systemsnod32

esetnod32id  时间:2021-02-05  阅读:()
MedicagotruncatulahandbookVersionJune2007RESPONSEOFMEDICAGOTRUNCATULATOABIOTICSTRESSResponseofMedicagotruncatulatofloodingstressAnisM.
Limami,ClaudieRicoult,ElizabethPlanchetUMR1191(Universitéd'Angers/INH/INRA)PhysiologieMoléculairedesSemences.
UniversityofAngers,2BdLavoisier,49045Angerscedex,France.
Contact:anis.
limami@univ-angers.
frResponseofMedicagotruncatulatodroughtstressEstherM.
González,RubénLadrera,EstíbalizLarrainzar,CesarArrese-IgorDpto.
CienciasdelMedioNatural.
UniversidadPúblicadeNavarra.
E-31006Pamplona.
Spain.
Contact:esther.
gonzalez@unavarra.
esResponseofMedicagotruncatulatoSaltstressFranciscoMerchan,MartinCrespiandFlorianFrugierAddress:ISV(InstitutdesSciencesduVégétal),CNRS,1avenuedelaterrasse,91198GifsurYvettecedex,FranceContact:crespi@isv.
cnrs-gif.
frAcclimationofMedicagotruncatulatocoldstressKomlanAviaandIsabelleLejeune-HénautINRA-USTL,UMR1281"StressAbiotiquesetDifférenciationdesVégétauxcultivés"Estrées-Mons,BP136,80203Péronnecedex,FranceContact:avia@mons.
inra.
frTableofcontentPage2:IntroductionPage3:ResponseofMedicagotruncatulatofloodingstressPage7:ResponseofMedicagotruncatulatodroughtstressPage13:ResponseofMedicagotruncatulatoSaltstressPage17:AcclimationofMedicagotruncatulatocoldstressResponseofMedicagotruncatulatoabioticstressPage1of32MedicagotruncatulahandbookVersionJune2007INTRODUCTIONEnvironmentalconstraintsrepresentthemostlimitingfactorsforagriculturalproductivityandplayamajorroleinthedistributionofplantspeciesacrossdifferenttypesofenvironments.
Apartfrombioticstresscausedbyplantpathogens,thereisavarietyofdistinctabioticstresses,suchasavailabilityofwater(drought,flooding),extremetemperature(chilling,freezing,heat),salinity,heavymetals(iontoxicity),photonirradiance(UV-B),nutrientsavailability,andsoilstructure.
Abioticstressesresult,singlyorincombination,inbothgeneralandspecificdetrimentaleffectsonplantgrowthanddevelopment,andfinallycropyield.
Majorabioticstresses(drought,salinity,freezing)leadtoreducedavailabilityofwaterforvitalcellularfunctionsandmaintenanceofturgorpressure.
Dehydrationorosmoticstressinducesstomatalclosureand,consequently,areductionofthebiochemicalcapacityforcarbonassimilationanduse.
Thisleadstolimitationsofphotosyntheticcapacityandtherebyplantgrowth.
Onecharacteristiccellularfeatureactivatedbyabioticstressesisthehighproductionofreactiveoxygenspecies(ROS)inthechloroplasts,mitochondriaorinperoxisomes,causingirreversiblecellularandtissuedamages.
However,mostplantshavedevelopedvariousadaptationanddetoxificationmechanismstodealwithstressconditions,andconsiderableknowledgehasbeengainedoverthelastdecadeontheactivationofplantstresssignaltransductionpathwaysaswellasphysiologicalandmolecularstressresponses.
Someofthemostcommonresponsesforabioticstresstoleranceinplantsareoverproductionofseveralcompatibleorganicsolutestermedosmoprotectantsorosmolytes(suchassucrose,betaines,proline)forosmoticadjustmentandprotectionofsubcellularstructures,cellularmetabolicchanges(defense-relatedsecondarymetaboliteproduction,proteolyticactivity,adenylateenergycharge,ionichomeostasis,redoxstateregulation,antioxidantenzymesactivation…),anatomicalandmorphologicalchangesinplanttissues,andinductionofstress-responsivegeneexpression,Amongthem,activationofgenesinvolvedinsignaltransductionpathways(suchasgenesencodingproteinkinasesortranscriptionfactors)mayleadtocomplexchangesingeneexpressionresultinginplantadaptationtoabioticstresses.
TheundertakenbasicresearchinthemodelplantMedicagotruncatulaistoelucidatethephysiologicalandmolecularmechanismsbywhichtheselegumeplantssenseandrespondtoabioticstresses.
Inthischapter,mainresearchadvancesgainedinM.
truncatulaconcerningmajorabioticstresses(e.
g.
wateravailability,saltandcoldstresses)willbespecificallyaddressed.
ResponseofMedicagotruncatulatoabioticstressPage2of32MedicagotruncatulahandbookVersionJune2007RESPONSEOFMEDICAGOTRUNCATULATOFLOODINGSTRESSAnisM.
Limami,ClaudieRicoult,ElizabethPlanchetUMR1191(Universitéd'Angers/INH/INRA)PhysiologieMoléculairedesSemences.
UniversityofAngers,2BdLavoisier,49045Angerscedex,France.
Contact:anis.
limami@univ-angers.
fr1.
IntroductionFloodingisoneoftheadverseenvironmentalfactorsthatharmseverelygermination,seedlingestablishmentandplantdevelopment(SubbaiahandSachs,2003).
Gasesdiffuseapproximately10000timesslowerinwaterthaninair(Jackson,1985),asaconsequencewhensoilsaresaturatedwithwater,oxygenfluxesintoplantsbecometooslowtosupportrespiration,resultinginenergydeficitsand,eventually,deathofcellsandtissuesinnon-adaptedplants(JacksonandArmstrong,1999;Goutetal.
,2001).
Theslowdiffusionrateofgasesthroughwateralsocausesaccumulationofendogenouslyproducedgases,suchasethylene.
Plantshaveevolvedinducibledevelopmentalandmetabolicmechanismstoadapttolowoxygenstressconditionsthatdeterminetheirsensitivity/tolerancetoflooding.
Adaptationtolong-termsubmergenceisfrequentlyassociatedwithdevelopmentalchangessuchasrootaerenchymaformation,internodeandpetioleelongation,adventitiousrootdevelopmentandalterationofrootporosity,morphologyanddepth.
Ethylenehasbeenshowntobeinvolvedinthesesubmergence-inducedadaptations(Hoffmann-BenningandKende,1992;VanDerStraetenetal.
,2001;Voeseneketal.
,2003a;Voeseneketal.
,2003b).
However,theinitialcellularresponsetodecreasedoxygenavailabilityispromotionofanaerobicmetabolismofpyruvateinbothtolerantandsensitivespeciesordifferentgenotypesinthesamespecie.
Inhypoxic/anoxictissuespyruvatecontentincreasedandglycolytic(glyceraldehydes3phosphatedehydrogenase)andfermentativeenzymes(pyruvatedecarboxylase(PDC),alcoholdehydrogenase(ADH)andlactatedehydrogenase(LDH)areinducedasaconsequenceoftheneedforincreasedglycolysistocompensateforthelowerATPyieldduetotheinactivationofoxidativephosphorylation(Saglioetal.
,1999;Satoetal.
,2002).
Fermentativeproductsi.
e.
acetaldehyde,ethanolandlactateaccumulateallowingfortheregenerationofNAD+fromNADH.
RegenerationofNADbyfermentativeenzymesADHandLDHisvitalforhypoxia/anoxiatolerancebecauseintheabsenceofNAD+glycolysisceases(Ismondetal.
,2003;Kursteineretal.
,2003).
Inductionofalanineaminotransferase(AlaAT)fermentativepathwayhasbeenshowntocontributetothestrategythatconfertolerancetohypoxiaandanoxiainseveralplantspeciesinwhichitplayedasignificantroleinResponseofMedicagotruncatulatoabioticstressPage3of32MedicagotruncatulahandbookVersionJune2007limitationofacetaldehydesynthesisandlactateaccumulationforbettercytoplasmicpHregulation(Reggianietal.
,2000;Ismondetal.
,2003)andinrescueofC3skeletons,thatwouldotherwisegothroughethanolicfermentativepathwaycausingashortageincarbonavailability(Ricoultetal.
,2005).
Seedgerminationandseedlingestablishmentarecrucialphasesofplantlifecycleduringwhichanystresswouldjeopardizeadultplantvigorandperformancebydamagingthecapacityofseedlingstocolonizeuniformlyandrapidlythesoil.
MetabolicadaptiveresponsesofMedicagotruncatulaseedlingstohypoxiastresswerestudied.
Besidestheactivationofalcoholandlacticfermentativepathways,aconcertedactionofalanineaminotransferase(AlaAT)andglutamatedehydrogenase(GDH)contributetohypoxiastresstoleranceinMedicagotruncatulaseedlings.
AlaATandGDHpathwaysweredissectedatthemolecular(geneexpression)andbiochemical(15Nlabelling)levels.
2.
InvolvementofalaninemetabolisminmetabolicadaptationofMedicagotruncatulaseedlingstohypoxiastressAlanineaminotransferases,apyridoxalphosphatemultigenefamilyhasbeencharacterizedinMedicagotruncatula(Ricoultetal.
,2006).
Theenzymescatalyzetransaminationreactionsusingseveralaminodonor/acceptorcombinations(i)mitochondrial(mAlaAT)andcytosolic(cAlaAT)isoformscatalyzereversibletransaminationofglutamate(alanine:2-oxoglutarate,glutamate:pyruvate),(ii)mitochondrialalanine/glyoxylatetransaminase(AGT)isoformcatalyzesreversibletransaminationofglycine(alanine:glyoxylate,glycine:pyruvate)and(iii)alanine/branched-chainaminoacidstransaminaseisoformcatalyzesreversibletransaminationofValineandLeucine(alanine:3-methyl-2-oxobutanoate,valine:pyruvate).
