Figureb2b程序

b2b程序  时间:2021-04-13  阅读:()
AHybridB2BAppRecommenderSystemAlexandruOprea1,ThomasHornung2,Cai-NicolasZiegler3,HolgerEggs1,andGeorgLausen21SAPCommercialPlatform,St.
Leon-Rot&SAPResearch,Darmstadt,Germany{alexandru.
dorin.
oprea,holger.
eggs}@sap.
com2InstituteofComputerScience,Albert-Ludwigs-Universit¨atFreiburg,Germany{hornungt,lausen}@informatik.
uni-freiburg.
de3AmericanExpress,PAYBACKGmbH,M¨unchen,Germanycai-nicolas.
ziegler@payback.
netAbstract.
RecommendersystemsareintegraltoB2Ce-commerce,withlittleusesofarinB2B.
WepresentaliverecommendersystemthatoperatesinadomainwhereusersarecompaniesandtheproductsbeingrecommendedB2Bapps.
Besidesoperatinginanentirenewdomain,theSAPStorerecommenderisbasedonaweightedhybriddesign,makinguseofanovelcondence-basedweightingschemeforcombiningratings.
Evaluationshaveshownthatoursystemperformssignicantlybetterthanatop-sellerrecommenderbenchmark.
1IntroductionandMotivationTheSAPStorecaterstoSMEcompaniesthataimtodrivetheirbusinessviaB2Bapps,e.
g.
,forcustomerrelationmanagementorcompliance.
Manyoftheseappsaregearedtowardsspecicindustriesandtheirneeds.
Asthenumberofpartnersproducingthemisgrowing,soisthenumberofappsinthestoreitselfandthusthecomplexityfortheuser(whorepresentsacompany)toactuallyndwhatheislookingfor.
Toactivelyhelptheuser,weproposeahybridrecommendersystemthataddressesexactlytheneedsofthisspecicB2Bscenario.
Thesystemputstousebothknowledge-based,collaborative,andcontent-basedsub-recommenders.
Moreover,wepresentanovelhybridweightingscheme[1]thatincorporatescon-dencescoringforthepredictionsproduced,sothatsub-recommenderscontributeforrecommendationsaccordingtotheircondenceweight.
Thesystemisliveandcanbeusedbylogged-inusers1.
Wehaveconductedempiricalevaluationsviahold-outtestingthatshowthattherecommenderout-performsthenon-personalizedtop-sellerrecommender.
2RecommenderSystemArchitectureThearchitectureoftherecommenderisdepictedinFigure1.
Overall,wehavethreedierentinformationsourcesforgeneratingnewrecommendations:the1Seehttp://store.
sap.
comF.
Daniel,P.
Dolog,andQ.
Li(Eds.
):ICWE2013,LNCS7977,pp.
490–493,2013.
cSpringer-VerlagBerlinHeidelberg2013AHybridB2BAppRecommenderSystem491Knowledge-basedFilter(KBF)UserProfilesAppProfilesTRXDataUser-ItemCFItem-ItemCFContent-basedAugmentationContent-basedAugmentationItem-ItemMatrixUser-UserMatrixWeightedMeanRecommendationList12a2b34Fig.
1.
SAPStorerecommendersystemarchitectureuserproles(e.
g.
,companysize,industry,country),theappproles(e.
g,sup-portedindustries,businessareas),andthetransactionalcustomerdata(e.
g.
,salesorders,downloads).
Initially,theknowledge-basedcomponentltersthelistofrelevantappsbyasetofplausibilityrulesresultinginanunsortedsetofcandidateapps(1).
Thesearefedtoanitem-item(2a)anduser-itemcollaborativelter(CF),see(2b)[2].
Todealwiththecold-startproblemincaseswhereonlysparseratingsareavailableforapps,acontent-basedaugmentationschemecomputessimilaritiesbasedonthecosinesimilaritymeasure[3]betweenpropertiesoftheapps.
Forusersthatarenewtothesystem,thesimilaritycanbedeterminedbycomparingtheirprolestootherusersbasedontheircosinesimilarity.
Thisway,thetwomatriceswillcontainmeaningfulentriesforallusersandappsknowntothesystem,andrecommendationsgetmorepersonalizedoncemorecontextdataisavailable.
ThescoresofthetwoCFalgorithmsarecombinedbyaweightedmean(cf.
Section2.
1),andasortedtop-krecommendationlistisreturned.
Thecalculationofthematricesisdoneo-lineasthecomputationisquadraticinthenumberofusersorapps,respectively.
2.
1WeightingbyCondenceScoresThescoreofarecommendedappisbasedonaweightedmeanoftheconstituentitem-itemanduser-itemscores.
Eachofthesegivesanestimateofhowmuchausermightlikeanapp;e.
g.
,Eq.
