionsorrulesthatiffollowedprecisely(whetherbyapersonoracomputer)leadstoanswerstothatandsimilarproblems.
Forexample,wealllearnalgorithmsfordoingmultiplicationatschool.
Ifwe(oracomputer)followtherulesweweretaughtpreciselywecangettheanswertoanymultiplicationproblem.
Oncewehavethealgorithmwedon'thavetoworkouthowtodomultiplicationfromscratcheverytimewearefacedwithanewproblem.
Evaluationistheprocessofensuringanalgorithmicsolutionisagoodone:thatitisfitforpurpose.
Variouspropertiesofalgorithmsneedtobeevaluatedincludingwhethertheyarecorrect,arefastenough,areeconom-icintheuseofresources,areeasyforpeopletouseandpromoteanappropriateexperience.
Trade-offsneedtobemadeasthereisrarelyasingleidealsolutionforallsituations.
Thereisaspecificandoftenextremefo-cusonattentiontodetailincomputationalthinkingbasedevaluation.
Forexample,ifwearedevelopingamedicaldevicetodeliverdrugstopatientsinhospitalweneedtobesurethatitalwaysdeliverstheamountofdrugsetandthatitdoessoquicklyenoughoncestartispressed.
Howev-er,wealsoneedtobesurethatnurseswillbeabletosetthedosequicklyandeasilywithoutmakingmistakesandthatitwon'tbefrustratingorirritatingforpatientsandnursestouse.
Thereislikelytobeatrade-offtobemadebetweenspeedofenteringnumbersandhelpingavoidmistakesbeingmadewhendoingso.
Thejudgementaboutitbeingquickandeasyhastobemadesystematicallyandrigorously.
Decompositionisawayofthinkingaboutproblems,algorithms,artefacts,processesandsystemsintermsoftheirparts.
Theseparatepartscanthenbeunderstood,solved,developedandevaluatedseparately.
Thismakescomplexproblemseasiertosolveandlargesystemseasiertodesign.
Forexample,ifwearedevelopingagame,differentpeoplecandesignandcreatethedifferentlevelsindepen-dentlyprovidedkeyaspectsareagreedinadvance.
Throughdecompositionoftheoriginaltaskeachpartcanbedevelopedandintegratedlaterintheprocess.
Asimplearcadelevelmightalsobedecomposedintosever-alparts,suchasthelife-likemotionofacharacter,scrollingthebackgroundandsettingtherulesabouthowcharactersinteract.
Abstractionisanotherwaytomakeproblemsorsystemseasiertothinkabout.
Itsimplyinvolveshidingdetail-removingunnecessarycomplexity.
Theskillisinchoosingtherightdetailtohidesothattheproblembe-comeseasierwithoutlosinganythingthatisimportant.
Itisusedasawaytomakeiteasiertocreatecomplexalgorithms,aswellaswholesystems.
Akeypartofitisinchoosingagoodrepresentationofasystem.
Differ-entrepresentationsmakedifferentthingseasytodo.
Forexample,whenweplaycards,weusetheword'shuffle'.
Everyplayerunderstandsthat'shuffle'meansputtingthecardsinarandomorder.
Thewordisanabstraction.
Thesametypeofabstractionworkswhenprogramming.
Implementing'shuffle'inacomputergamemeansgivingawaytorandomisethecards.
Wecanrefertoshufflingthroughouttheprogramandunderstandwhatismeantwithouthavingtothinkabouthowitisactuallydonebytheprogram.
Allthatisneededisthattheprogramdoesincludeadescriptionsomewhereofhowshufflingistobedone.
Asanexampleillustratingthedifferencetherepresentationcanmake,consideranartproject.
PupilsstudyingMonetcouldtakeadigitalpictureofaHaystackpaintinginagallery.
Indoingsotheyhavecreatedarepresen-tationofitonthecomputeraspixels.
Theycantheneasilymanipulatethisdigitalrepresentationinwaysthatwouldbeveryhardwithadifferentrepresentationorintherealworld.
Forexample,thecolourscouldbechangedbyanalgorithm.
Inthiswayaseriesofdifferentbutrelatedversionsofthepaintingcouldbecreated.
Generalisationisawayofquicklysolvingnewproblemsbasedonpreviousproblemswehavesolved.
Wecantakeanalgorithmthatsolvessomespecificproblemandadaptitsothatitsolvesawholeclassofsimilarproblems.
Thenwheneverwehavetosolveanewproblemofthatkindwejustapplythisgeneralsolution.