Onlym-AlaATandAGTisogeneswereexpressedinembryoaxesofgerminatingMedicagotruncatulaandweredifferentiallyregulatedbyhypoxiaattranscriptionallevel.
Whilethelevelsoftranscriptandproteinofm-AlaATincreasedunderhypoxia,levelsoftranscriptandproteinofAGTdecreasedsupportingtheideathatm-AlaATistheisoforminvolvedintheadaptiveresponseofembryoaxistohypoxia.
Activitiesofbothenzymeshavebeenmeasuredinvivoby15N-labellingexperimentsundernormoxiaandhypoxiastress.
Feedingembryoaxis15N-glutamateor15N-alanineundernormoxiashowedthatm-AlaATcatalyzedareversiblereactionallowingforsynthesisofalaninewithglutamateasaminodonorandsynthesisofglutamatewithalanineasaminodonor.
Thesameexperimentshowedthatglycinesynthesisoccurredattheexpenseofeitherglutamateoralanineindicatingthatbesidealanine–glyoxylatetransaminase(AGT)aResponseofMedicagotruncatulatoabioticstressPage4of32MedicagotruncatulahandbookVersionJune2007glutamate–glyoxylatetransaminase(GGT)wasalsooperating.
Underhypoxia,itappearedthatm-AlaATwasstillallowedtosynthesizealanineusingglutamateasaminodonorwhileitsglutamatesynthesisactivityusingalanineasaminodonorwasinhibited.
Thisfindingindicatesthatm-AlaATmightberegulatedatpost-translationalleveltohaveitsactivitydirectedtowardsalaninesynthesisonlyunderhypoxiastress.
Asaresult,labeledalanineisamajoraminoacidaccumulatedinhypoxicembryoaxes.
Bycompetingwithethanolicfermentationforpyruvate,alaninesynthesissavesC3skeletonsavoidingashortageincarbonavailabilityandlimitsaccumulationofacetaldehydeatoxiccompound.
Also,anincreaseinalaninesynthesis,bycompetingwithlacticfermentationforpyruvate,intervenesincytosolicpHregulation.
Furthermoresynthesisofalaninearisingfromthedecarboxylationofmalatetopyruvateasaresultofmalicenzymeactivationbyhypoxiaalongwithdecarboxylationofglutamatetoγ-aminobutyricacid(GABA)areprotonconsumingreactions(BouchéandFromm,2004;Carrolletal.
,1994;Edwardsetal.
,1998;Ricoultetal.
,2005).
Alanineglyoxylatetransaminase(AGT)wasinhibitedattranscriptionallevelbyhypoxiaresultinginloweramountsoftheproteininhypoxicembryoaxesthanincontrolandinhibitionofinvivoenzymeactivityasrevealedby15N-labelling.
GlycinecontentwasdramaticallylowerinhypoxicembryoaxesthanthatinthecontrolindicatingthatGGTdidnotcompensateforthelackofAGTactivityprobablybecauseglutamatewascompetitivelyrecruitedinalanineandGABAsynthesispathwayscatalyzedbym-AlaATandGDC(GABAdecarboxylase).
3.
Regenerationofglutamate,theaminodonorforalaninesynthesisRegenerationofglutamatebym-AlaATisanimportantissueintheadaptivereactionofplantstohypoxia.
InMedicagotruncatulawehaveshownthatunderhypoxiaammoniumassimilationbyglutaminesynthesis(GS)wasinhibiteddueprobablytothelackofATPwhileitsassimilationby(GDH)glutamatedehydrogenasewaspromoted(Limamietal.
,unpublisheddata).
AlthoughanabolicroleofGDHi.
e.
assimilationofammoniumisstillmatterofdebate(Glevarecetal.
,2004)evidencesinfavorofthisrolewereshownunderspecificsituationssuchasstresscausedbyexcessammoniuminArabidopsis(Melo-Oliveiraetal.
,1996),andvariousabioticstresses(Skopelitisetal.
,2006).
TakenaltogetherthesefindingsallowedustoproposethatinMedicagotruncatulaseedlingsunderhypoxiastressmitochondrialAlaATmaycontributeincoordinationwiththemitochondrialenzymeGDHtothemaintenanceoftheredoxbalanceduringfermentativegrowth,withpyruvateusedasacatabolicelectronsink.
GlutamatesynthesisbyGDHinResponseofMedicagotruncatulatoabioticstressPage5of32MedicagotruncatulahandbookVersionJune2007hypoxictissuespresentstheadvantagetonotuseATP,furthermoreintheanabolicdirectiontheenzymeregenerateoxidizedNADthatiscrucialtothemaintenanceofglycolysisinhypoxictissues(seebelow,Fig.
1).
SimilaradaptivereactionshavebeendescribedinthehyperthermophilicarchaeonPyrococcusfuriosus(Wardetal.
,2000).
ThisstrictanaerobicutilizesamodifiedEmbden-Meyerhofpathwayforthecatabolismofsugarswhichinvolvesauniqueglyceraldehydes-3-phosphate:ferredoxinoxidoreductase.
Themainproductsofsugarfermentationareacetate,CO2,H2andalanine.
RegenerationofoxidizedferredoxinisassumedtobeaccomplishedbytheformationofalaninewhenP.
furiosusisgrownintheabsenceofS.
AlanineissynthesizedbyAlaATtransaminationofpyruvate,theaminodonorglutamateisproposedtobereplenishedthroughtheactionofNADP-dependentGDH.
ThenecessaryNADPHcanbegeneratedbythetransferofreducingequivalentsfromreducedferredoxintoNADPbytheferredoxin:NADPoxidoreductaseactivityofthesulfidedehydrogenaseregeneratingthenoxidizedferredoxin.
AlaATandGDHcoordinatedactivitiesresultinachangeintherelativefluxofpyruvatetoacetateformationtowardalanineformation.
Pyruvateisthereforeusedasacatabolicelectronsink(Wardetal.
,2000).
Figure1:RepresentationofthecoordinatedcontributionsofmitochondrialAlaATandGDHtothemaintenanceoftheredoxbalanceduringfermentativegrowthinMedicagotruncatulaseedlingsunderhypoxiastress.
ResponseofMedicagotruncatulatoabioticstressPage6of32MedicagotruncatulahandbookVersionJune2007RESPONSEOFMEDICAGOTRUNCATULATODROUGHTEstherM.
González,RubénLadrera,EstíbalizLarrainzar,CesarArrese-IgorDpto.
CienciasdelMedioNatural.
UniversidadPúblicadeNavarra.
E-31006Pamplona.
Spain.
Contact:esther.
gonzalez@unavarra.
es1.
IntroductionDroughtcausesextensivecroplossesworldwide(Boyer,1982;Brayetal.
,2000).
Underfieldconditions,cropsareroutinelysubjectedtoacombinationofdifferentabioticstresses.
Plantresponsesundertheseconditionscannotbedirectlyextrapolatedfromresponsesofplantstoindividualstresses(Mittler,2006).
However,whiletheholisticapproachisusedinecologicalterms,thestudyofindividualstressesismoreconvenientinordertobroadourknowledgeofthemechanismsinvolvedinplantresponsestoenvironmentalconstraints.
Whenanalysingmolecularandbiochemicalprocesses,theneedtocreateconditionssimilartothoseexperimentedbyplantsinthefieldisrequiredtoextrapolatelaboratoryresultstoagronomicconclusions.
ThisisespeciallyrelevantforthemodellegumeM.
truncatula,whichiscurrentlyafocusofresearchworldwide.
Itsgeneticproximitytoimportantlegumecropsprovidestherationaleforpotentialapplicationofthebasicknowledgegainedonthismodel.
Hence,regardingabioticstressstudies,thereisaclearneedtoanalysestressresearchunderaphysiologicalcontext.
2.
ApplyingwaterstressundercontrolledconditionsDroughtstressisparticularlydifficulttoimposeaswaterdeficitisagradualprocess.
Inertpolymersofhighmolecularweight,suchaspolyethyleneglycol,havebeenappliedtosimulateaprogrammedlevelofdroughtstressbyreducingthewaterpotentialofthenutrientsolution(Kaufmannetal.
,1971).
However,thesepolymershavebeenshowntoentertheplantandexertatoxiceffect,regardlessthewateruptakelimitation(Emmert,1974;Mexaletal.
,1975;Munnsetal.
,1979).
Thephysiologicalresponsestodroughtandosmotically-appliedstressarelargelydifferentintermsofcarbonshoot:rootallocationandthemetabolicpathwaysinvolved(Frechillaetal.
,1993).
Despiteitsprovennegativeeffectonplants,thesepolymersResponseofMedicagotruncatulatoabioticstressPage7of32MedicagotruncatulahandbookVersionJune2007arestillemployednowadaysfortheanalysisofdroughtresponseinplants(Fooladetal.
,2003)Alternativesystemslikepurehydroponicoraeroponics,althoughveryusefulforbasicresearchundercontrolledconditions,arenotsuitablefordroughtstudies.
Plantsgrowninpurehydroponicsystemswithunlimitedwatersupplyuntilvegetativestagewoulddrypromptlyassoonasthenutrientsolutionisremoved.
Hence,theseplantswouldbeunabletorespondtowaterstressinthewaytheywoulddounderfieldconditions,wherewaterdeficitoccursgradually.
Altogether,themostrecommendedplantgrowthsystemtoprovokeaphysiologicalwaterstressisthatwhichallowsagradualdepletionofwater.