1showshowapredictionscorefortheitem-itemcaseisdeterminedforappamforuseru:Theratingsru(b)ofuforappsb∈Ru492A.
Opreaetal.
hehasalreadyratedareweightedbytheirsimilaritytoam,denoteds(b,am),asanindicatorifthisappmightberelevantfortheuser2.
pi(u,am)=b∈Rus(am,b)·ru(b)b∈Rus(am,b)(1)Now,foreachrecommenderscoreacondencescoreiscalculated,denotedciandcurespectively,whichisbasedonthenumberofsupportingitemsorusersofeachprediction.
Theseweightsareusedtodeterminetheoverallscorep:p(u,am)=ci·pi(u,am)+cu·pu(u,am)ci+cu(2)Thecondencescorecuforthepredictionpu(u,am)tellsushowreliableapre-dictionis.
Itgrowswithagrowingnumberofsupportingdatapoints:Foreachuserui,wecalculatethez-scoreofhissimilaritywithourcurrentuseru.
Wenowsumthesez-scoresimilaritiesforallkusersinuseru'sneighborhood[2].
Thesumisdividedbykandtheresultingvaluegivesustheaveragenormal-izedsimilarityofalltheuserswhoseratingshavebeentakenintoaccountforpu(u,am).
Thesameisdonefortheitem-basedcase.
Sincewearemakinguseofstandardz-scores,thelinearcombinationshowninEq.
2basedonthetwocondenceweightsissound.
Thecondenceschemerepre-sentsapowerfulmeanstoadjustthehybridrecommender'sweightingaccordingtothepredictedreliabilityofeachofthetwosub-recommenders.
3PerformanceEvaluationInordertotesttheperformanceofthepresentedhybridrecommenderusingournovelcondence-basedweightingscheme,weconductedanempiricalevaluationwithreal-worlddataof5,233users(e.
g.
,companiesregisteredforandusingtheSAPStore)havingpurchasedorexpressedinterestin615appsolutions.
ThefrequencydistributioninFig.
2(a)showsleadsperapp,i.
e.
,howmanycompanieshavepurchasedorexpressedinterestineachapp,sortedindescendingorder.
Thelog-logplottedgraphexhibitsapower-lawdistribution,soasmallnumberofappsattractsahighnumberofleads.
ThisisconrmedbyFig.
2(b),showingthatthetop-5appsaccumulate29%ofallleads,andtop-100capture90%.
Wethusconjecturethatanon-personalizedtop-sellerrecommender,whichonlyrecommendsthetop-Nmostpopularapps,willperformverywell.
Weadoptedahold-outcross-validationapproachfortesting,whereoneratingrvofauseriswithheldandallothersareusedtodenehisproleandcalcu-latepredictions,aimingtorecommendexactlyrv.
Forbaselining,wecomparedourrecommender'sperformancewiththatofthetop-sellerrecommender.
Theevaluationtaskforeachofthetworecommenderswastoproducealistoftop-Nrecommendationsandcountinhowmanycasestheproducedlistcontainedrv.
TheevaluationisshowninTab.
1.
Allresultsexhibitstatisticalsignicanceatthepη(a)йййййййййййη(b)Fig.
2.
Log-logfrequencydistributionofleadsperapp(a)andcumulativeshareofleadsbynumberofapps(b)Table1.
PerformancebenchmarkresultsTop-1Top-3Top-5Top-10Hybridrecommender10.
9%24.
4%33.
5%51.
2%Top-seller6.
6%18.
9%27.
6%43.
4%4ConclusionandOutlookWehavepresentedourrecommenderforthenewdomainofB2Bapps,makinguseofanovelhybridweightedschemebasedoncondencescoring.
OurrstevaluationshaveshownverypromisingresultsandthesystemhasgoneliveintooperationaluseatSAP.
Inthefuture,wewanttotunetherecommendingalgorithmsfurtherandaimatdoingthematrixcalculationsinreal-time,usingHANA[4],SAP'snewhigh-performancein-memorydatabase.
References1.
Burke,R.
:HybridWebRecommenderSystems.
In:Brusilovsky,P.
,Kobsa,A.
,Nejdl,W.
(eds.
)AdaptiveWeb2007.
LNCS,vol.
4321,pp.
377–408.
Springer,Heidelberg(2007)2.
Adomavicius,G.
,Tuzhilin,A.
:TowardtheNextGenerationofRecommenderSys-tems:ASurveyoftheState-of-the-ArtandPossibleExtensions.
IEEETrans.
Knowl.
DataEng.
17(6),734–749(2005)3.
Baeza-Yates,R.
A.
,Ribeiro-Neto,B.
A.
:ModernInformationRetrieval-TheCon-ceptsandTechnologyBehindSearch,2ndedn.
PearsonEducationLtd.
,Harlow(2011)4.
F¨arber,F.
,May,N.
,Lehner,W.
,Groe,P.
,M¨uller,I.
,Rauhe,H.
,Dees,J.
:TheSAPHANADatabase–AnArchitectureOverview.
IEEEDataEng.
Bull.
35(1),28–33(2012)