Forexample,apupilusesafloorturtletodrawaseriesofshapes,suchasasquareandatriangle.
Thepupilwritesacomputerprogramtodrawthetwoshapes.
Theythenwanttodrawanoctagonanda10-sidedshape.
Fromtheworkwiththesquareandtriangle,theyspotthatthereisarelationshipbetweenthenumberofsidesintheshapeandtheanglesinvolved.
Theycanthenwriteanalgorithmthatexpressesthisrelationshipandusesittodrawanyregularpolygon.
Insummary,eachoftheabovetechniquesfitsintothewell-establishedsystemdesignlifecycleofcomputingprojectsinthebusiness,academicandscientificcommunities.
Inpracticetheyareusedtogetherinarichandinterdependentwaytosolveproblems.
Theemphasisintheseconceptsisonpracticaltechniquesorthoughtprocesses,notontheproductionofartefactsorevidence.
Stage3:ClassroomTechniquesThedescriptionsoftheconceptsabovearehigh-level.
Althoughimportant,ontheirowntheydon'texplainhowcomputationalthinkingcanbeembeddedintotheclassroomandintegratedintopedagogy.
Therefore,ournextstep(Table1)istoidentifylearnerbehavioursassociatedwitheach.
!
!
Table1:Computationalthinkingconceptsandassociatedtechniques.
Examplesofalgorithmicthinking,evaluation,decomposition,generalisationandabstraction,arefoundatallstages;itisthecontextthatdeterminestherelevanceandchallengeoftheactivity.
Wehavethereforetriednottoattributecomputationalconceptsandlearnerbehaviourstoparticularkeystages(phasesofeducation)be-causedoingsowouldimplythattheyareage-dependentinawaythattheyarenot:theyarecapabilitydepen-dent.
Itisalsoimportanttoemphasisethatcomputationalthinkingconceptsarenotthecontentforthesubjectof'Computing'.
Thesubjectcontentissetoutinthenationalcurriculumprogrammeofstudy.
Computationalthinkingskillsenablelearnerstoaccesspartsofthatsubjectcontent.
!
Stage4:AssessmentThefinalstageneededisawaytoassesstheincreasingcompetenceofpupilsincomputationalthinking.
Thiscanbedoneusinganadaptedversionoftheexistingsubjectframeworkforthecomputingsubjectitself.
!
Tosupportclassroomteachers,ComputingAtSchoolpublishedanassessmentframeworkcalled'ComputingProgressionPathways'(DorlingandWalker,2014a).
Itsetsoutthemajorknowledgeareasofcomputingandgivesspecificindicatorsofincreasinglevelsofmasteryofthesubjectinthoseareas.
Thisassessmentframe-workwasproducedbyasmallteamofauthorsandreviewers(allteachersandacademics)basedontheirclassroomexperiences.
Itisaninterpretationofthebreadthanddepthofthecontentinthe2014nationalcur-riculumforthecomputingprogrammeofstudy.
Thisbreadthaffordsanopportunitytoviewthesubjectofcom-putingasawhole,ratherthantheseparatesubjectstrandsofcomputerscience,digitalliteracyandinformationtechnologyproposedbytheRoyalSociety(2012).
Theassessmentframeworkidentifiesthedependenciesandinterdependenciesbetweenconceptsandprinciplesaswellasbetweenthethreesubjectstrands.
!
Separatepathwaysaregivenfortheareasofalgorithms,programming&development,dataanddatarepre-sentation,hardware&processing,communication&networksandinformationtechnology.
Forexample,thepathwayaroundthesubjectareaofalgorithmsatitslowestlevelinvolvesunderstandingofwhatanalgorithmisandanabilitytoexpresssimplelinearalgorithmswithcareandprecision.
Itthenmovesthroughlevelsofbeingabletoexpressmorecomplicatedalgorithmsusingselectionandloops,toatthehigh-estlevelbeingabletodesignalgorithmsthatmakeuseofrecursionaswellashavinganunderstandingthatnotallproblemscanbesolvedcomputationally.
Theassessmentframeworkisalsopresentedwherethelearningoutcomesareorganisedbytheseparatesub-jectstrandsofcomputerscience,digitalliteracyandinformationtechnology(DorlingandWalker,2014b).
Afur-therversionhasbeendevelopedtoincorporateprovisionfortheconceptsofcomputationalthinking(Selby,DorlingandWoollard,2014).
Itnowincludesadescriptionofhowitcanbeusedtoacknowledgeprogressionandrewardperformanceinmasteringboththecontentofthecomputingprogrammeofstudyandtheideasofcomputationalthinking(Dorling,Walker,2014c).