Thisiseasilyachievedusingagrowthsystembasedonsoilorinertsubstratewithwaterretentioncapacitysuchasvermiculite.
Itshouldberemindedthatgrowthconditions,plantdensity,plantdevelopmentalstageandsize,togetherwiththesoil/substratewaterretentioncapacity,havealsoamajoreffectonthemagnitudeandrateofwaterdepletion.
AimingtoobtainphysiologicalresponsestodroughtstressonM.
truncatulaplants,weusethefollowingprotocoltocreateagradualwaterdeficitstress:Plantsaregrownin1Lpots(1plantperpot),containinga2:5(v:v)perlite:vermiculitemixtureundercontrolledenvironmentconditions(14-hphotoperiod,600molphotonsm-2s-1,22°C/18°Cday/nightregime,70%relativehumidity).
Droughtisimposedwhenplantsare8-10weeksold.
Inordertoallowprogressivewaterdepletioninthepots,plantsaresuppliedwithwater/nutrientsolutiontofieldcapacity(substratewatercontentafterexcesswaterhasdrained)andthendroughtisimposedbywithdrawingthewateringsolution.
Controlplantsaredailysuppliedwithnutrientsolutiontofieldcapacity.
Someconsiderationsshouldbemadetothisprotocol:Itispossibletouseahigherplantdensity,butwaterstresswillprogressfaster.
Itisalsopossibletouselargerpotstogrowmorethanoneplantperpot.
Inthiscase,specialattentionshouldbepaidtothehomogenouswaterstressresponseofalltheplantsgrowinginthepot,sincewaterwithinthesubstrate/soilwillbeconsumedoutsidein.
ResponseofMedicagotruncatulatoabioticstressPage8of32MedicagotruncatulahandbookVersionJune2007Finally,droughtregardedaslimitedwateravailabilitycanbeachievedindifferentways.
Generally,whenevapotranspirationalwaterlossishigh,somewater/nutrientcanbeaddedinordertoallowgradualwaterdepletionwithinthesubstrateandthus,agradualwaterstresstreatment.
Obviously,theaddedamountshouldbealsolowerthanthedailyevapotranspirationalwaterloss.
Aninterestingapproachtomimicrealfieldconditions,istogeneratetemporarydrought,createdbycyclesofwaterdeprivationandre-watering(Antolinetal.
,1995).
3.
MonitoringwaterstressinMedicagotruncatulaTherearetwomainmethodsforestimatingthewaterstatusofaplant:bymeasuringtheamountofwaterorbymeasuringitsenergystatus.
Measurementsbasedonplantwatercontentaresometimesnotreliableindicators,astheydonotreflectplantwateravailability.
Therefore,measuringplantwaterstatusinenergetictermsisgenerallypreferred.
Theconceptofwaterpotential(Ψw)wasfirstintroducedasameasureofthefreeenergyofwater.
Ψwisexpressedinpressureunits(MPaorbar).
Ψwisthesumofanumberofcomponents:ingeneral,osmoticpotentialduetodissolvedsolutes(Ψs),pressurepotential(ΨP)andgravitationalpotential(Ψg).
Waterpotentialisameasureofhowhydratedaplantis,providingarelativeindexofthewaterstresstheplantisexperiencing.
Althoughthereareseveralmethodsavailableforitsmeasurement,themostextensivelyusedarepressurechambersandthermocouplepsychrometers.
Pressurechambersareoftenusedforestimatingthewaterpotentialofleavesorsmallshootsbothinlaboratoryandunderfieldconditions(Scholanderetal.
,1965).
Apieceoftissueisexcisedfromtheplantandsealedintoachamber,byleavingtheshootendoutsidethrougharubbergasket.
Then,thechamberisclosedandpressurisedusingacompressedgas.
Thepressureisgraduallyincreaseduntilthexylemsapappearsonthecutsurface,indicatingthattheleafwaterpotentialhasbeenreached.
DroughtstresscanbecarefullymonitoredbythismethodasitisshowninFigure1forthreedifferentM.
truncatulagenotypes.
Thermocouplepsychrometersmeasurethewatervapourpressureofaplanttissue,basedontheprinciplethatwhenwaterevaporatesfromasurface,thissurfaceiscooleddown.
Forthemeasurement,apieceofplanttissueissealedinsideasmallchambercontainingathermocouple.
Then,theaircontainedinthischamberisallowedtoequilibratewiththeplantsample.
Asvapourpressureequilibratesinthechamberairspace,thethermocouplesensestheambienttemperatureoftheair,thusestablishingthereferencepointforthemeasurement.
ResponseofMedicagotruncatulatoabioticstressPage9of32MedicagotruncatulahandbookVersionJune2007Underelectroniccontrol,thethermocoupleseeksthedewpointtemperaturewithintheenclosedspace,givinganoutputproportionaltothedifferentialtemperature.
Duetotheextremesensitivityofthemeasurementtotemperaturefluctuations,temperatureismeasuredandcorrectedbeforeeveryuse.
Thismethodithasbeenshowntobeusefultodeterminelocalwaterpotentialintissuesasrootornodules(Gálvezetal.
,2005)forwhichpressurechambersarenotsuitable.
Incontrasttothoseobtainedbyusingthepressurechamber,psychrometermeasurementsarenotinstantaneousduetothetimeneededforsampleequilibrationinsidethechamber.
Figure1.
EffectofwaterstressonleafwaterpotentialofthreedifferentgenotypesofMedicagotruncatula,F83.
005-5(square),JemalongA17(triangle)andTN1.
11(circle).
Controlplantvaluesarerepresentedwithacontinuouslineandvaluesfromdroughtplantsarerepresentedwithadiscontinuousline.
Asterisk(*),hash(#)andplus(+)symbolsmeansignificantdifferencesforF83.
005-5,JemalongA17andTN1.
11withtheircorrespondingcontrols,respectively.
Valuesrepresentmean±standarderrors(n=12).
4.
EffectofdroughtonMedicagotruncatulaM.
truncatulaisaquitedrought-tolerantplantspeciescomparedtootherlegumeslikepea(Gonzálezetal.
,1998;Gálvezetal.
,2005)orsoybean(Gonzálezetal.
,1995).
Consideringplantbiomassasanindicatorofdroughttolerance,waterdeficithasnotacleareffectonMedicagotruncatulaplantbiomassataleafwaterpotentialvaluearound-1.
4±0.
06MPaResponseofMedicagotruncatulatoabioticstressPage10of32MedicagotruncatulahandbookVersionJune2007(D1,Figure2),whichcausesasignificantdeclineinpea(Gonzálezetal.
,1998;Gálvezetal.
,2005)andsoybean(Gonzálezetal.
,1995).
Figure2.
EffectofwaterstressonplantbiomassofthreedifferentgenotypesofMedicagotruncatula,F83.
005-5,JemalongA17andTN1.
11.
D1,D2andD3representvaluesfromplantsafter3,6and8daysofwaterstress,respectively(seeFigure1forwaterpotentialvalues).
Valuesrepresentmean±standarderrors(n=12).
Moreover,waterstresstolerancemaydifferamongcultivars/ecotypes.
TheresponsetodroughtofthreedifferentMedicagotruncatulagenotypes,F83.
005-5(Frenchorigin),JemalongA17(Australianorigin)andTN1.
11(Tunisianorigin)hasbeenrecentlyanalysedinourresearchgroup(Ladreraetal.
,unpublisheddata).
Thesethreelineswereinitiallydescribedassensitive(F83.
005-5),tolerant(JemalongA17)andverytolerant(TN1.
11)tosalinity(Dr.
ThierryHuguet,INRA,France,personalcommunication).
F83.
005-5,JemalongA17andTN1.
11weregrownfor8,9and10weeks,respectively,toachieveasimilarplantbiomass.
Althoughdroughtcausesasimilardeclineinleafwaterpotentialinthethreelines,F83.
005-5showedthelowestwaterpotentialattheendofthedroughtperiod,inagreementwithitsdescribeddroughtsensitivity(Figure1).
Furthermore,F83.
005-5experiencedthelargestbiomassreduction,beingstatisticallysignificantafter6daysofwaterdeprivation(D2,Figure2)andshowingareductionof55%ofbiomasswhencomparedtocontrolplantsatD3(Figure2).
Incontrast,JemalongA17andTN1.
11didnotexperienceanysignificantbiomassResponseofMedicagotruncatulatoabioticstressPage11of32MedicagotruncatulahandbookVersionJune2007reductionatthesestages.
Thisdeclinewasonlystatisticallysignificantatday8aftertheonsetofdrought,whentheirleafwaterpotentialwasaround-2.
3MPa(Figure2).
Basedonphysiologicalandbiochemicalstudies,M.
truncatularesponsestodroughtaresimilartothosedescribedinotherMedicagospecies,likealfalfa(Rubioetal.
,2002),whichhavebeenshowntobemoredroughttolerantthanpea(Moranetal.
,1994)orureide-producinggrainlegumes(Serrajetal.
,1996).
Inthesestudies,photosynthesisratewasinhibitedby77%inpealeavesatawaterpotentialvalueof-1.
3MPa,butonlydecreased28%inalfalfaleavesatawaterpotentialof-1.
8MPa.
Thisinhibitionwasconsistentwithadeclineinantioxidantactivitiesandsolubleproteincontentinpealeaves,butonlyslightchangeswereobservedinalfalfaleaves.
Inrelationtothenitrogenfixationprocessinrootnodulesoflegumeplants,Nayaetal.
(2007)suggestthatalfalfapresentahighertolerancetodroughtstresscomparedtootherspecieslikepeaandsoybean.
Thishigherdroughttoleranceappearstobesimilartotheoneexhibitedbynitrogen-fixingMedicagotruncatulaplants(Ladreraetal.
