克鲁斯卡尔数据结构中图的克鲁斯卡尔算法的基本思想是?

克鲁斯卡尔  时间:2021-06-08  阅读:()

无论用普里姆算法或者是克鲁斯卡尔算法求最小生成树,得出的结果应该一样么?

不总是一样的,克鲁斯卡尔算法是精确算法,即每次都能求得最优解,但对于规模较大的最小生成树问题,求解速度较慢。

而普里姆算法是近似求解算法,虽然对于大多数最小生成树问题都能求得最优解,但相当一部分求得的是近似最优解。

这是我个人见解。

最小生成树 普里姆算法和克鲁斯卡尔算法

kruskal算法的时间复杂度主要由排序方法决定,其排序算法只与带权边的个数有关,与图中顶点的个数无关,当使用时间复杂度为O(eloge)的排序算法时,克鲁斯卡算法的时间复杂度即为O(eloge),因此当带权图的顶点个数较多而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果最好! 克鲁斯卡尔算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。

之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。

依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

普里姆算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。

显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。

在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。

--以上传自/valyanprogramming/blog/item/1bc960e6095f9726b93820d9.html 1.Kruskal //题目地址:/JudgeOnline/problem?id=1258 #include<cstdio> #include<cstdlib> #include<iostream> using namespace std; struct node { int v1; int v2; int len; }e[10000];//定义边集 int cmp(const void *a,const void *b)//快排比较函数 { return ((node*)a)->len-((node*)b)->len; } int v[100],a[100][100];//v为点集 void makeset(int n) { for(int i=0;i<n;i++) v[i]=i; } int find(int x) { int h=x; while(h!=v[h]) h=v[h]; return h; } int main() { int n,i,j,r1,r2,p,total; while(scanf("%d",&n)!=EOF) { p=0; total=0; makeset(n); for(i=0;i<n;i++) { for(j=0;j<n;j++) { scanf("%d",&a[i][j]); e[p].v1=i; e[p].v2=j; e[p].len=a[i][j]; p++; } } qsort(e,p,sizeof(e[0]),cmp); for(i=0;i<p;i++) { r1=find(e[i].v1); r2=find(e[i].v2); if(r1!=r2) { total+=e[i].len; v[r1]=r2; } } printf("%d ",total); } system("pause"); return 0; } 2.Prim //题目地址同上 #include <iostream> using namespace std; #define M 101 #define maxnum 100001 int dis[M][M]; int prim(int n) { bool used[M]={}; int d[M],i,j,k; for(i=1; i<=n; i++) d[i] = dis[1][i]; used[1] = true; int sum=0; for(i=1; i<n; i++){ int temp=maxnum; for(j=1; j<=n; j++){ if( !used[j] && d[j]<temp ){ temp = d[j]; k = j; } } used[k] = true; sum += d[k]; for(j=1; j<=n; j++){ if( !used[j] && dis[k][j]<d[j] ) d[j] = dis[k][j]; // 与Dijksta算法的差别之处 } } return sum; } int main() { int n,i,j; while( cin>>n ){ for(i=1; i<=n; i++){ for(j=1; j<=n; j++){ scanf("%d",&dis[i][j]); if( !dis[i][j] ) dis[i][j] = maxnum; } } cout<<prim(n)<<endl; } return 0; } 代码来自网络

数据结构里提到的普里母和克鲁斯卡尔分别是哪个国家的?

普里母算法和克鲁斯卡尔方法求最小生成树完整程序 1、普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。

意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。

该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。

因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法 2、Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。

用来解决同样问题的还有Prim算法和Boruvka算法等。

三种算法都是贪婪算法的应用。

和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

数据结构中图的克鲁斯卡尔算法的基本思想是?

基本思想是:设有一个有n个顶点的连通网络N={V,E},最 初先构造一个只有n个顶点,没有边的非连通图 T={ V,¢},图中每个顶点自成一个 连通分量。

当在E中选到一条具有最小权值的边时,若该边的两个顶点落在不同的连通 分量上,则将此边加人到T中;否则将此边舍去,重新选择一条权值最小的边。

如此重复 下去,直到所有顶点在同一个连通分量上为止。

rfchost:洛杉矶vps/双向CN2 GIA,1核/1G/10G SSD/500G流量/100Mbps/季付$23.9

rfchost怎么样?rfchost是一家开办了近六年的国人主机商,一般能挺过三年的国人商家,还是值得入手的,商家主要销售VPS,机房有美国洛杉矶/堪萨斯、中国香港,三年前本站分享过他家堪萨斯机房的套餐。目前rfchost商家的洛杉矶机房还是非常不错的,采用CN2优化线路,电信双程CN2 GIA,联通去程CN2 GIA,回程AS4837,移动走自己的直连线路,目前季付套餐还是比较划算的,有需要的可...

RAKsmart新年钜惠:E3服务器秒杀$30/月起,新上韩国服务器,香港/日本/美国站群服务器,VPS月付$1.99起,GPU服务器,高防服务器_vps香港

RAKsmart发布了新年钜惠活动,即日起到2月28日,商家每天推出限量服务器秒杀,美国服务器每月30美元起,新上了韩国服务器、GPU服务器、香港/日本/美国常规+站群服务器、1-10Gbps不限流量大带宽服务器等大量库存;VPS主机全场提供7折优惠码,同时针对部分特惠套餐无码直购每月仅1.99美元,支持使用PayPal或者支付宝等方式付款,有中英文网页及客服支持。爆款秒杀10台/天可选精品网/大...

paypal$10的代金券,选购美国VPS

paypal贝宝可撸$10的代金券!这两天paypal出了活动,本次并没有其他的限制,只要注册国区的paypal,使用国内的手机号和62开头的银联卡,就可以获得10美元的代金券,这个代金券购买产品需要大于10.1美元,站长给大家推荐几个方式,可以白嫖一年的VPS,有需要的朋友可以看看比较简单。PayPal送10美元活动:点击直达活动sfz与绑定卡的号码可以重复用 注册的邮箱,手机号与绑的银联卡必须...

克鲁斯卡尔为你推荐
jmhjmh是谁股价图给你一张股票图你是怎么分析的具体的说virusscanvirus scan 是个什么软件?oa办公系统下载OA在哪里下载?vga接口定义VGA接口通常用来连接哪些设备,各个脚代表什么意思,它的连线是如何焊接的?部署工具win10 评估和部署工具包有什么用asp大马黑帽seo的webshell中,什么是大马和小马微软操作系统下载怎样在微软官网下载windows7 64位旗舰版超级播放器推荐个好的视频播放器kjava通用KJava是什么意思
上海服务器租用 idc测评网 softbank官网 debian7 申请空间 193邮箱 howfile 免费个人空间 最好的免费空间 789电视网 169邮箱 cdn加速原理 vip购优惠 Updog 网通服务器 阿里云个人邮箱 脚本大全 镇江高防服务器 godaddyssl winserver2008r2 更多