Forexample,algorithmicthinkingisdemonstratednotjustintheAlgorithmsandProgramming&Developmentpathways,butalsoinconstructingappropriatesearchfilters(Data&DataRepresentation)andindemonstratingunderstandingofthefetch-executecycle(Hardware&Processing).
SeeFigure1asanexampleofwhatyoucanexpecttoseeinComputingProgressionPathwayswithcomputationalthinking.
Figure1:MappingthelearningoutcomesfromComputingProgressionPathwaystotheconcepts(fromStage2)ofcomputationalthinking.
!
!
!
!
UsingtheframeworktoplanlessonsWhenplanningandteachingaschemeofworkinanysubject,teachersrefertotheplanning-teaching-evaluat-ingcycle.
Computationalthinkingcanbeincludedintheplanningstageinfourstepswithintheplanningphaseofeachlessonintheplanning-teaching-evaluatingcycle,seeFigure2.
Step1:Determinethe'why'atthestartoftheunitofstudy(Stage1)aswellasthepossibletopics(thecol-umnheadernamesfromtheProgressionPathwaysAssessmentFramework)thattheschemeofworkwillbecovering.
Repeatsteps2-4whenplanningeachlessoninaunitofstudyStep2:Decide'what'thelearningoutcomesareforthelessonfromtheComputingProgressionPathwaysAs-sessmentFramework(Stage4),whichenablethepupilstomoveclosertocompletingorachievingthe'why'.
Step3:UsethepredefinedmappingintheComputingProgressionPathwaysAssessmentFrameworktoiden-tifythepossibleassociatedcomputationalthinkingconcepts(Stage2).
Step4:Usethecomputationalthinkingconceptstoidentifypossibletechniques'how'toincorporateintoandhighlightaspartofthechosenclassroomactivities(Stage3).
Figure2:Mappingthe4stagesoftheframeworkto'why','how'and'what'.
Itisimportanttonotethatthemostimportantstepinthisprocessisthelaststep(step4).
JustbecausepupilscanevidencelearningintheComputingProgressionPathwaysAssessmentFrameworkandthatthelearningoutcomeismappedtocomputationalthinking,itdoesnotnecessarilymeanthatthepupilswillhaveperformedcomputationalthinking.
Completionofanactivity,initself,isnotevidencethatcomputationalthinkinghasoc-curred.
!
ACaseStudyBelow,weillustratetheapplicationoftheaboveframeworkwithacasestudy,basedaroundalessononeoftheauthors(Dorling)hasusedinhisclassroom.
Inthesub-sectionofeachactivity,wehighlighthowdifferentpartsoftheactivitydrawonthecomputationalthinkingconcepts(CT).
Intheclassroom,theseconceptscouldbedrawnoutexplicitlyin,forexample,adiscussionattheendwherethepupilsreflectonthecomputationalthinkingskillstheyhaveusedthroughtheactivity.
TopicNetworking&Communications-usingabinaryprotocoltotransferinformationWhyIfirstleadagroupdiscussionaimingtodrawoutwhynetworksareimportant.
Wediscusstheapplicationspupilsuseonaregularbasis,suchasasearchengineornetworkfilesharesandhowtheseapplicationshavecompletelychangedthewaywedothings.
Ileadpupilstoask"whatactuallyhappensinthewiretomakein-formationgobackandforth"HowActivity1)Recap-Iremindthepupilsthattheyhavepreviouslystudiedandunderstoodthedifferentlayersinvolvedincomputerarchitecture:applications,theoperatingsystemandthehardware.
(CT)AbstractionoffunctionalityAswemovefromhardwaretooperatingsystemtoapplicationswemovethroughincreasinglayersofsystemabstractionaseachhidesthemessydetailsofthelevelbelow.
Activity2)Iintroducethepupilstothelayersofnetworkarchitecture:application,transportandnetworkandpointoutthesimilaritytothecomputerarchitecturelayers.
(CT)AbstractionoffunctionalityInasimilarwaywemoveupthroughsimilarlayersofabstractionfromthenetworktotransportlayertoapplicationsaseachhidesthemessyde-tailsofthelevelbelow.
(CT)Generalisationofsolution(applyingthesametechniquetoasimilarprob-lem)Wehavetransferredthetechniqueofanalysisbylayersfromcomputerarchitecturetonetworkarchitecture.