,unpublishedresults).
Althoughanenhancedtolerancehasbeenaimedusingtransgenicapproaches(i.
e.
Zhangetal.
,2007),themolecularbasisofdroughttoleranceinthemodellegumeMedicagotruncatulahasnotbeenyetunravelled.
ResponseofMedicagotruncatulatoabioticstressPage12of32MedicagotruncatulahandbookVersionJune2007RESPONSEOFMEDICAGOTRUNCATULATOSALTSTRESSFranciscoMerchan,MartinCrespiandFlorianFrugierAddress:ISV(InstitutdesSciencesduVégétal),CNRS,1avenuedelaterrasse,91198GifsurYvettecedex,FranceContact:crespi@isv.
cnrs-gif.
fr1.
IntroductionSalinityinthearidandsemi-aridregionsoftheworldaswellasinirrigatedlandsisaseriousthreattoagriculture,affectingplantgrowthandcropyields(Duzanetal.
,2004;Zahran,1999).
Currentestimatesindicatethat10-35%oftheworld'sagriculturallandisnowaffected,withverysignificantareasbecomingunusableeachyear.
Soilsalinizationsignificantlylimitscropproductionandconsequentlyhasnegativeeffectsonfoodsecurity.
Theconsequencesaredamaginginbothsocioeconomicandenvironmentalterms.
Itisaworld-wideproblem,butmostacuteinNorthandCentralAsia,SouthAmerica,AustralasiaandMediterraneanarea.
Managementofsalt-affectedsoilsrequiresacombinationofagronomicpracticesandsocioeconomicconsiderations.
However,wheresalinityisincreasingasaproblemonanirrigatedfarm,itmaybenecessarytoselectcropvarietiesthathaveagreatertolerancetosalt.
Anecologicallyandagriculturallyrelevantaspectoflegumebiologyistheirspecificabilitytointeractwithsoilbacteriatoformrootnoduleswhichfixatmosphericnitrogen.
Thesymbioticbacteria,differentiatedintobacteroidsandsurroundedbyaperibacteroidmembrane(thatisolatesthemfromthehostcytoplasm),fixnitrogeninsidetheplantcellsofthisorgan(CrespiandGalvez,2000).
However,thissymbioticinteractionisaffectedbysaltstress.
Legumesareusuallymoresensitivetosalinitythanrhizobiawhichcanbetolerantupto700mMNaCl(SingletonandBohlool,1984,Arrese-Igoretal.
,1999,delPapaetal.
,1999).
Differentstepsofthesymbioticinteractionaswellasnoduledevelopmentandmetabolismareaffectedbysaltstress,leadingtoareductioninnodulenumberandlimitednitrogenfixation(SingletonandBohlool,1984).
Saltstressnotablyaffectsrhizobialcolonizationofrootsandearlyinfectionevents(McKayandDjordjevic,1993,Tu,1981).
Inaddition,thenitrogenfixationprocessisverysensitivetosaltstress,affectingperibacteroidmembranestructureandbacteroidnumber(Bolanosetal.
,2003).
Medicagotruncatulahasbeenusedasamodelforunderstandinggrowthanddevelopmentinlegumes.
GlycophyteM.
truncatulashowalargediversityofgenotypesadaptedtovaryingenvironmentalconditions,includingsalinesoilsResponseofMedicagotruncatulatoabioticstressPage13of32MedicagotruncatulahandbookVersionJune2007(http://www.
noble.
org/medicago/ecotypes.
html),andmaythereforebeagoodmodelforunderstandingsaltresponsealsoinotherlegumes(Boninetal.
,1996).
ShootbiomassproductionamongaccessionsofM.
truncatulaexposedtoNaClhavebeenanalysedbyVeatchetal.
(2004).
Thisstudyrevealedthatirrigationwitha115mMNaClsolutiondecreasedmeanshootbiomassbyover46%relativetothatwithnon-salineirrigation.
2.
PhysiologicalandmetabolicadaptationstosaltstressIngeneral,highNaClconcentrationsaffectplantphysiologyandmetabolismatdifferentlevels(waterdeficit,iontoxicity,nutrientimbalance,andoxidativestress;VinocurandAltman,2005),andatleasttwomainresponsescanbeexpected:arapidprotectiveresponsetogetherwithalongtermadaptationresponse.
Thissalttoleranceisgenerallyassociatedwithmodificationsofmorphologicalandphysiologicaltraits,suchaschangesinplantarchitectureandgrowth(shootsandroots),variationsinleafcuticlethickness,stomatalregulation,germination,andphotosynthesisrate(Edmeadesetal.
,2001).
Thesechangesarelinkedtodiversecellularmodifications,including,changesinmembraneandproteinstability,increasedantioxidantcapacityandactivationofhormonalsignalingpathways,notablythosedependingonthe"stresshormone"abscissicacid(VinocurandAltman,2005).
Alargenumberofgenesfromavarietyofbiochemicalpathwaysparticipateinresponsesconferringsalttolerance.
Thesepathwaysincludenotablythoseinvolvedinsignaltransduction;incarbonmetabolismandenergyproduction;inoxidativestressprotection;inuptake,exclusion,transportandcompartmentalizationofsodiumions;andinmodificationsofstructuralcomponentsofcellwallsandmembranes.
Moreover,asregulationofmetabolismtooptimisegrowthinthechangingenvironmentisanessentialtrait,studieshavebeenperformedtoidentifymetaboliteswhoseaccumulationmayincreasetoleranceoflegumeplantstosalinity.
Forexample,lipidchangesinresponsetosalttreatmenthavebeencharacterisedinsoybeanrootmembranes(SurjusandDurand,1996)aswellastheeffectofsaltstressonaminoacid,organicacid,andcarbohydratecompositionofroots,bacteroids,andcytosolofalfalfa(Medicagosativa;Fougereetal.
,1991).
Inresponsetosaltstress,trehalosehasalsobeenproposedasanosmoprotectantinLotusjaponicus(Lopezetal,2006)whereasanincreaseinprolineandglycinebetainecontent,aswellasinproteaseandATPaseactivitieshasbeendescribedinpeanut(ArachishypogaeaL.
;MuthukumarasamyandPanneerselvan,1997).
Trinchantetal.
(2004)haveinvestigatedthelong-termresponsesofnodulatedalfalfaplantstosaltstress,withaparticularinterestforprolineandbetaineaccumulation,compartmentalization,andmetabolism.
Trigonelline,apyridinebetaine,whichalsofunctionsResponseofMedicagotruncatulatoabioticstressPage14of32MedicagotruncatulahandbookVersionJune2007asacellcycleregulator,accumulatesinsalt-stressedleavesofsoybeansandalfalfa(TramontanoandJouve,1997).
However,fewmetabolicstudieshavebeenperformedinM.
truncatula.
Prolineaccumulationhasbeenshowntoinducetolerancetosaltstress,andM.
truncatulatransgenicplantsover-expressingdelta(1)-pyrroline-5-carboxylatesynthetase(P5CS),andwhichconsequentlyaccumulateshighlevelsofproline,displayenhancedosmotolerance(Armengaudetal.
,2004;Verdoyetal.
,2006).
3.
ActivationoftranscriptionalpathwaysinresponsetosaltstressMolecularstudieshavebeenusedtoidentifycandidategenestoberegulatorsofosmotolerantandsalinityresponses,particularlyputativeregulatorygenessuchastranscriptionfactors(Hasegawaetal,2000).
Inalfalfa,MsAlfin1hasbeenidentifiedasasalt-inducibletranscriptthatencodesazinc-fingerproteinpredominantlyexpressedinroots(Winicov,1993).
Overexpressionofthisputativetranscriptionfactorenhancesrootgrowthundercontrolandsalineconditions(WinicovandBastola,1999;Winicov,2000).
ThelackofrootformationandrootgrowthofalfalfatransgeniclinesexpressingMsAlfin1inanantisenseorientationalsosupportsacrucialroleforthisgeneinrootdevelopment(Winicov,1999).
AnotherC2H2zinc-fingertranscriptionfactor(ZPT2-1)wasidentifiedinalfalfaandcharacterizedinM.
truncatula(Frugieretal.
,1998,Frugieretal.
,2000).
Thisgene,expressedinvasculartissuesofrootsandnodules,isalsoinducedbysaltstress(Merchanetal.
,2003)andM.
truncatulaantisensetransgeniclinesdevelopednodulesunabletofixnitrogenduetoablockinbacteroiddifferentiation(Frugieretal.
,2000).
TheseMtZpt2-1antisenselineswerealsolessabletorecoverfromasaltstresscomparedtoawild-typeplant(Merchanetal.
,2003),suggestingthatthistranscriptionfactormaybeinvolvedinnoduleandrootadaptiveresponsestoosmoticandsaltstresses.
Moreover,usingeitherantisenseMtZpt2-1plantsoroverexpressionofthistranscriptionfactor,threeputativetargetgenescouldbeidentified,oneofwhichcorrespondedtoaknownabioticstress-relatedmarkerthecoldregulatedA(CorA)gene(Merchanetal.
,2007).
TheseresultsfurthersuggestaroleforaTFIIIA-liketranscriptionfactorsandtheirregulatedtargetnetworksintheadaptationoflegumerootstosaltstress.
Afewgenomicanalyseshavebeenperformedtoexaminesaltstressresponsesinlegumes.
Oneofthesestudiesaimedtoidentifyregulatorygenesinvolvedinrootadaptationsduringsalt-stressrecoveryinM.
truncatula(Merchanetal.
,2007).
TwoSSHlibrariesweremadeandanalyzedinordertoconstructadedicatedmacroarray,whichallowedrefinedexpressionstudiesinplantssubmittedtosaltstressandallowedtoreassumegrowth.
