Figureb2b程序
b2b程序 时间:2021-04-13 阅读:(
)
AHybridB2BAppRecommenderSystemAlexandruOprea1,ThomasHornung2,Cai-NicolasZiegler3,HolgerEggs1,andGeorgLausen21SAPCommercialPlatform,St.
Leon-Rot&SAPResearch,Darmstadt,Germany{alexandru.
dorin.
oprea,holger.
eggs}@sap.
com2InstituteofComputerScience,Albert-Ludwigs-Universit¨atFreiburg,Germany{hornungt,lausen}@informatik.
uni-freiburg.
de3AmericanExpress,PAYBACKGmbH,M¨unchen,Germanycai-nicolas.
ziegler@payback.
netAbstract.
RecommendersystemsareintegraltoB2Ce-commerce,withlittleusesofarinB2B.
WepresentaliverecommendersystemthatoperatesinadomainwhereusersarecompaniesandtheproductsbeingrecommendedB2Bapps.
Besidesoperatinginanentirenewdomain,theSAPStorerecommenderisbasedonaweightedhybriddesign,makinguseofanovelcondence-basedweightingschemeforcombiningratings.
Evaluationshaveshownthatoursystemperformssignicantlybetterthanatop-sellerrecommenderbenchmark.
1IntroductionandMotivationTheSAPStorecaterstoSMEcompaniesthataimtodrivetheirbusinessviaB2Bapps,e.
g.
,forcustomerrelationmanagementorcompliance.
Manyoftheseappsaregearedtowardsspecicindustriesandtheirneeds.
Asthenumberofpartnersproducingthemisgrowing,soisthenumberofappsinthestoreitselfandthusthecomplexityfortheuser(whorepresentsacompany)toactuallyndwhatheislookingfor.
Toactivelyhelptheuser,weproposeahybridrecommendersystemthataddressesexactlytheneedsofthisspecicB2Bscenario.
Thesystemputstousebothknowledge-based,collaborative,andcontent-basedsub-recommenders.
Moreover,wepresentanovelhybridweightingscheme[1]thatincorporatescon-dencescoringforthepredictionsproduced,sothatsub-recommenderscontributeforrecommendationsaccordingtotheircondenceweight.
Thesystemisliveandcanbeusedbylogged-inusers1.
Wehaveconductedempiricalevaluationsviahold-outtestingthatshowthattherecommenderout-performsthenon-personalizedtop-sellerrecommender.
2RecommenderSystemArchitectureThearchitectureoftherecommenderisdepictedinFigure1.
Overall,wehavethreedierentinformationsourcesforgeneratingnewrecommendations:the1Seehttp://store.
sap.
comF.
Daniel,P.
Dolog,andQ.
Li(Eds.
):ICWE2013,LNCS7977,pp.
490–493,2013.
cSpringer-VerlagBerlinHeidelberg2013AHybridB2BAppRecommenderSystem491Knowledge-basedFilter(KBF)UserProfilesAppProfilesTRXDataUser-ItemCFItem-ItemCFContent-basedAugmentationContent-basedAugmentationItem-ItemMatrixUser-UserMatrixWeightedMeanRecommendationList12a2b34Fig.
1.
SAPStorerecommendersystemarchitectureuserproles(e.
g.
,companysize,industry,country),theappproles(e.
g,sup-portedindustries,businessareas),andthetransactionalcustomerdata(e.
g.
,salesorders,downloads).
Initially,theknowledge-basedcomponentltersthelistofrelevantappsbyasetofplausibilityrulesresultinginanunsortedsetofcandidateapps(1).
Thesearefedtoanitem-item(2a)anduser-itemcollaborativelter(CF),see(2b)[2].
Todealwiththecold-startproblemincaseswhereonlysparseratingsareavailableforapps,acontent-basedaugmentationschemecomputessimilaritiesbasedonthecosinesimilaritymeasure[3]betweenpropertiesoftheapps.
Forusersthatarenewtothesystem,thesimilaritycanbedeterminedbycomparingtheirprolestootherusersbasedontheircosinesimilarity.