Activity3)Iremindpupilsoftheirunderstandingofdenary(decimal)numbersstoredasbinarynumbers,thatisdenarynumbersareanabstractionofthebinarycode.
Theyhidethedetailofhowthenumbersareactuallystored.
Isuggestthattheycouldusethisknowledgetoinventtheirowntransportationlayerprotocol.
(CT)AbstractionofdataDenarynumbersconcealthecomplexityofthebinaryrepresentationActivity4)Igivethepupilsasimplecircuit,i.
e.
abattery,wiresandalamp,andaskthemtotransferadecimalnumberacrosstheroomtoafriendusingthelamp.
Itisuptothelearnerstoperformtheconversionintobinaryandtransferitacrosstheroom.
Iencouragethemtothinkofthedifferenttasksinvolved.
Thesenderandreceiverdodifferentthoughrelatedthings.
Therecipientwillreceivethenumber,assemblethestringofbinaryandconvertthebinarybackintoadenarynumber.
(CT)DecompositionofaproblemIdentificationofthehigh-levelstepsnecessarytoaccomplishthewholetask(CT)AlgorithmicthinkingDevelopmentoftheorderingofthehigh-levelstepsnecessarytoac-complishwholetaskandworkingoutthedetailedstepsforeach.
Obviouslywithoutanagreedprotocolthereiscompletemayhem.
Pupilshavetoworktogethertoagreeapro-tocolfor1(lighton)and0(lightoff).
Theconfusioncontinuesuntilthepupilsrealisethetimeorclockelementthatisneededsothestartpointisknownandthelightiseitheronorofffortwosecondswithaonesecondpausebetweeneachonoroff.
(CT)EvaluationoffunctionalcorrectnessPupilsreflectontheproblems(evenmayhem)ofinitialsolutionsandrealisetheneedtoimprovethem(CT)AlgorithmicthinkingThetrialandfeedbackdevelopmentloopusedbetweenpupilsistheheuristicdevelopmentofanalgorithmAnalternativeactivityforpupilswhohavenotyetfullygraspedbinaryistohavethemlookathistoricalcom-municationmethodstheyhaveheardofsuchasMorsecodeorsmokesignalswithaviewtoidentifyingsimilar-itiesbetweenthemandthecurrentchallenge.
(CT)GeneralisingasolutionfromoneproblemtoanotherIdentifyingthatineachcaseonerepresentation(aletter)istransformedintoanother(Morsecode),recognisingapatterninthesolutions.
Activity5)Astandardprotocolisagreedamongstthewholeclass,thiswasachievedthroughadiscussionoftheproblemsofinteroperabilityifeverypairhaschosenadifferentwayofcommunicating.
Theyarethengivenaseriesofnumbersthefirsttwoidentifyingtheperson(e.
g.
table-individual)andthenexttwobeingthemes-sagetothatperson(ratherthananactualIPaddressatthisstageoflearning)(CT)AbstractionofdataUnderstandingthatanIPaddressisanameforamachinePupilsagainstrugglewiththisasitcanbedifficultwithalongstringofbinary,sotheyarelikelytocomeupwithanideatochunkorgroupthebinary.
Thisisanalogoustoapacket.
(CT)AbstractionofdataInventingtheconceptofachunkorpacket,withchunksbeingsent,receivedandreassembled.
(CT)AlgorithmicthinkingWorkingoutthedetailedinstructionstomakethechunkingwork.
Activity6)Havingmasteredtheseconcepts,wediscussIPaddressingasanalogoustotheUKpostcodesys-tem.
(CT)GeneralisingasolutionfromoneproblemareatoanotherRecognisingapatterninthesolutionstonetworkpacketsendingandsendingaletterbypostFuturelearningopportunitiescanbebuiltonthesefoundations.
Forexample,visualpackettracingtoolscanbeusedtoconsiderthelocationofwebserversaroundtheworld.
DigitalliteracyquestionscanbeposedaboutbreakingthelawwhenusingtheInternetandconsideringinwhichcountryacrimemayhavebeencommitted.
WhatFromtheactivitiesdiscussedhere,thepupilshavehadopportunitiestousetechniquesassociatedwithcom-putationalthinkingconceptsasindicatedinordertodemonstratetheirunderstandingoftheprogrammeofstudycontent.
Dependinguponthelevelofunderstandingexpressedorobservedinthepupilbehaviours,itispossibletoawardprogressinthesubjectcontentfromthecomputingpathwaysatthefollowinglevels:PinkLevelAlgorithms:Understandswhatanalgorithmisandisabletoexpresssimplelinear(non-branching)al-gorithmssymbolically;Demonstratescareandprecisiontoavoiderrors.