NovelregulatoryResponseofMedicagotruncatulatoabioticstressPage15of32MedicagotruncatulahandbookVersionJune2007genesassociatedtorootrecoveryfromsaltstresswhereidentified,potentiallyaffectingvarioustranscriptionalandpostranscriptonalregulatorymechanisms.
4.
MethodsforsaltstresstreatmentsDifferentmethodstoapplysaltstressinM.
truncatulaplants.
-Invitrogrowthconditions:Seedsarescarifiedbyrubbingbetweenmediumgrainandfine-grainsandpaper,andaresterilizedbyimmersionfor20mininInov'chlore(8.
64g/L;Inov'chemSA,Tanneries,France),followedbythoroughwashingwithsterilewater.
Seedsarethengerminatedovernightinwater-agarplates.
Seedlingsweregrownverticallyingrowthchamberat24°Cundera16-hlightperiodonaporousgrowthpaper(fromCYGseedgerminationpouches;MegaInternational,Minneapolis,MN,USA)for3days.
ThentheseedlingsgrownonthepapersupportaretransferredtoanewmediumcontainingvariousNaClconcentrations.
A100or150mMNaClconcentrationstronglyreducerootandshootgrowthofM.
truncatulaJemalong.
Saltrecoveryexperimentscanbealsoperformed,whereM.
truncatulaseedlingsaregrownaspreviouslydescribedandthenre-transferredafter4-7days(dependingongenotypes)toafreshmediumwithoutsalt(Merchanetal.
,2003and2007).
-Greenhouseconditions:Germinatedseedsaretransferredonamixofperliteandsand(3:1V:Vratio).
After1week,plantsareirrigatedwith50mMNaClsolution(acclimatationperiod)andthen2dayslaterwiththeassignedsalinesolution(50,75,100,or150mMNaCl).
Alternatively,plantscanbedirectlyirrigatedwiththeassignedsalinesolution.
Similarlyasforinvitroexperiments,aconcentrationof100-150mMNaCltypicallyinhibitsrootgrowthandstronglydelaysplantdevelopment.
Inallcases,aplasticcoverisplacedontheplantstolimitevaporation,andifprolongedsalttreatmentsaretested,limitedamountsofwater(withoutsalt)canbeaddedtoavoidincreaseinsaltconcentration.
ResponseofMedicagotruncatulatoabioticstressPage16of32MedicagotruncatulahandbookVersionJune2007ACCLIMATIONOFMEDICAGOTRUNCATULATOCOLDSTRESSKomlanAviaandIsabelleLejeune-HénautINRA-USTL,UMR1281"StressAbiotiquesetDifférenciationdesVégétauxcultivés"Estrées-Mons,BP136,80203Péronnecedex,FranceContact:avia@mons.
inra.
fr1.
IntroductionLowtemperatureisoneofthemostimportantfactorslimitinggrowth(Boyer,1982),developmentanddistributionofplantsintheworld.
Itdisturbsmetabolicactivity,inhibitsnormalfunctionofphysiologicalprocessesandcanleadtodeathbycausingpermanentinjuries.
Freezingtemperaturescanparticularlyaccountforsignificantlossesinplantproductivityandthenlimitfarmers'income.
Plantsencounteringnegativetemperaturescanfollowtwomainstrategiestosurvivethisstress:freezingavoidanceorfreezingtolerance(SakaiandLarcher,1987).
Freezingavoidanceismainlyobtainedbysupercoolingofthetissuewater.
Thismechanismishoweverlimitedtospecificorganssuchasseedsoroverwinteringbuds(SakaiandLarcher,1987).
Theacquisitionoffreezingtoleranceisthereforethemostcommonmechanismdevelopedbyplantstosurvivefreezingstress.
Innaturalconditions,theresponsetolownon-freezingtemperaturesistheprimaryfactorwhichallowsplantstoincreasetheirtolerance,aphenomenonknownascoldacclimation(Levitt,1980;SakaiandLarcher,1987;Thomashow,1999).
Thus,themostlogicalwaytoimproveplantfreezingtoleranceistoexploittheirnaturalabilityofacclimation.
Determiningthenatureofthegenesandmechanismsresponsibleforfreezingtoleranceandregulatorymechanismsthatactivatethecoldacclimationresponsewouldprovidethepotentialfornewstrategiestoimprovethefreezingtoleranceofagronomicplants(Thomashow,1999).
Suchstrategieswouldbehighlysignificantastraditionalplantbreedingapproacheshavehadlimitedsuccessinimprovingfreezingtolerance(SarhanandDanyluk,1998).
Coldacclimationisaquantitativetrait(Thomashow,1990)involvingalargenumberofgenesandisassociatedwithphysiologicalandbiochemicalchangesaswellasalterationsingeneexpression(HughesandDunn,1996;PalvaandHeino,1998;Thomashow,1999;Leeetal.
,2002;HeinoandPalva,2003).
Coldregulatedgenescanbedividedintotwomaingroups.
Thefirstgroupholdsgenesencodingenzymesorstructuralcomponentsthatparticipateindirectprotectionofcellsagainstfreezingdamage.
Thisgroupincludesgenesencodingforexamplelateembryogenesis-abundant(LEA)proteins,enzymesrequiredforosmolytebiosynthesis,antifreezeproteins,chaperonesanddetoxificationenzymes(Bray,1993;IngramResponseofMedicagotruncatulatoabioticstressPage17of32MedicagotruncatulahandbookVersionJune2007andBartels,1996;PalvaandHeino,1998;Thomashow,1999,Puhakainenetal.
,2004).
Thesecondgroupincludesgenesencodingtranscriptionfactorsandotherregulatoryproteinscontrollingthelowtemperatureresponseeithertranscriptionallyorposttranscriptionally(Thomashow,1998,1999;HeinoandPalva,2003).
2.
StudyingMedicagotruncatulaPlantscientistsoftenuseamodelplanttoinvestigatebasicplantbiology.
Aslegumesareaparticulargroupofplantsespeciallyfortheirsymbioticabilitytofixtheatmosphericnitrogen,itisfundedtousealegumemodelspeciesinafirststeptounderstandthebehaviourofagronomicallegumespecies.
2.
1.
MedicagotruncatulaandcoldacclimationstudiesThemodelspeciesM.
truncatulahasbeenchosentohelpelucidatingthegeneticdeterminismoffreezingresistanceinpea(PisumsativumL.
),thiscropbeingimportantforbothfoodandfeed.
ThegoalofourstudyistosearchcandidategenesthatcontrolcoldacclimationinMt,usinga216RILpopulationfromthecrossbetweenF83-005(toleranttofrost)andDZA-045(sensitive).
Thisworkhasbeenundertakenfollowingtwoexperimentalstages:-mappingQTLsforfrostdamageandforbiochemicalandphysiologicalparametersrelatedtocoldacclimation(suchasbiomass,solublesugarcontent,percentageofionsleakageandchlorophyllcontent)explainingtheacclimationabilityandcheckingcolocalisationbetweenthem;-searchingforcandidategenesinvolvedinthecoldacclimationprocessbyatranscriptomicstudyandexploitinginsilicomappinginformationsforthecandidatesequences.
TheanalyticalpartofthisstudywillrelyonthestudyofthecolocalizationsbetweenthedifferentQTLsononehandandbetweenQTLsandpotentialcandidategenesontheotherhand.
2.
2.
Experimentalprotocola-GerminationAfterscarification,seedswereputin2mlwater-containingEppendorftubesfor6hoursimbibition.
Seedswerethenspreadinwetpaper-containingPetridishes.
Tobreakdormancyandallowrapidandsynchronizedgermination,thePetriplatesweremaintainedat5°CintheResponseofMedicagotruncatulatoabioticstressPage18of32MedicagotruncatulahandbookVersionJune2007darkduring3daysinaSANYOclimaticchamber.
Theywerethentransferredto20°Cforgerminationandwerereadyforplantingafterapproximately2days.
b-SowingThecoldacclimationperiodandsubsequentfreezingtestwereperformedinaclimaticchamber(DAGARD;size:3.
2x3.
2x2.
4m;type:MA100,classM1).
Theplantletswereplacedinhome-madepolystyreneblocksof100or50holes(figure1).
Eachholewashalffilledwithperlite(foroptimalrootdevelopment)andweinsertedineachofthema38mmwell-moistened(water-saturatedforupto3hours)Jiffy-7pelletmadeofsphagnumpeat(http://www.
jiffypot.
com/Products.
asp).
Limeandaspecialfertilizerwithlowammoniumcontentarepre-addedtothepeatinordertostimulategrowth.
ThepelletshaveapHofapproximately5.
3.
Oneseedlingwasinsertedineachpelletandwasgentlywateredtoallowafirmanchoringinthesubstrate.
Duringthenurserystage(figure2),theseedlingsweregentlywateredeveryday(de-ionizedwater)toavoidthedesiccationofthepelletswhichcouldhavebeeninducedbythelightingandthetemperatureappliedduringthisstage(20°C,seebelow).
c-FertilizationInordertopreventprematureyellowingofleaves,fertilizerwasaddedinthepellets(about10ml),fromtheendofthenurserystageuntilthebeginningofthefrostperiod.
ThisisperformedaboutonceaweekbyusingthecommercialNPK(6:3:6)mixturesupplementedwithmicronutrients(Substral,KB):6%totalN(2.
7%ammoniacalN,3.
3%nitricN),3%P2O5,6%K2O;micronutrients:0.
01%B,0.
001%Mo,0.
002%Cu-EDTA,0.
01%Mn-EDTA,0.
002%Zn-EDTA,0.
