procedurelet美人2

let美人2  时间:2021-01-15  阅读:()
IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.
52,NO.
9,SEPTEMBER20071731Finite-Time-ConvergentDifferentiatorBasedonSingularPerturbationTechniqueXinhuaWang,ZengqiangChen,andGengYangAbstract—Anite-time-convergentdifferentiatorispresentedthatisbasedonsingularperturbationtechnique.
Themeritsofthisdifferentiatorexistinthreeaspects:rapidlynite-timeconvergencecomparedwithothertypicaldifferentiators;nochatteringphenomenon;andbesidesthederiva-tivesofthederivablesignals,thegeneralizedderivativesofsomeclassesofsignalscanbeobtained—forexample,thegeneralizedderivativeofatriangularwaveissquarewave,etc.
Thetheoreticalresultsareconrmedbycomputersimulations.
IndexTerms—Chatteringphenomenon,differentiator,nite-time-con-vergent,generalizedderivative,singularperturbation.
I.
INTRODUCTIONDifferentiationofsignalsisanoldandwell-knownproblem[1]–[3]andhasattractedmoreattentioninrecentyears[4]–[6].
Rapidlyandaccuratelyobtainingthevelocitiesandaccelerationsoftrackedtargetsiscrucialforseveralkindsofsystemswithcorrectandtimelyperfor-mance,suchasthemissile-interceptionsystemindefencesystems[7]andunderwatervehiclesystems[8].
Therefore,theimprovementsoftheconvergenttimeandtheprecisionofthedifferentiatorareverysignicant.
Severalworkshavebeenintroduced.
Thesimplestoneislineardifferentiator[1]–[4].
Kahlil[4]designedalinearhigh-gainob-server,whichprovidestheestimatesofderivativesoftheoutputuptoordern01.
Becausetheconvergentvelocitiesofthestatevariablesareslowinthenonlinearregionofthesystemdynamics,thetime-laggingphenomenonisinevitable.
Levant[5],[6]proposedadifferentiatorviasecond-order(orhigh-order)slidingmodesalgorithm.
TheinformationoneneedstoknowonthesignalisanupperboundforLipschitz'scon-stantofthederivativeofthesignal.
Thisconstrainsthetypesofinputsignals.
Forthisdifferentiator,thechatteringphenomenonisinevitable.
Thedevelopmentofsingularperturbationtechniqueprovidesanef-fectivemethodforrapidlytrackingcontrol[9]–[14].
Inaddition,therehavemanyresultsonnite-timestability.
Aclassofboundedcontin-uoustime-invariantstabilizingfeedbacklawisgivenfortheintegrator[15].
Andthemainresultin[16]–[18]isgivenontheconstructionofcontinuoustime-invariantnite-timecontrollersforaclassofnonlinearsystems.
Thisclassofcontinuousnonsmoothcontrollercouldimprovethetransientbehaviorandrobustnesspropertyofconsideredsystems.
Inthispaper,wepresentanalgorithmofnite-time-convergentdif-ferentiatorbasedonsingularperturbationtechnique.
Inthistypeofdif-ferentiator,thenite-time-convergentfeatureisbasedonthetheoryoftimeoptimization[15]–[18]andthewholesystemisinfasttimescale;therefore,therapidconvergenceisguaranteed.
Bycomparingotherapproaches[4]–[6],thepresentednite-time-convergentdifferentiatorManuscriptreceivedJune10,2005;revisedMarch2,2006,July19,2006,andMay28,2007.
RecommendedbyAssociateEditorD.
Nesic.
ThisworkwassupportedbytheNationalNaturalScienceFoundationofChinaunderGrant60504005.
X.
WangwaswiththeDepartmentofAutomation,TsinghuaUniversity,Bei-jing100084,China.
HeisnowwiththeDepartmentofAutomaticControl,Bei-jingUniversityofAeronauticsandAstronautics,Beijing100083,China(e-mail:wangxinhua04@gmail.
com).
Z.
CheniswiththeDepartmentofAutomation,NankaiUniversity,Tianjin300071,China(e-mail:chenzq@nankai.
edu.
cn).
G.
YangiswiththeDepartmentofAutomation,TsinghuaUniversity,Beijing100084,China(e-mail:yanggeng@tsinghua.
edu.
cn).
DigitalObjectIdentier10.
1109/TAC.
2007.
904290cankeepmorerapid-convergentvelocityandcanbeadaptedtothesys-temsrequiringrapidconvergence.
Evenwithusingsaturatingvariousterms,nite-timestabilityisstillguaranteedandthechatteringphe-nomenoncanbeavoided.
Moreover,forthispresenteddifferentiator,thegeneralizedderivativesofsomeclassesofsignalscanbeobtained.
Thispaperisorganizedinthefollowingformat.
InSectionII,a-nite-time-convergentdifferentiatorisdesignedbasedonsingularper-turbationtechniqueandnite-timestability.
InSectionIII,thesimula-tionsaregiven,andourconclusionsaremadeinSectionIV.