Thisway,thetwomatriceswillcontainmeaningfulentriesforallusersandappsknowntothesystem,andrecommendationsgetmorepersonalizedoncemorecontextdataisavailable.
ThescoresofthetwoCFalgorithmsarecombinedbyaweightedmean(cf.
Section2.
1),andasortedtop-krecommendationlistisreturned.
Thecalculationofthematricesisdoneo-lineasthecomputationisquadraticinthenumberofusersorapps,respectively.
2.
1WeightingbyCondenceScoresThescoreofarecommendedappisbasedonaweightedmeanoftheconstituentitem-itemanduser-itemscores.
Eachofthesegivesanestimateofhowmuchausermightlikeanapp;e.
g.
,Eq.
1showshowapredictionscorefortheitem-itemcaseisdeterminedforappamforuseru:Theratingsru(b)ofuforappsb∈Ru492A.
Opreaetal.
hehasalreadyratedareweightedbytheirsimilaritytoam,denoteds(b,am),asanindicatorifthisappmightberelevantfortheuser2.
pi(u,am)=b∈Rus(am,b)·ru(b)b∈Rus(am,b)(1)Now,foreachrecommenderscoreacondencescoreiscalculated,denotedciandcurespectively,whichisbasedonthenumberofsupportingitemsorusersofeachprediction.
Theseweightsareusedtodeterminetheoverallscorep:p(u,am)=ci·pi(u,am)+cu·pu(u,am)ci+cu(2)Thecondencescorecuforthepredictionpu(u,am)tellsushowreliableapre-dictionis.
Itgrowswithagrowingnumberofsupportingdatapoints:Foreachuserui,wecalculatethez-scoreofhissimilaritywithourcurrentuseru.
Wenowsumthesez-scoresimilaritiesforallkusersinuseru'sneighborhood[2].
Thesumisdividedbykandtheresultingvaluegivesustheaveragenormal-izedsimilarityofalltheuserswhoseratingshavebeentakenintoaccountforpu(u,am).
Thesameisdonefortheitem-basedcase.
Sincewearemakinguseofstandardz-scores,thelinearcombinationshowninEq.
2basedonthetwocondenceweightsissound.
Thecondenceschemerepre-sentsapowerfulmeanstoadjustthehybridrecommender'sweightingaccordingtothepredictedreliabilityofeachofthetwosub-recommenders.
3PerformanceEvaluationInordertotesttheperformanceofthepresentedhybridrecommenderusingournovelcondence-basedweightingscheme,weconductedanempiricalevaluationwithreal-worlddataof5,233users(e.
g.
,companiesregisteredforandusingtheSAPStore)havingpurchasedorexpressedinterestin615appsolutions.
ThefrequencydistributioninFig.
2(a)showsleadsperapp,i.
e.
,howmanycompanieshavepurchasedorexpressedinterestineachapp,sortedindescendingorder.
Thelog-logplottedgraphexhibitsapower-lawdistribution,soasmallnumberofappsattractsahighnumberofleads.
ThisisconrmedbyFig.
2(b),showingthatthetop-5appsaccumulate29%ofallleads,andtop-100capture90%.
Wethusconjecturethatanon-personalizedtop-sellerrecommender,whichonlyrecommendsthetop-Nmostpopularapps,willperformverywell.
Weadoptedahold-outcross-validationapproachfortesting,whereoneratingrvofauseriswithheldandallothersareusedtodenehisproleandcalcu-latepredictions,aimingtorecommendexactlyrv.
Forbaselining,wecomparedourrecommender'sperformancewiththatofthetop-sellerrecommender.
Theevaluationtaskforeachofthetworecommenderswastoproducealistoftop-Nrecommendationsandcountinhowmanycasestheproducedlistcontainedrv.
TheevaluationisshowninTab.
1.
Allresultsexhibitstatisticalsignicanceatthepη(a)йййййййййййη(b)Fig.
2.
Log-logfrequencydistributionofleadsperapp(a)andcumulativeshareofleadsbynumberofapps(b)Table1.
PerformancebenchmarkresultsTop-1Top-3Top-5Top-10Hybridrecommender10.
9%24.
4%33.
5%51.
