fileinputformatHadoop,Combiner有什么用?

fileinputformat  时间:2021-06-08  阅读:()

如何使用Hadoop的Partitioner

Hadoop里面的MapReduce编程模型,非常灵活,大部分环节我们都可以重写它的API,来灵活定制我们自己的一些特殊需求。

今天散仙要说的这个分区函数Partitioner,也是一样如此,下面我们先来看下Partitioner的作用: 对map端输出的数据key作一个散列,使数据能够均匀分布在各个reduce上进行后续操作,避免产生热点区。

Hadoop默认使用的分区函数是Hash Partitioner,源码如下: /** Partition keys by their {@link Object#hashCode()}. */ public class HashPartitioner<K, V> extends Partitioner<K, V> { /** Use {@link Object#hashCode()} to partition. */ public int getPartition(K key, V value, int numReduceTasks) { //默认使用key的hash值与上int的最大值,避免出现数据溢出 的情况 return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks; } } 大部分情况下,我们都会使用默认的分区函数,但有时我们又有一些,特殊的需求,而需要定制Partition来完成我们的业务,案例如下: 对如下数据,按字符串的长度分区,长度为1的放在一个,2的一个,3的各一个。

河南省;1 河南;2 中国;3 中国人;4 大;1 小;3 中;11 这时候,我们使用默认的分区函数,就不行了,所以需要我们定制自己的Partition,首先分析下,我们需要3个分区输出,所以在设置reduce的个数时,一定要设置为3,其次在partition里,进行分区时,要根据长度具体分区,而不是根据字符串的hash码来分区。

核心代码如下: /** * Partitioner * * * */ public static class PPartition extends Partitioner<Text, Text>{ @Override public int getPartition(Text arg0, Text arg1, int arg2) { /** * 自定义分区,实现长度不同的字符串,分到不同的reduce里面 * * 现在只有3个长度的字符串,所以可以把reduce的个数设置为3 * 有几个分区,就设置为几 * */ String key=arg0.toString(); if(key.length()==1){ return 1%arg2; }else if(key.length()==2){ return 2%arg2; }else if(key.length()==3){ return 3%arg2; } return 0; } } 全部代码如下: .partition.test; import java.io.IOException; .apache.hadoop.fs.FileSystem; .apache.hadoop.fs.Path; .apache.hadoop.io.LongWritable; .apache.hadoop.io.Text; .apache.hadoop.mapred.JobConf; .apache.hadoop.mapreduce.Job; .apache.hadoop.mapreduce.Mapper; .apache.hadoop.mapreduce.Partitioner; .apache.hadoop.mapreduce.Reducer; .apache.hadoop.mapreduce.lib.db.DBConfiguration; .apache.hadoop.mapreduce.lib.db.DBInputFormat; .apache.hadoop.mapreduce.lib.input.FileInputFormat; .apache.hadoop.mapreduce.lib.output.FileOutputFormat; .apache.hadoop.mapreduce.lib.output.MultipleOutputs; .apache.hadoop.mapreduce.lib.output.TextOutputFormat; .qin.operadb.PersonRecoder; .qin.operadb.ReadMapDB; /** * @author qindongliang * * 大数据交流群:376932160 * * * **/ public class MyTestPartition { /** * map任务 * * */ public static class PMapper extends Mapper<LongWritable, Text, Text, Text>{ @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { // System.out.println("进map了"); //mos.write(namedOutput, key, value); String ss[]=value.toString().split(";"); context.write(new Text(ss[0]), new Text(ss[1])); } } /** * Partitioner * * * */ public static class PPartition extends Partitioner<Text, Text>{ @Override public int getPartition(Text arg0, Text arg1, int arg2) { /** * 自定义分区,实现长度不同的字符串,分到不同的reduce里面 * * 现在只有3个长度的字符串,所以可以把reduce的个数设置为3 * 有几个分区,就设置为几 * */ String key=arg0.toString(); if(key.length()==1){ return 1%arg2; }else if(key.length()==2){ return 2%arg2; }else if(key.length()==3){ return 3%arg2; } return 0; } } /*** * Reduce任务 * * **/ public static class PReduce extends Reducer<Text, Text, Text, Text>{ @Override protected void reduce(Text arg0, Iterable<Text> arg1, Context arg2) throws IOException, InterruptedException { String key=arg0.toString().split(",")[0]; System.out.println("key==> "+key); for(Text t:arg1){ //System.out.println("Reduce: "+arg0.toString()+" "+t.toString()); arg2.write(arg0, t); } } } public static void main(String[] args) throws Exception{ JobConf conf=new JobConf(ReadMapDB.class); //Configuration conf=new Configuration(); conf.set("mapred.job.tracker","192.168.75.130:9001"); //读取person中的数据字段 conf.setJar("tt.jar"); //注意这行代码放在最前面,进行初始化,否则会报 /**Job任务**/ Job job=new Job(conf, "testpartion"); job.setJarByClass(MyTestPartition.class); System.out.println("模式: "+conf.get("mapred.job.tracker"));; // job.setCombinerClass(PCombine.class); job.setPartitionerClass(PPartition.class); job.setNumReduceTasks(3);//设置为3 job.setMapperClass(PMapper.class); // MultipleOutputs.addNamedOutput(job, "hebei", TextOutputFormat.class, Text.class, Text.class); // MultipleOutputs.addNamedOutput(job, "henan", TextOutputFormat.class, Text.class, Text.class); job.setReducerClass(PReduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); String path="hdfs://192.168.75.130:9000/root/outputdb"; FileSystem fs=FileSystem.get(conf); Path p=new Path(path); if(fs.exists(p)){ fs.delete(p, true); System.out.println("输出路径存在,已删除!"); } FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input"); FileOutputFormat.setOutputPath(job,p ); System.exit(job.waitForCompletion(true) ? 0 : 1); } }