03%Fe-DTPA(takenfromEuropeanMolecularBiologyOrganization(EMBO)practicalcourseathttp://www.
isv.
cnrs-gif.
fr/embo01/manuels/index.
html).
d-Temperature,lightintensityandphotoperiodsettingsWeusedtwocomplementaryprotocolsforourstudiesincludingornotanacclimationperiod(Figure2).
Thesuccessivestages,i.
e.
nursery,homogenization,acclimation,frostandwarming,differessentiallyfortheirtemperatureconditionsasdescribedbelow.
Thephotoperiodwassetto14(day)/10(night)hoursduringallthestagesexceptthefrostperiod(10(day)/14(night)hours).
Lightwasprovidedby2typesofPHILIPSlamps:HPI-T400WResponseofMedicagotruncatulatoabioticstressPage19of32MedicagotruncatulahandbookVersionJune2007(metaliodide)andSON-TP400W(sodium),withameanphotosyntheticactiveradiation(PAR)of550mol.
m-2.
s-1:-nurserystage:duringthis15daysstage,theplantshadoptimalconditionsforgrowth;temperaturewassetto20°C(day)and14°Cthenight.
.
-homogenization:inthisstagethetemperaturewassetto12°Cdayandnightduring8or15daysfortheprotocolwithandwithoutacclimationrespectively.
Itsgoalistoassurearelativehomogenizationofplants'growth,byallowingyoungemittedleavestodevelopwithoutemittingnewones.
-acclimation:thetemperaturewassetto8°C(day)and2°C(night);fortheprotocolwithacclimation,thisperiodallowsplantstocoldacclimateinordertobetterresisttothefreezingtemperaturesofthefollowingstage.
-frost:theplantsweresubmittedtoafreezingnighttemperature(-6°C)andasubzerodaytemperature(4°C)during8days.
Wechose,insteadofapplyingahighnegativetemperature(e.
g.
-10°C)forafewdays,toapplyaminimumof-6°Cfor8days,inordertofollowgraduallytheeffectsofthefreezingtemperature,andatthesametime,toavoidkillingsomelinesoftheRILpopulationbyapplyingsuddenlyaseverenegativetemperature.
-warming:attheendofthefrostperiod,theplantswereplacedbackinwarmerconditionsbyapplying16°C(day)/5°C(night).
Alternatively,theplantswereplacedinagreenhousewithoptimaltemperatureconditionswiththesameobjectivetoanalyzere-growthcapacityofsurvivingplants.
2.
3.
FrostdamageQTLsmappingWerecordedthelevelsoffrostdamageeverydayduringthefrostperiod.
Theplantswereindividuallygivenamarkfrom0(nodamage;figure3)to5(dead).
Thewarmingperiodallowedustoconfirmreallydeadplants,whichdidnotresumetheirgrowthduringthisperiod.
WethencomparethestrengthofQTLsofeachdailyscoringinordertoidentifythemostsuitabledayofscoring.
Atpresent,thescoringofthe4thdayseemstobethemostsuitableoneforQTLmapping.
2.
4.
QTLsofbiochemicalandphysiologicalparametersSomeparameters(biomass,solublesugarcontent,percentageofionsleakageandchlorophyllcontent)thatcanexplaintheacclimationabilitywerealsoanalyzedthroughQTLsmapping.
SamplesweretakenonsuccessivedaysduringtheacclimationandthenonacclimationResponseofMedicagotruncatulatoabioticstressPage20of32MedicagotruncatulahandbookVersionJune2007periodsaccordingtotheprotocol.
Thedatesofsamplingwerechosentoallowacomparisonbetweentheacclimationvsthenonacclimationperiod;eachsamplingdatecorrespondstothesamesumofdegreedays(base=0°C)inbothprotocols(seeFigure2).
Inordertomakesurethatthesametypeofleaveswassampledateachdate,weusedtheidentificationmethoddescribedbyMoreauetal.
(2006).
WecheckedthecolocalizationbetweentheQTLsdetectedfortheabovecitedparametersandthosedetectedforthefreezingdamageattheplantlevel.
Figure1:Home-madeexperimentalblocksusedforcoldacclimationstudiesandfreezingteststheinclimaticchamberNurseryHomogenizationAcclimationFrostWarming16°C/5°C14h15daysa)Temperature20°C/14°C12°C/12°C8°C/2°C4°C/-6°CPhotoperiod14h14h14h10hsowing15days8days14days8daysFrostdamagedailyscoringNurseryHomogenizationFrostTemperature20°C/14°C12°C/12°C4°C/-6°CPhotoperiod14h14h10hsowing15days15days8daysb)Warming16°C/5°C14h15daysNurseryHomogenizationAcclimationFrostTemperature20°C/14°C12°C/12°C8°C/2°C4°C/-6°CPhotoperiod14h14h14h10hsowing15days8days14days8daysFrostdamagedailyscoringWarming16°C/5°C14h15daysNurseryHomogenizationAcclimationFrostTemperature20°C/14°C12°C/12°C8°C/2°C4°C/-6°CPhotoperiod14h14h14h10hsowing15days8days14days8daysFrostdamagedailyscoringWarming16°C/5°C14h15daysNurseryHomogenizationFrostTemperature20°C/14°C12°C/12°C4°C/-6°CPhotoperiod14h14h10hsowing15days15days8daysWarming16°C/5°C14h15daysNurseryHomogenizationFrostTemperature20°C/14°C12°C/12°C4°C/-6°CPhotoperiod14h14h10hsowing15days15days8daysWarming16°C/5°C14h15daysResponseofMedicagotruncatulatoabioticstressPage21of32MedicagotruncatulahandbookVersionJune2007Figure2:Experimentaldesignwith(a)andwithout(b)acclimationperiod.
Arrowsshowsamplingdatesinbothcases,correspondingtothesamesumof°C-days.
a)b)Figure3:Examplesofplantsstateattheendofthefrostperiod:forthefrostdamagescoringherearetwoexamplesofdifferentmarks,0(a)and4(b).
ResponseofMedicagotruncatulatoabioticstressPage22of32MedicagotruncatulahandbookVersionJune2007ReferencesAntolínMC,YollerJandSánchez-DíazM(1995)Effectsoftemporarydroughtonnitrate-fedandnitrogen-fixingalfalfaplants.
PlantSci107,159-165ArmengaudP,ThieryL,BuhotN,Grenier-DeMarchG,SavoureA(2004)TranscriptionalregulationofprolinebiosynthesisinMedicagotruncatularevealsdevelopmentalandenvironmentalspecificfeatures.
PhysiolPlant.
120:442-450Arrese-IgorC,GonzalezEM,GordonAJ,MinchinFR,GalvezL,RoyuelaM,CabrerizoPMandAparicio-TejoPM(1999)Sucrosesynthaseandnodulenitrogenfixationunderdroughtandotherenvironmentalstresses.
Symbiosis27:189-212BolaosL,ElHamdaouiAandBonillaI(2003)Recoveryofdevelopmentandfunctionalityofnodulesandplantgrowthinsalt-stressedPisumsativum--Rhizobiumleguminosarumsymbiosisbyboronandcalcium.
JPlantPhysiol160:1493-1497BoninI,HuguetT,GherardiM,ProsperiJandOlivieriI(1996)Highlevelofpolymorphismandspatialstructureinaselfingplantspecies,Medicagotruncatula(Leguminosae),shownusingRAPDmarkers.
Am.
J.
Bot.
83:843-855Bouché,N.
andFromm,H.
(2004).
GABAinplants:JustametaboliteTrendsinPlantScience9,110-115BoyerJS(1982)Plantproductivityandenvironment.
Science218:443-448BrayEA(1993)Molecularresponsestowaterdeficit.
PlantPhysiol.
103:1035-1040Carroll,A.
D.
,Fox,G.
G.
,Laurie,S.
,Phillips,R.
,Ratcliffe,R.
G.
andStewart,G.
R.
(1994).
AmmoniumAssimilationandtheRoleof[gamma]-AminobutyricAcidinpHHomeostasisinCarrotCellSuspensions.
PlantPhysiol.
106,513-520.
CrespiMandGálvezS.
(2000).
MolecularMechanismsinRootNoduleDevelopment.
J.
PlantGrowthReg.
19:155-166.
ResponseofMedicagotruncatulatoabioticstressPage23of32MedicagotruncatulahandbookVersionJune2007DelPapaMF,BalagueLJ,SowinskiSC,WegenerC,SegundoE,AbarcaFM,ToroN,NiehausK,PühlerP,AguilarOM,Martinez-DretsGandLagaresA(1999)Isolationandcharacterizationofalfalfa-nodulatingrhizobiapresentinacidicsoilsofcentralArgentinaandUruguay.
ApplEnvironMicrobiol65:1420-1427DuzanHM,ZhouX,SouleimanovAandSmithDL(2004)PerceptionofBradyrhizobiumjaponicumNodfactorbysoybean[Glycinemax(L.
)Merr.
]roothairsunderabioticstressconditions.
JExpBot55:2641-2646EdmeadesGO,CooperM,LafitteR,ZinselmeierC,RibautJM,HabbenJE,LfflerCandBnzigerM(2001)Abioticstressesandstaplecrops.
In:CropScience:ProgressandProspects.
ProceedingoftheThirdInternationalCropsScienceCongress,pp.
17-21.
NosbergerJ,GeigerHHandStruikPC(eds).
Wallingford,UKEdwards,S.
,Nguyen,B.
-T.
,Do,B.
andRoberts,J.
K.
M.
(1998).
ContributionofMalicEnzyme,PyruvateKinase,PhosphoenolpyruvateCarboxylase,andtheKrebsCycletoRespirationandBiosynthesisandtoIntracellularpHRegulationduringHypoxiainMaizeRootTipsObservedbyNuclearMagneticResonanceImagingandGasChromatography-MassSpectrometry.