InformationTechnology:Talksabouttheirworkandmakeschangestoimproveit.
YellowLevelAlgorithms:Designssimplealgorithmsusingloopsandselectioni.
e.
ifstatements;useslogicalreason-ingtopredictoutcomes;detectsandcorrectserrorsi.
e.
debugging,inalgorithms.
InformationTechnology:Talksabouttheirworkandmakesimprovementstosolutionsbasedonfeed-backreceivedOrangeLevelAlgorithms:Recognisesthatsomeproblemssharethesamecharacteristicsandusethesamealgo-rithmtosolveboth.
Data&DataRepresentation:Understandsthedifferencebetweendataandinformation.
Communications&Networks:Understandsthedifferencebetweentheinternetandinternetservice,forexample,worldwideweb.
InformationTechnology:Makesappropriateimprovementstosolutionsbasedonfeedbackreceivedandcancommentonthesuccessofthesolution.
BlueLevelAlgorithms:Designssolutionsbydecomposingaproblemandcreatesasub-solutionforeachoftheseparts.
PurpleLevelData&DataRepresentation:Understandshowbitpatternsrepresentnumbersandimages;knowsthatcomputerstransferdatainbinary.
Communications&Networks:Understandsdatatransmissionbetweendigitalcomputersovernet-works,includingtheinterneti.
e.
IPaddressesandpacketswitchingAlgorithms:Canidentifysimilaritiesanddifferencesinsituationsandcanusethesetosolveproblems.
InformationTechnology:Usescriteriatoevaluatethequalityofsolutions,canidentifyimprovementsmakingsomerefinementstothesolutionandfuturesolutions.
!
SummaryToengagepupilsinlessonsandsogetthebestoutofthem,itisimportantthattheyunderstandwhytheyarelearningtopics.
SomematerialssupportingthepreviousICTcurriculumfocusedonwhatwasbeingtaught,(perhapsaskill)andwhatthepupilsproduced(perhapsaspreadsheetmodel).
Thinkingabout'what'and'how'thepupilswereproducinganartefactbut'why'theywerelearningagivenskillweresecondaryconsider-ations.
The'why'wasoftenanassessmentobjectiveoraqualificationexaminationinsteadofareal-worldrea-son.
Criticismofthisapproachidentifiedalackoffocusonunderstandingthedeeper'how'and'why'(prob-lemsaresolved,systemsaremade,…)(RoyalSociety,2012).
Thefour-stepframeworkwehavesetoutgivesapracticalwaytobothunderstandcomputationalthinkingandintroducetheideasintotheclassroomcontext.
Itcanbeusedbothtosupporttheplanningofactivitiestoin-creasetheopportunitiesforpupilstodevelopcomputationalthinkingskillsandtoassesstheirprogressindo-ingso.
Thiscanbeachievedbyconsideringthe'why'ofthechallengetheyaresettingforthelearnersattheoutset.
PupilsshouldthenemployavarietyoftheircomputationalthinkingabilitiesasdescribedinTable1(the'how')todevelopunderstandingorsolvetheprobleminhand.
The'what'isexpressedintheevidenceoftheactualsubjectlearning.
Thiscouldbewhatthepupilsproduce(artefact),whatthepupilsunderstandorexpress(write,test,verbalise),orwhatbehaviourisobserved(generalising).
The'what'matchesthelearningoutcomestatementsfromtheComputingProgressionPathwaysAssessmentFramework.
Figure3mapsthefourstagesofdevelopmentdescribedabovetothenotionoffocusingonthe'why','how'and'what'.
!
!
Figure3:Mappingthe4stagesoftheframeworkto'why','how'and'what'.
!
!
!
ReferencesBCS,TheCharteredInstituteforIT.
2014.
Callforevidence-UKDigitalSkillsTaskforce.
Available:http://poli-cy.
bcs.
org/sites/policy.
bcs.
org/files/BCS%20response%20to%20UKDST%20call%20for%20evidence%20fi-nal.
pdf[Accessed26-06-2014].
DepartmentforEducation.
2013.
TheNationalCurriculuminEngland,FrameworkDocument.
Available:http://www.
education.
gov.
uk/nationalcurriculum[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014a.
ComputingProgressionPathways.
Available:http://community.
computin-gatschool.
org.
uk/resources/1692[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014b.
ComputingProgressionPathwaysgroupedbyCS,ITandDL.
