server隐士ddos
隐士ddos 时间:2021-01-13 阅读:(
)
DetectingDDoSattackbasedonPSOClusteringalgorithmXiaohongHao1,a,BoyuMeng1,b,KaichengGu1,c1SchoolofComputer&Communication,LanZhouUniversityofTechnology,Lanzhou730050a;316475958@qq.
combboyu8816@163.
com;cgkc1314@qq.
comKeyword:application-tierDistributedDenialofService;browsebehavior;particleclusteringalgorithm;anomalydetection.
Abstract.
First,thisarticleanalyzestheApplicationlayerDistributedDenialofService(DDoS)'sattackprincipleandcharacteristic.
Accordingtothedifferencebetweennormalusers'browsingpatternsandabnormalones,usersessionsareextractedfromtheweblogsofnormalusersandsimilaritiesbetweendifferentsessionsarecalculated.
BecausetraditionalK-meanClusteringalgorithmiseasytofailintolocaloptimal,theParticleSwarmOptimizationK-meanClusteringalgorithmisusedtogenerateadetectingmodel.
ThismodelcanbeenusedtodetectwhethertheundeterminedsessionsareDDoSattacksornot.
Theexperimentshowthatthismethodcandetectattackseffectivelyandhaveagoodperformanceinadaptability.
IntroductionDistributeddenialofserviceattacksisoneofthemajorthreatstothesecurityoftheInternet,whichintheabsenceofanywarningconsumeresourcesofthetarget,itcanbemadeatthenetworklayerorapplicationlayer[1].
ApplicationlayerDDoShavetwoattackmethods[2]:bandwidthdepletionmodeandthehostresourcedepletionmode.
Atpresent,methodstosolvethesesimilarproblemincluding:Intrusiondetectiontechnologybasedondatapacket[3]Detectionmethodbasedonflowlimitation[4],Detectionmethodbasedonfrequencyofaccess[5],DetectionmethodbasedonHiddensemi-Markovmodel[6],Detectionmethodbasedontheanalysisofuserbehaviordatamining[7].
Theliterature[8]proposesanewDosdetectionbasedondatamining,whichcombinedApriorialgorithmandk-meanclusteringalgorithm.
ItusingnetworkdatatodetectDDoS,soitcannotcopewiththeapplicationlayerDDos.
Thek-meanalgorithmhaveitselfflawed,itoverlyneedtoselectthefitclustercentersandforsomeinitialvalue,itmayconvergetosub-optimalsolution.
ApplicationlayerDDoSdetectionbasedonPSOclusteringalgorithmPrincipleandmodelofdetection:ThispaperestablishdetectionmodelwhichisusingtoidentifytheapplicationlayerDDoSformanalysisuserbehavior.
SystemdesignasshowninFigure1.
Figure1.
systemmoduledesignDescriptionofuserbrowsingbehaviorTheWeblogrecordsinformationabouteachuseraccesstotheserver,itincludingtheuser'sIPaddress,client,customeridentification,timeofWebserverreceivestherequest,customerrequests,requeststatuscode,transmittedbytessuchassomeaccessdata.
ExtractWeblog,preprocesstheinformationandtranslatetheresultsintoSession:1122{,,u,,u,,,u}kkiiSipttt(1)CalculatethedistancebetweensessionsInordertomoreaccuratelydescribetheuserbrowsingbehavior,betterreflectsthenormallegitimateusersandanomalyattacksusersbrowseaccesstothedifferenceinbehavior,soanalysisthesimilaritiesanddifferencesincontent,time,page-viewsandsequence.
Thispaperrefertothemethodwhichusethreevectorsandamatrixtodetaileddescripttheuser'ssessionfeatures.
Thencalculatethesimilaritybetweensession,themoresimilaritythedistancemoresmall.
Sotheabstractdistancecanbedefinedas1d=.
Definition1(contentvector):12(w,w,,w)knW,lengthofthevectorisn.
Itindicatestheservercontainspagenumber.