PlantPhysiol.
116,1073-1081.
EmmertFH(1974)Inhibitionofphosphorusandwaterpassageacrossintactrootsbypolyethyleneglycolandphenylmercuricacetate.
PlantPhysiol53,663-665FooladMR,ZhangLPandSubbiah,P(2003)Geneticsofdroughttoleranceduringseedgerminationintomato:inheritanceandQTPmapping.
Genome46,536-545FougereF,LeRudulierDandStreeterJG(1991)Effectsofsaltstressonaminoacid,organicacid,andcarbohydratecompositionofroots,bacteroids,andcytosolofalfalfa(MedicagosativaL.
).
PlantPhysiol.
96:1228-1236ResponseofMedicagotruncatulatoabioticstressPage24of32MedicagotruncatulahandbookVersionJune2007FrechillaS,RoyuelaM,Arrese-IgorC,Aparicio-TejoPM(1993)Effectofosmotically-appliedwaterstressordroughtonphotosynthesisinPisumsativumPlantPhysiol102,177Suppl.
SFrugierF,KondorosiAandCrespiM(1998)Identificationofnovelputativeregulatorygenesinducedduringalfalfanoduledevelopmentwithacold-plaquescreeningprocedure.
MPMI11:358-366FrugierF,PoirierS,Satiat-JeunemaitreB,KondorosiAandCrespiM(2000)AKrüppel-likezincfingerproteinisinvolvedinnitrogen-fixingrootnoduleorganogenesis.
Genes&Dev14:475-482GálvezL,GonzálezEMandArrese-IgorC(2005)Evidenceforcarbonfluxshortageandstrongcarbon/nitrogeninteractionsinpeanodulesatearlystagesofwaterstress.
JExpBot56,2551-2561Glevarec,G.
,Bouton,S.
,Jaspard,E.
,Riou,M.
T.
,Cliquet,J.
B.
,Suzuki,A.
andLimami,A.
M.
(2004).
Respectiverolesoftheglutaminesynthetase/glutamatesynthasecycleandglutamatedehydrogenaseinammoniumandaminoacidmetabolismduringgerminationandpost-germinativegrowthinthemodellegumeMedicagotruncatula.
Planta219,286-97.
GonzálezEM,Aparicio-TejoPM,GordonAJ,MinchinFR,RoyuelaMandArrese-IgorC(1998)Water-deficiteffectsoncarbonandnitrogenmetabolismofpeanodules.
JExpBot49,1705-1714GonzálezEM,GordonAJ,JamesCLandArrese-IgorC(1995)Theroleofsucrosesynthaseintheresponseofsoybeannodulestodrought.
JExpBot46,1515-1523Gout,E.
,Boisson,A.
,Aubert,S.
,Douce,R.
andBligny,R.
(2001).
OriginofthecytoplasmicpHchangesduringanaerobicstressinhigherplantcells.
Carbon-13andphosphorous-31nuclearmagneticresonancestudies.
PlantPhysiol125,912-25.
ResponseofMedicagotruncatulatoabioticstressPage25of32MedicagotruncatulahandbookVersionJune2007HasegawaPM,BressanRA,ZhuJKandBohnertHJ(2000)Plantcellularandmolecularresponsestohighsalinity.
AnnuRevPlantPhysiolPlantMolBiol51:463-499HeinoP,PalvaET(2003)Signaltransductioninplantcoldacclimation.
In:TopicsinCurrentGenetics4,pp.
151-186.
Springer-Verlag,BerlinHoffmann-Benning,S.
andKende,H.
(1992).
Ontheroleofabscisic-acidandgibberellinintheregulationofgrowthinrice.
PlantPhysiol99,1156-1161.
HughesMA,DunnMA(1996)Themolecularbiologyofplantacclimationtolowtemperature.
J.
ExpBot47:291-305IngramJ,BartelsD(1996)Themolecularbasisofdehydrationtoleranceinplants.
Annu.
Rev.
PlantPhysiol.
PlantMol.
Biol47:377-403Ismond,K.
P.
,Dolferus,R.
,DePauw,M.
,Dennis,E.
S.
andGood,A.
G.
(2003).
EnhancedLowOxygenSurvivalinArabidopsisthroughIncreasedMetabolicFluxintheFermentativePathway.
PlantPhysiol.
132,1292-1302.
Jackson,M.
(1985).
Ethyleneandresponsesofplantstosoilwaterloggingandsubmergence.
Annu.
Rev.
PlantPhysiol.
PlantMol.
Biol36,145-174.
Jackson,M.
andArmstrong,W.
(1999).
Formationofaerenchymaandtheprocessesofplantventilationinrelationtosoilfloodingandsubmergence.
PlantBiology1,274-287.
KaufmannMRandEckardAN(1971)Evaluationofwaterstresscontrolwithpolyethileneglycolsbyanalysisofguttation.
PlantPhysiol47,453-456LeeB,KinY,ZhuJK(2002)Moleculargeneticsofplantresponsestolowtemperatures.
In:PlantColdHardiness,GeneRegulationandGeneticEngineering.
Proceedingsofthe6thInternationalPlantColdHardinessSeminar,1-5July2001,Helsinki,Finland,p.
294.
KluwerAcademic/PlenumPublishers,NewYorkResponseofMedicagotruncatulatoabioticstressPage26of32MedicagotruncatulahandbookVersionJune2007LevittJ(1980)Responsesofplantstoenvironmentalstresses.
NewYork:Academic.
2ndedMoreauD,SalonC,Munier-JolainN(2006)UsingastandardframeworkforthephenotypicanalysisofMedicagotruncatula:aneffectivemethodforcharacterisingtheplantmaterialusedforfunctionalgenomicsapproaches.
PlantCellEnv29:1087-1098LopezM,Herrera-CerveraJAandLluchC(2006)TrehalosemetabolisminrootnodulesofthemodellegumeLotusjaponicusinresponsetosaltstress.
PhysiolPlant128:701–709McKayIA,andDjordjevicMA(1993)ProductionandExcretionofNodMetabolitesbyRhizobiumleguminosarumbv.
trifoliiAreDisruptedbytheSameEnvironmentalFactorsThatReduceNodulationintheField.
ApplEnvironMicrobiol.
59:3385-3392MerchanF,deLorenzoL,González-RizzoS,NiebelA,MegíasM,FrugierF,SousaCandCrespiM.
IdentificationofregulatorypathwaysinvolvedinthereacquisitionofrootgrowthaftersaltstressinMedicagotruncatula.
PlantJ.
inpressMerchanF,BredaC,HormaecheJP,SousaC,KondorosiA,AguilarOM,MegíasMandCrespiM(2003)AKrüppel-liketranscriptionfactorgeneisinvolvedinsaltstressresponsesinMedicagospp.
PlantSoil257:1-9Melo-OliveiraR,OliveiraIC,CoruzziGM(1996)Arabidopsismutantanalysisandgeneregulationdefineanonredundantroleforglutamatedehydrogenaseinnitrogenassimilation.
PNAS93:4718-4723MexalJ,FisherJT,OsteryoungJandReidCPP(1975)OxygenavailabilityinpolyethyleneglycolsolutionsanditsimplicationsinplantwaterrelationsPlantPhysiol55,20-24MoranJF,BecanaM,IturbeormaetxeI,FrechillaS,KlucasRVandAparicioTejoP(1994)Droughtinducesoxidativestressinpea-plants.
Planta194,346-352MittlerR(2006)Abioticstress,thefieldenvironmentandstresscombination.
TrendsPlantSci11,15-19ResponseofMedicagotruncatulatoabioticstressPage27of32MedicagotruncatulahandbookVersionJune2007MunnsR,BradyCJandBarlowEWR(1979)Soluteaccumulationintheapexandleavesofwheatduringwater-stress.
AustJPlantPhysiol6,379-389Muthukumarasamy,MandPanneerselvamR(1997)AmeliorationofNaClstressbytriadimefoninpeanutseedlings.
PlantGrowthReg22:157-162NayaL,LadreraR,RamosJ,GonzálezEM,Arrese-IgorC,MinchinFR,andBecanaM.
(2007)Theresponseofcarbonmetabolismandantioxidantdefensesofalfalfanodulestodroughtstressandtothesubsequentrecoveryofplants.
PlantPhysiol144,1104-1114PalvaET,HeinoP(1998)Molecularmechanismofplantcoldacclimationandfreezingtolerance.
PlantColdHardiness,pp.
3-14.
PlenumPress,NewYorkPuhakainenT,LiC,Boije-MalmM,KangasjrviJ,HeinoP,PalvaET(2004)Short-daypotentiationoflowtemperature-inducedgeneexpressionofaC-repeat-bindingfactor-controlledgeneduringcoldacclimationinsilverbirch.
PlantPhysiol136:4299-4307Reggiani,R.
,Nebuloni,M.
,Mattana,M.
andBrambilla,I.
(2000).
Anaerobicaccumulationofaminoacidsinriceroots:roleoftheglutaminesynthetase/glutamatesynthasecycle.
AminoAcids18,207-217.
Ricoult,C.
,Cliquet,J.
-B.
andLimami,A.
M.
(2005).
Stimulationofalanineaminotransferase(AlaAT)geneexpressionandalanineaccumulationinembryoaxisofthemodellegumeMedicagotruncatulacontributetoanoxiastresstolerance.
PhysiologiaPlant123,30-39.
RicoultC,EcheverriaLO,CliquetJB,LimamiAM(2006)Characterizationofalanineaminotransferase(AlaAT)multigenefamilyandhypoxicresponseinyoungseedlingsofthemodellegumeMedicagotruncatula.
JExpBot.