2%Top-seller6.
6%18.
9%27.
6%43.
4%4ConclusionandOutlookWehavepresentedourrecommenderforthenewdomainofB2Bapps,makinguseofanovelhybridweightedschemebasedoncondencescoring.
OurrstevaluationshaveshownverypromisingresultsandthesystemhasgoneliveintooperationaluseatSAP.
Inthefuture,wewanttotunetherecommendingalgorithmsfurtherandaimatdoingthematrixcalculationsinreal-time,usingHANA[4],SAP'snewhigh-performancein-memorydatabase.
References1.
Burke,R.
:HybridWebRecommenderSystems.
In:Brusilovsky,P.
,Kobsa,A.
,Nejdl,W.
(eds.
)AdaptiveWeb2007.
LNCS,vol.
4321,pp.
377–408.
Springer,Heidelberg(2007)2.
Adomavicius,G.
,Tuzhilin,A.
:TowardtheNextGenerationofRecommenderSys-tems:ASurveyoftheState-of-the-ArtandPossibleExtensions.
IEEETrans.
Knowl.
DataEng.
17(6),734–749(2005)3.
Baeza-Yates,R.
A.
,Ribeiro-Neto,B.
A.
:ModernInformationRetrieval-TheCon-ceptsandTechnologyBehindSearch,2ndedn.
PearsonEducationLtd.
,Harlow(2011)4.
F¨arber,F.
,May,N.
,Lehner,W.
,Groe,P.
,M¨uller,I.
,Rauhe,H.
,Dees,J.
:TheSAPHANADatabase–AnArchitectureOverview.
IEEEDataEng.
Bull.
35(1),28–33(2012)
GigsGigsCloud新上了洛杉矶机房国际版线路VPS,基于KVM架构,采用SSD硬盘,年付最低26美元起。这是一家成立于2015年的马来西亚主机商,提供VPS主机和独立服务器租用,数据中心包括美国洛杉矶、中国香港、新加坡、马来西亚和日本等。商家VPS主机基于KVM架构,所选均为国内直连或者优化线路,比如洛杉矶机房有CN2 GIA、AS9929或者高防线路等。下面列出这款年付VPS主机配置信息...
PacificRack在本月发布了几款特价产品,其中最低款支持月付仅1.5美元,基于KVM架构,洛杉矶机房,PR-M系列。PacificRack简称PR,QN机房旗下站点,主要提供低价VPS主机产品,基于KVM架构,数据中心为自营洛杉矶机房,现在只有PR-M一个系列,分为了2个类别:常规(Elastic Compute Service)和多IP产品(Multi IP Server)。下面列出几款秒...
中秋节快到了,spinservers针对中国用户准备了几款圣何塞机房特别独立服务器,大家知道这家服务器都是高配,这次推出的机器除了配置高以外,默认1Gbps不限制流量,解除了常规机器10TB/月的流量限制,价格每月179美元起,机器自动化上架,一般30分钟内,有基本自助管理功能,带IPMI,支持安装Windows或者Linux操作系统。配置一 $179/月CPU:Dual Intel Xeon E...
b2b程序为你推荐
wordpressWordPress 是什么?centos6.5centos 6.5服务器基本配置有哪些大飞资讯单仁资讯的黄功夫是何许人?抢米网抢小米手机需要下什么软件 速求curl扩展大神帮忙看下centos 7.2 系统 php7.0.12的 curl 扩展怎么开启,谢谢啦curl扩展如何增加mysqli扩展厦门三五互联科技股份有限公司厦门三五互联科技股份有限公司怎么样?可信网站可信网站认证一定要办吗oa办公软件价格一套专业版的oa办公系统多少钱?工具条手机的工具栏怎么在任务栏里?怎么把工具栏调到手机下面?
电信服务器租用 怎样申请域名 荣耀欧洲 美国php主机 河南服务器 美国十次啦服务器 我爱水煮鱼 ftp教程 空间论坛 softbank邮箱 速度云 常州联通宽带 双线asp空间 登陆空间 台湾google 服务器论坛 深圳域名 摩尔庄园注册 网页加速 xuni 更多