Theformulaisasfollows:[1,n](W,W)(W,W)iipqipqn()()(2)Definition2(timevector):12(t,t,,t)knT1,lengthofthevectorisn.
Itofuserbrowsingpagei.
Thesimilarityformulaoftwohitvectorsisasfollows:(T,T)1d(T,T)pqpq(3)Definition3(hitvector):12(hit,hit,,hit)knHit,lengthofthevectorisn.
Itindicatestimesnumberofauserbrowsapage,itreflectstheuser'sinterestdegreeeachpages.
(Hit,Hit)1d(Hit,Hit)pqpq(4)Definition4(sequencematrix):kHisannmatrix,itrecordsthenumberoftimesofjumpingbetweenthevariouspagesinthesession.
Thesimilarityformulaoftwotimevectorsisasfollows:(i,j)(i,j)(1,n)(1,n)2(H,H)(H,H)pqijpqn(5)Consideringthesimilaritybetweenthreevectorandamatrix,theoverallsimilarity(S,S)pq,isasfollows:(W,W)(T,T)(Hit,Hit)(H,H)(S,S)4pqpqpqpqpq(6)Numericallygreater,thesessionaremoresimilar,thedistancebetweentheresessionsissmaller.
Sothedistanceisasfollows:Theformulaisasfollow1d(S,S)(S,S)pqpq(7)DetectionofattacksTheSessionsisdefinedas,{Si1,2,N}iS,,SiisaN-dimensionalpatternvector.
Thesolutionistodivide12M1,letthetotaldispersionoftheallclusterstobeminimum.
Thetotaldistanceofallsamplestothecorrespondingcluster'scentersisminimum.
Theformulaisasfollow:()1(S,)jijMijXJdS(8)()Sjisthecluster'scenterj,()(S,S)jidisthedistancebetweenthesampleandthecluster'scenterj.
PSOClusteringalgorithmThispaperconsiderthecluster'scenterasaparticle'scorrespondedsolution,theparticle'slocationiscombinedwithcluster'scenter.
TherearetwoformsofapplicationlayerDDoSattacksandnormaluser,sothenumberofclustersisM=3.
Algorithmflowchartisasfollows:idPgdPgdPFigure2.
FlowchartPSOclusteringalgorithmExperimentalresultsandanalysisThispaperusethedatafromCentralSouthUniversity'svisualresearchgroup.
TForthelargeamountsofthedata,thepaperrandomlycollect100sampleand20attacksampledatafromtheWeblogofuseraaccesslogs.
ProgramdevelopmentplatformisMATLAB2014a.
TheclusteranalysisresultsinFigure3.
DatSkItcanbattacksnumaccesstoleanalysis,thConclusioThispapapplicationalgorithmexceptionbehavior,dbetweeneaSimulationperformancReference[1]Fenapplication[2]Chulayer[D].
C[3]Douate-of-art[J[4]Sunacks[J].
AC[5]Mu].
Journalo[6]YiGuangdongtaSessiok120beseenthatmberslightegitimateusheaccuracynperanalysisnlayerDDanddescribaccessbehadescribetheachsession,nexperimenceinadaptaesnYan,Jiajian,2008,25uanXu.
ResChongqingugligerisC,J],ComputenChang-huCTEElectrouthuprasannofSoftwareXie.
Researg:SunYatFigure3.
onActualtmodeldetlymorethaser'sbehaviywillbeincstheprincipDoSattacksbeuser'sbeavior,accoreuser'sbrothendetectntsshowthability.
aWang,Jinfe(4):966searchandiUniversity,,MitrokotsaerNetwork,a,LiuBin.
onicaSINCnaM,Manim.
2007,4(18rchonkey-senUniveClusteringTablattackSess20tectionrateannumberoior.
IfincreareasedaccoplesandchadetectionmehaviorofbrdingtotheowsingbehattheattackshatthismeengZhao.
D-969.
mplementat,2012.
aA.
DDoS,2004,(44):SurveyonNCA.
2009,7(maranG.