CloudCone:洛杉矶MC机房KVM月付1.99美元起,支持支付宝/PayPal

CloudCone是一家成立于2017年的国外VPS主机商,提供独立服务器租用和VPS主机,其中VPS基于KVM架构,多个不同系列,譬如常规VPS、大硬盘VPS等等,数据中心在洛杉矶MC机房。商家2021年Flash Sale活动继续,最低每月1.99美元,支持7天退款到账户,支持使用PayPal或者支付宝付款,先充值后下单的方式。下面列出几款VPS主机配置信息。CPU:1core内存:768MB...

萤光云(20元/月),香港CN2国庆特惠

可以看到这次国庆萤光云搞了一个不错的折扣,香港CN2产品6.5折促销,还送50的国庆红包。萤光云是2002年创立的商家,本次国庆活动主推的是香港CN2优化的机器,其另外还有国内BGP和高防服务器。本次活动力度较大,CN2优化套餐低至20/月(需买三个月,用上折扣+代金券组合),有需求的可以看看。官方网站:https://www.lightnode.cn/地区CPU内存SSDIP带宽/流量价格备注购...

IntoVPS:按小时计费KVM月费5美元起($0.0075/小时),6个机房可选

IntoVPS是成立于2004年的Hosterion SRL旗下于2009年推出的无管理型VPS主机品牌,商家提供基于OpenStack构建的VPS产品,支持小时计费是他的一大特色,VPS可选数据中心包括美国弗里蒙特、达拉斯、英国伦敦、荷兰和罗马尼亚等6个地区机房。商家VPS主机基于KVM架构,最低每小时0.0075美元起($5/月)。下面列出几款VPS主机配置信息。CPU:1core内存:2GB...

b2b程序为你推荐
flashfxp下载怎么用flashFXP下载空间内容flashfxp注册码找flashfxp3.4注册码生药httptumblr上不去我家里的网络打不开个别网站本帖隐藏的内容本帖隐藏的内容需要回复才可以浏览 是怎么弄的 我像弄1个 178的帖discuz7.0discuz7.0如何升级到discuz x2.0网上支付功能网银有什么功能?管理员密码请输入管理员密码什么意思推荐位关于橱窗推荐位规则的描述哪个是错误的ftp工具ftp软件有哪些
老域名失效请用户记下 域名服务器上存放着internet主机的 naning9韩国官网 独享100m 香港vps99idc stablehost godaddy主机 全球付 edis godaddy续费优惠码 免费个人博客 新站长网 镇江联通宽带 java空间 云全民 元旦促销 台湾谷歌地址 中国电信测速112 免费phpmysql空间 上海电信测速 更多