如何使用eclipse调试Hadoop作业

将hadoop开发包里面的相关jar导进工程就行, 至于想调试,就看hadoop计数器返回到eclipse里的内容就可以了. 不过有一点, 如果调试的是MapReduce,速度可能不快.

Hadoop,Combiner有什么用?

Combiner,Combiner号称本地的Reduce,Reduce最终的输入,是Combiner的输出。

Combiner是用reducer来定义的,多数的情况下Combiner和reduce处理的是同一种逻辑,所以job.setCombinerClass()的参数可以直接使用定义的reduce。

当然也可以单独去定义一个有别于reduce的Combiner,继承Reducer,写法基本上定义reduce一样。

Dynadot COM特价新注册48元

想必我们有一些朋友应该陆续收到国内和国外的域名注册商关于域名即将涨价的信息。大概的意思是说从9月1日开始,.COM域名会涨价一点点,大约需要单个9.99美元左右一个。其实对于大部分用户来说也没多大的影响,毕竟如今什么都涨价,域名涨一点点也不要紧。如果是域名较多的话,确实增加续费成本和注册成本。今天整理看到Dynadot有发布新的八月份域名优惠活动,.COM首年注册依然是仅需48元,本次优惠活动截止...

创梦网络-四川一手资源高防大带宽云服务器,物理机租用,机柜资源,自建防火墙,雅安最高单机700G防护,四川联通1G大带宽8.3W/年,无视UDP攻击,免费防CC

? ? ? ?创梦网络怎么样,创梦网络公司位于四川省达州市,属于四川本地企业,资质齐全,IDC/ISP均有,从创梦网络这边租的服务器均可以****,属于一手资源,高防机柜、大带宽、高防IP业务,另外创梦网络近期还会上线四川联通大带宽,四川联通高防IP,一手整CIP段,四川电信,联通高防机柜,CN2专线相关业务。成都优化线路,机柜租用、服务器云服务器租用,适合建站做游戏,不须要在套CDN,全国访问快...

inlicloud48元/月,云主机,2核1G/200Mbps,可选安徽/上海联通/广州移动/江门移动NAT

inlicloud怎么样?inlicloud(引力主机)主要产品为国内NAT系列VPS,目前主要有:上海联通NAT(200Mbps带宽)、宿州联通NAT(200Mbps带宽)、广州移动NAT(200Mbps带宽)。根据官方的说法国内的NAT系列VPS不要求备案、不要求实名、对中转要求也不严格,但是,禁止任何形式的回国!安徽nat/上海联通/广州移动/江门移动nat云主机,2核1G/200Mbps仅...

fileinputformat为你推荐
腾讯举报中心如何举报QQ号?webproxy无法连接Internet是什么原因y码女款衣服XXL、XL、XXXL尺码分别是多大?oa办公系统下载oa办公软件哪里可以下载?12种颜色油画的基本12种颜色是什么js后退多级页面间的后退如何实现(js方法)腾讯技术腾讯是什么东西?微信智能机器人有一个人加我微信,他说他自己是图灵机器人,我想问一下这是啥软件怎么可以自动回复微信?papertiger亚瑟士 艾斯克斯 tiger有什么区别吗kjava谁能告诉我KJAVA是什么意思和普通的JAVA程序有什么区别?
深圳域名注册 北京主机租用 php空间租用 重庆服务器托管 enzu dreamhost uk2 国外服务器网站 ixwebhosting web服务器架设软件 php免费空间 申请个人网页 html空间 电子邮件服务器 200g硬盘 699美元 上海联通宽带测速 海外空间 国外免费云空间 网站加速 更多