Available:http://community.
computingatschool.
org.
uk/resources/1946[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014c.
ComputingProgressionPathwayswithComputationalThinking.
Available:http://community.
computingatschool.
org.
uk/resources/2324.
[Accessed27-06-2014]Nettleford,W.
2013.
PrimarySchoolChildrenLearntoWriteComputerCode.
Available:http://www.
bbc.
co.
uk/news/uk-england-london-23261504[Accessed23-06-2014].
Peyton-Jones,S.
2014.
TeachingCreativeComputerScience.
Available:http://tedxexeter.
com/2014/05/06/si-mon-peyton-jones-teaching-creative-computer-science[Accessed23-06-2014].
RoyalSociety.
2012.
ShutdownorrestartThewayforwardsforcomputinginUKschools.
Available:https://royalsociety.
org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.
pdf[Accessed23-06-2014].
Selby,C.
,Dorling,M.
&Woollard,J.
2014.
EvidenceofAssessingComputationalThinking.
https://eprints.
so-ton.
ac.
uk/366152[Accessed23-06-2014].
Selby,C.
&Woollard,J.
2013.
ComputationalThinking:TheDevelopingDefinition.
Available:http://eprints.
so-ton.
ac.
uk/356481[Accessed23-06-2014].
Wing,J.
2006.
ComputationalThinking.
Commun.
ACM,49,3,33-35.
Available:http://dl.
acm.
org/citation.
cfmid=1118215[Accessed23-06-2014].
Wing,J.
2011.
ResearchNotebook:ComputationalThinking-WhatandWhyTheLink.
Pittsburgh,PA:CarneigeMellon.
Available:http://www.
cs.
cmu.
edu/link/research-notebook-computational-thinking-what-and-why[Accessed23-06-2014].

IMIDC彩虹数据:日本站群多ip服务器促销;30Mbps带宽直连不限流量,$88/月

imidc怎么样?imidc彩虹数据或彩虹网络现在促销旗下日本多IP站群独立服务器,原价159美元的机器现在只需要88美元,而且给13个独立IPv4,30Mbps直连带宽,不限制月流量!IMIDC又名为彩虹数据,rainbow cloud,香港本土运营商,全线产品都是商家自营的,自有IP网络资源等,提供的产品包括VPS主机、独立服务器、站群独立服务器等,数据中心区域包括香港、日本、台湾、美国和南非...

傲游主机38.4元起,韩国CN2/荷兰VPS全场8折vps香港高防

傲游主机怎么样?傲游主机是一家成立于2010年的老牌国外VPS服务商,在澳大利亚及美国均注册公司,是由在澳洲留学的害羞哥、主机论坛知名版主组长等大佬创建,拥有多家海外直连线路机房资源,提供基于VPS主机和独立服务器租用等,其中VPS基于KVM或者XEN架构,可选机房包括中国香港、美国洛杉矶、韩国、日本、德国、荷兰等,均为CN2或者国内直连优秀线路。傲游主机提供8折优惠码:haixiuge,适用于全...

€4.99/月Contabo云服务器,美国高性价比VPS/4核8G内存200G SSD存储

Contabo是一家运营了20多年的欧洲老牌主机商,之前主要是运营德国数据中心,Contabo在今年4月份增设新加坡数据中心,近期同时新增了美国纽约和西雅图数据中心。全球布局基本完成,目前可选的数据中心包括:德国本土、美国东部(纽约)、美国西部(西雅图)、美国中部(圣路易斯)和亚洲的新加坡数据中心。Contabo的之前国外主机测评网站有多次介绍,他们家的特点就是性价比高,而且这个高不是一般的高,是...

23ise.com为你推荐
网络访问怎样设置Internet网络连接共享?站酷zcool有什么很好的平面设计如ZCOOL这种的好网站?特朗普取消访问丹麦特朗普专机抵达日本安保警力情形如何?安徽汽车网在安徽那个市的二手车最好?留学生认证国外留学生毕业证怎么进行认证呢?原代码源代码是什么意思啊同ip站点同ip站点很多有没有影响?同一服务器网站服务器建设:一个服务器有多个网站该如何设置?www.765.com下载小说地址5xoy.comhttp www.05eee.com
vps代购 免费com域名申请 外贸主机 美元争夺战 日志分析软件 贵州电信宽带测速 xen 大容量存储 长沙服务器 商务主机 个人免费空间 免费个人空间申请 100x100头像 数字域名 福建铁通 google台湾 免费网络 免费蓝钻 国内空间 数据湾 更多