Di8):967-977technologyersity,2008resultsofEle1ClusteriionDeteisabout86ofactualatasetheamouordingly.
aracteristicsmethodwhbrowsingWedifferenceaviorbydasbehaviorbethodcandDDoSattackationofDDoattacksand643-666.
NewSolutio(37):1562-1istributedByofHTTP8Euclideanspingresultsectingattack236%fromthtacksistheuntofthedofapplicatihichisbaseWebpages.
oflegitimaataminingtbyusingPardetectattackdetectionoSattackdeddefencesmonAgainst1570.
BasedonWeattackdetecpaceprojectkSessionheTable1.
emodelcanata,aftercoionlayerDDedonPartiConsiderthateandabnotechnique,cticleSwarmckseffectivnsummary[etectionalgmachanismsDistributedebUser'sBctiononapptionAccuracy86%ThereasonnnotreflectorrespondingDoSattacksicleSwarmheattacksanormaluser'calculatethmClusteringvelyandha[J].
Studyongorithmson:ClassificadDenialofSBrowsingBeplication-rate%nofdetectstallnormalgclusterings,provideaClusteringasanuser's'sbrowsingesimilaritygalgorithm.
aveagoodncomputerapplicationationandstServiceAttehaviours[Jlayer[D].
slgagsgy.
drn.
[7]FengyuWang,ShoufengCao,JunXiao.
ADDoSdetectionmethodofcommunityoutreachbasedonWebapplicationlayer[J].
Journalofsoftware,2013,24(6):1263-1273.
[8]NengGao,DengguoFeng,.
ADOSattackdetectionbasedondataminingtechnology[J].
ChineseJournalofComputers,2006,29(6):944-950
vpsdime怎么样?vpsdime是2013年注册的国外VPS主机商,实际上他还有一系列的其他域名站点如Winity.io, Backupsy,Cloudive, Virtora等等,母公司“Nodisto IT”相对来说还是很靠谱了的商家。VPSDime主要提供各种高配低价VPS套餐,其中Linux VPS和存储VPS基于OpenVZ架构,高级VPS基于KVM。VPSDime在上个季度的Low...
零途云(Lingtuyun.com)新上了香港站群云服务器 – CN2精品线路,香港多ip站群云服务器16IP/5M带宽,4H4G仅220元/月,还有美国200g高防云服务器低至39元/月起。零途云是一家香港公司,主要产品香港cn2 gia线路、美国Cera线路云主机,美国CERA高防服务器,日本CN2直连服务器;同时提供香港多ip站群云服务器。即日起,购买香港/美国/日本云服务器享受9折优惠,新...
sharktech怎么样?sharktech (鲨鱼机房)是一家成立于 2003 年的知名美国老牌主机商,又称鲨鱼机房或者SK 机房,一直主打高防系列产品,提供独立服务器租用业务和 VPS 主机,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹,所有产品均提供 DDoS 防护。不知道大家是否注意到sharktech的所有服务器的带宽价格全部跳楼跳水,降幅简直不忍直视了,还没有见过这么便宜的独立服...
隐士ddos为你推荐
国际域名请问国际顶级域名有什么?域名空间买域名空间是什么意思香港虚拟空间请大哥帮个忙,介绍可靠的香港虚拟主机?免备案虚拟空间免备案的虚拟主机空间,买了以后会强制备案不?jsp虚拟空间jsp虚拟主机有支持的吗apache虚拟主机用的apache配置的虚拟主机,只有第一个能打开,别的是一直等待到超时,但是在服务器能正常打开。apache虚拟主机linux apache虚拟主机有几种方式淘宝虚拟主机淘宝买虚拟主机空间好吗?域名服务器DNS服务器是什么东西?域名服务器服务器与域名的区别
北京虚拟主机租用 老域名 yaokan永久域名经常更换 汉邦高科域名注册 net主机 免费网站监控 sub-process parseerror 网页背景图片 英文站群 免费网站申请 权嘉云 adroit 太原网通测速平台 100mbps 独享主机 美国凤凰城 帽子云排名 东莞服务器托管 秒杀品 更多