II.
FINITE-TIME-CONVERGENTDIFFERENTIATORInordertodecreaseconvergenttimeandavoidthechatteringphe-nomenon,wedesignatypeofdifferentiatorbasedontheilluminationofsolvingforahigh-orderdifferentialequation.
Thebasicideais:con-structahigh-orderdifferentialequationandmakeaprocedureasshowninFig.
1.
Denition1[19]:"Generalizedderivative"denotesthattheleftandrightderivativesofapointinafunctiontrajectorybothexist,andtheymaybenotequaltoeachother.
Denition2[15]:Consideratime-invariantsystemintheformof_x=f(x)f(0)=0;x2Rn(1)wheref:D!
RniscontinuousonopenneighborhoodDRnoftheorigin.
Theoriginissaidtobeanite-time-stableequilibriumoftheabovesystemifthereexistsanopenneighborhoodNDoftheoriginandafunctionTf:Nnf0g!
(0;1),calledthesettling-timefunction,suchthatthefollowingstatementshold.
1)Finite-time-convergence:Foreveryx2Nnf0g,xistheowstartingfromxanddenedon[0;Tf(x)),x(t)2Nnf0gforallt2[0;Tf(x)),andlimt!
T(x)x(t)=0.
2)Lyapunovstability:ForeveryopenneighborhoodU"ofzero,thereexistsanopensubsetUofNcontainingzerosuchthat,foreveryx2Unf0g,x(t)2U"forallt2[0;Tf(x)).
Theoriginissaidtobeagloballynite-time-stableequilibriumifitisanite-time-stableequilibriumwithD=N=Rn.
Thenthesystemissaidtobenite-time-convergentwithrespecttotheorigin.
Assumption1:Supposetheoriginisanite-time-stableequilibrium[15,Th.
4.
3]of_z1=z2111_zn01=zn_zn=f(z1;z2;zn)(2)andthesettling-timefunctionTfiscontinuousatzero,wheref()iscontinuousandf(0)=0.
LetNbeasinDenition2andlet2(0;1).
ThenthereexistsacontinuousfunctionVsuchthat1)Vispositivedeniteand2)_VisrealvaluedandcontinuousonNandthereexistsc>0suchthat_V+cV0:(3)Assumption2:ThereexistsaLipschitzLyapunovfunctionVsatis-fying(3)withLipschitzconstantM.
Assumption3:For(2),thereexisti2(0;1],i=0;1;n01,andanonnegativeconstantasuchthatjf(z1;z2;zn)0f(z1;z2;zn)jani=1jzi0zij(4)wherezi;zi2R,i=1;n.
0018-9286/$25.
002007IEEE1732IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.
52,NO.
9,SEPTEMBER2007Fig.
1.
Finite-time-convergentdifferentiator.
Remark1:Thereareanumberofnonlinearfunctionsactuallysatisfyingthisassumption.
Forexample,onesuchfunctionisxsincejx0xj210jx0xj,i2(0;1].
Moreover,therearesmoothfunctionsalsosatisfyingthisproperty.
Infact,itiseasytoverifythatjsinx0sinxj2jx0xjforanyi2(0;1].
Assumption4:v(t)isacontinuousandpiecewisen-orderderiv-ablesignalwiththefollowingproperties.
Thederivativesofv(t)uptoordern02existonthewholetimedomainandv(t)isnot(n01)-orderdifferentiableatsomeinstantstj,j=1;.
.
.
;k.
How-ever,the(n01)-orderleftderivativev(n01)0(tj)andrightderivativev(n01)+(tj)exist[19],respectively,andv(n01)0(tj)6=v(n01)+(tj),j=1;.
.
.
;k,maybesatised.
FromtheconjectureinFig.
1,weobtainTheorem1asfollows.
Theorem1:If(2)issatisedwithAssumptions1–3,signalv(t)issatisedwithAssumption4.
Thenforsystemdx1dt=x2111dxn01dt=xn"ndxndt=fx10v(t);"x2;.
.
.
;"n01xn(5)thereexist>0(where>n)and0>0suchthatxi0v(i01)(t)=O("0i+1)(6)fortj>ttj01+"0(4(")e+(tj01)),j=1;.
.
.
;k+1,(lett0=0andtk+1=1)i=1;.
.
.
;nwithxn(tj)0v(n01)0(tj)=O("0n+1);j=1;.
.
.
;k(7)where">0istheperturbationparameterandO("0i+1)de-notestheapproximationof"0i+1order[13]betweenxiandv(i01)(t);and=(10)=,2(0;minf=(+n);1=2g),n2.
ei=xi0v(i01),i=1;.
.
.
;n,e=[e1.
.
.
en]T,e+(tj01)=e1(tj01).
.
.
en01(tj01)e+n(tj01)T,e+n(tj01)=xi(tj01)0v(i01)+(tj01),and4(")=diagf1;n01g.
Proof:Throughouttheproof,wewillassume"0istheup-boundnessofjdiv=dtij,i=1;.