57,3079-89.
ResponseofMedicagotruncatulatoabioticstressPage28of32MedicagotruncatulahandbookVersionJune2007RubioMC,GonzalezEM,MinchinFR,WebbKJ,Arrese-IgorC,RamosJandBecanaM(2002)Effectsofwaterstressonantioxidantenzymesofleavesandnodulesoftransgenicalfalfaoverexpressingsuperoxidedismutases.
PhysiolPlant115,531-540Saglio,P.
,Germain,V.
andRichard,B.
(1999).
Theresponseofplantstooxygendeprivation:roleofenzymeinductionintheimprovementoftolerancetoanoxia.
InPlantResponsestoEnvironmentalStresses,(ed.
H.
Lerner),pp.
373-393.
NewYork:MarcelDekker.
Sato,T.
,Harada,T.
andIshizawa,K.
(2002).
Stimulationofglycolysisinanaerobicelongationofpondweed(Potamogetondistinctus)turions.
J.
Exp.
Bot.
53,1847-1856SakaiA,LarcherW(1987)Frostsurvivalofplants:responsesandadaptationtofreezingstress.
Springer-Verlag,BerlinScholanderPF,HammelHT,DradstreetEDandHemmingsenEA(1965)Sappressureinvascularplants.
Science148,339-346SerrajRandSinclairTR(1996)Inhibitionofnitrogenaseactivityandnoduleoxygenpermeabilitybywaterdeficit.
JExpBot47,1067-1073SingletonPWandBohloolB(1984)Effectofsalinityonnoduleformationbysoybean.
PlantPhysiol74:72-76SkopelitisDS,ParanychianakisNV,PaschalidisKA,PliakonisED,DelisID,YakoumakisDI,KouvarakisA,PapadakisAK,StephanouEG,Roubelakis-AngelakisKA.
(2006)AbioticstressgeneratesROSthatsignalexpressionofanionicglutamatedehydrogenasestoformglutamateforprolinesynthesisintobaccoandgrapevine.
PlantCell.
18,:2767-81Subbaiah,C.
C.
andSachs,M.
M.
(2003).
Molecularandcellularadaptationsofmaizetofloodingstress.
AnnBot)91SpecNo,119-27ResponseofMedicagotruncatulatoabioticstressPage29of32MedicagotruncatulahandbookVersionJune2007SurjusAandDurandM(1996)Lipidchangesinsoybeanrootmembranesinresponsetosalttreatment.
J.
Exp.
Bot47:17-23ThomashowMF(1990)Moleculargeneticsofcoldacclimationinhigherplants.
AdvGenet28:99-131ThomashowMF(1998)Roleofcold-responsivegenesinplantfreezingtolerance.
PlantPhysiol118:1-7ThomashowMF(1999)Plantcoldacclimation:freezingtolerancegenesandregulatorymechanisms.
AnnuRevPlantPhysiolPlantMolBiol50:571-599TrinchantJC,BoscariA,SpennatoG,VandeSypeGandLeRudulierD(2004)Prolinebetaineaccumulationandmetabolisminalfalfaplantsundersodiumchloridestress.
Exploringitscompartmentalizationinnodules.
PlantPhysiol.
135:1583-1594TramontanoWAandJouveD(1997)Trigonellineaccumulationinsaltstressedlegumesandtheroleifotherosmoregulatorsascellcyclecontrolagents.
Phytochemistry.
44:1037-1104TuJC(1981)EffectofsalinityonRhizobium-roothairinteraction,nodulationandgrowthofsoybean.
CanJPlantSci61:231-239VanDerStraeten,D.
,Zhou,Z.
,Prinsen,E.
,VanOnckelen,H.
A.
andVanMontagu,M.
C.
(2001).
AComparativeMolecular-PhysiologicalStudyofSubmergenceResponseinLowlandandDeepwaterRice.
PlantPhysiol.
125,955-968.
Veatch,ME,SmithSEandVandemarkG(2004)ShootBiomassProductionamongAccessionsofMedicagotruncatulaExposedtoNaCl.
CropSci.
44:1008-1013ResponseofMedicagotruncatulatoabioticstressPage30of32MedicagotruncatulahandbookVersionJune2007VerdoyD,CobaDeLaPenaT,RedondoFJ,LucasMM,PueyoJJ(2006)TransgenicMedicagotruncatulaplantsthataccumulateprolinedisplaynitrogen-fixingactivitywithenhancedtolerancetoosmoticstress.
PlantCellEnviron.
29:1913-1923VinocurBandAltmanA(2005)Recentadvancesinengineeringplanttolerancetoabioticstress:achievementsandlimitations.
CurrOpinBiotech.
16:123-132Voesenek,L.
A.
,Benschop,J.
J.
,Bou,J.
,Cox,M.
C.
,Groeneveld,H.
W.
,Millenaar,F.
F.
,Vreeburg,R.
A.
andPeeters,A.
J.
(2003a).
Interactionsbetweenplanthormonesregulatesubmergence-inducedshootelongationintheflooding-tolerantdicotRumexpalustris.
AnnBot91SpecNo,205-11.
Voesenek,L.
A.
,Jackson,M.
B.
,Toebes,A.
H.
,Huibers,W.
,Vriezen,W.
H.
andColmer,T.
D.
(2003b).
De-submergence-inducedethyleneproductioninRumexpalustris:regulationandecophysiologicalsignificance.
PlantJ33,341-52.
Ward,D.
E.
,Kengen,S.
W.
M.
,vanderOost,J.
anddeVos,W.
M.
(2000).
PurificationandCharacterizationoftheAlanineAminotransferasefromtheHyperthermophilicArchaeonPyrococcusfuriosusandItsRoleinAlanineProduction.
J.
Bacteriol.
182,2559-2566Winicov,I(1993)cDNAencodingputativezincfingermotifsfromsalt-tolerantalfalfa(MedicagosativaL.
)cells.
PlantPhysiol.
102:681-682Winicov,IandBastola,DR(1999).
TransgenicoverexpressionofthetranscriptionfactorAlfin1enhancesexpressionoftheendogenousMsPRP2geneinalfalfaandimprovessalinitytoleranceoftheplants.
Plantphysiol.
120:473-480WinicovI(2000)Alfin1transcriptionfactoroverexpressionenhancesplantrootgrowthundernormalandsalineconditionsandimprovessalttoleranceinalfalfa.
Planta210:416-422ZhangJY,BroecklingCD,SumnerLW,WangZY.
(2007)HeterologousexpressionoftwoMedicagotruncatulaputativeERFtranscriptionfactorgenes,WXP1andWXP2,inResponseofMedicagotruncatulatoabioticstressPage31of32MedicagotruncatulahandbookVersionJune2007Arabidopsisledtoincreasedleafwaxaccumulationandimproveddroughttolerance,butdifferentialresponseinfreezingtolerance.
PlantMolBiol64,265-278ZahranHH(1999)Rhizobium-legumesymbiosisandnitrogenfixationundersevereconditionsandinanaridclimate.
MicrobiolMolBiolRev63:968-989ResponseofMedicagotruncatulatoabioticstressPage32of32

半月湾hmbcloud升级500Mbps带宽,原生VPS,$4.99/月

关于半月湾HMBCloud商家之前也有几篇那文章介绍过这个商家的产品,对于他们家的其他产品我都没有多加留意,而是对他们家的DC5机房很多人还是比较喜欢的,这个比我们有些比较熟悉的某商家DC6 DC9机房限时,而且半月湾HMBCloud商家是相对便宜的。关于半月湾DC5机房的方案选择和介绍:1、半月湾三网洛杉矶DC5 CN2 GIA同款DC6 DC9 1G内存 1TB流量 月$4.992、亲测选择半...

美国cera机房 2核4G 19.9元/月 宿主机 E5 2696v2x2 512G

美国特价云服务器 2核4G 19.9元杭州王小玉网络科技有限公司成立于2020是拥有IDC ISP资质的正规公司,这次推荐的美国云服务器也是商家主打产品,有点在于稳定 速度 数据安全。企业级数据安全保障,支持异地灾备,数据安全系数达到了100%安全级别,是国内唯一一家美国云服务器拥有这个安全级别的商家。E5 2696v2x2 2核 4G内存 20G系统盘 10G数据盘 20M带宽 100G流量 1...

打开海外主机域名商出现"Attention Required"原因和解决

最近发现一个比较怪异的事情,在访问和登录大部分国外主机商和域名商的时候都需要二次验证。常见的就是需要我们勾选判断是不是真人。以及比如在刚才要访问Namecheap检查前几天送给网友域名的账户域名是否转出的,再次登录网站的时候又需要人机验证。这里有看到"Attention Required"的提示。我们只能手工选择按钮,然后根据验证码进行选择合适的标记。这次我要选择的是船的标识,每次需要选择三个,一...

esetnod32id为你推荐
投标人chrome支持ipadphotoshop技术photoshop技术对哪些工作有用?iexplore.exe应用程序错误iexplore.exe - 应用程序错误怎么办阿??????ipad上网为什么ipad网速特别慢iphonewifi为什么我的苹果手机连不上wifimicromediamacromedia FreeHand MX是干什么用的?css3按钮html点击按钮怎么弹出一个浮动的窗体googleadsense如何通过Google adsense???google分析google analysis干什么用的?
如何查询域名备案号 中国万网虚拟主机 godaddy续费优惠码 20g硬盘 哈喽图床 英语简历模板word http500内部服务器错误 web服务器架设软件 php免费空间 卡巴斯基永久免费版 e蜗牛 智能骨干网 国外免费全能空间 seednet 独立主机 游戏服务器出租 lamp什么意思 阿里云邮箱申请 asp空间 谷歌搜索打不开 更多