.
.
;n01;andhn>0istheup-boundnessofthen-orderderivativeofv(t)(includingthen-ordergeneralizedderivativeatt=tj01).
Let=minfiigand=an01i=1hi+hn.
WehaveD+(Vz)()_V+"Man01i=1hi+hn=_V+"M:(15)Itisrequiredthattheperturbationin(13)iscontinuous,andthisrequirementissatisedoneachtimedomain[tj01;tj),j=1;.
.
.
;k+1.
Therefore,from[15,Th.
5.
2andProp.
2.
4],thereexists0>0(0>Tf)suchthatkz()k(V(z()))10rc(10)2"Mc(10)=rc(10)(16)fortj=">tj01="+0(z(tj01=")),j=1;.
.
.
;k+1.
Tomake2"M=c1,let"3=minf[c=(2M)]1=;1gand"2(0;"3),l=1=(rc(10))>0;and=2M=c,=(10)=.
Fromthecoordinatetransform(12),weget[e1"e2.
.
.
"n01en]T"l(17)fortj>ttj01+"0(4(")e(tj01)),j=1;.
.
.
;k+1.
Therefore,wehavejeij"0i+1l;i=1;.
.
.
;n(18)fortj>ttj01+"0(4(")e(tj01)),j=1;.
.
.
;k+1,i.
e.
,xi0v(i01)(t)=O("0i+1);i=1;.
.
.
;n(19)fortj>ttj01+"0(4(")e(tj01)),j=1;.
.
.
;k+1.
Moreover,becausev(n01)+(tj01)andv(n01)0(tj)arerightandleftcontinuous,respectively,wehavexn(tj)0v(n01)0(tj)=O("0n+1);j=1;.
.
.
;k:(20)Especially,whenv(t)isacontinuousn-orderderivablesignal,wehaveaconclusionthatxi0v(i01)(t)=O("0i+1),i=1;.
.
.
;n,fort"0(4(")e(0)).
From[15,Th.
5.
2],welet20;min+n;12;n2:(21)Importantly,from[15,Th.
4.
3],canbechosentobearbitrarilysmall.
Hencetherequirementthatliein2(0;minf=(+n);1=2g)isnotrestrictive.
Accordingly,dueto0.
Therefore,0i+1>1fori=1;.
.
.
;n.
Thisconcludestheproof.
Remark2:If(2)issatisedwithAssumptions1–4andjzi(2)jjzi(1)jwhen1ttj01+"0(4(")e+(tj01)),j=1;.
.
.
;k+1,i=n,respectively,withxn(tj)0v(n01)0(tj)=O("0n+1),j=1;.
.
.
;k.
Fromtheanalysisabove,theconvergenttimeofthepresenteddifferentiatorisdecidedbythetime0andtheperturbationparameter".
Inaddition,canbechosentobearbitrarilysmall;thenisarbitrarilylarge.
From(16),wechoose"2(0;"3);therefore,jeijisarbitrarilysmall.
Thesmaller"is,theshortertheconvergenttimeisandsmallerthetrackingerrorsare.
Forthisdifferentiator,becausetheconvergenttimeissufcientlyshortandtrackingerrorissufcientlysmallbychoosing"2(0;"3),thegeneralizedderivativesofsomeclassesofcontinuousandpiecewisederivablesignals(forexample,triangularwave)canbealsoobtainedrapidlybesidethoseoftheusualcontinuousderivablesignals.
D+(Vz)()=@V@z(z)z0fz1;z2+dvd;.
.
.
;zn+dn01vdn010dnvdnT=@V@z(z)[z0f(z1;.
.
.
;zn)]T+@V@z(z)z0fz1;z2+dvd;.
.
.
;zn+dn01vdn010dnvdnT0[z0f(z1;.
.
.
;zn)]T_V+Man01i=1divdi+Mdnvdn=_V+Man01i=1"idivdti+"ndnvdtn_V+Man01i=1hi"i+hn"n(14)1734IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.
52,NO.
9,SEPTEMBER2007A.
Finite-Time-ConvergentSecond-OrderDifferentiatorAnite-time-convergentsecond-orderdifferentiatorisdesignedasdx1dt=x2"2dx2dt=uy=x2(22)u=0sat"sign((x10v(t);"x2)2j((x10v(t);"x2)j=(20)0sat"fsign(x2)j"x2jg(23)where(x10v(t);"x2)=x10v(t)+sign(x2)j"x2j2020sat"(x)=x;jxj0(where>2and=minf;=(20)g==(20)),suchthatxi0v(i01)(t)=O("0i+1)(25)fort"0(4(")e(0)),i=1,andtj>ttj01+"0(4(")e+(tj01)),j=1;.
.
.
;k+1,i=2,respectively,withx2(tj)0v00(tj)=O("01),j=1;.
.
.
;k,where2(0;1).
Infact,weknowthat[16]_x1=x2_x2=0sat"sign((x1;x2)j((x1;x2)j=(20)0sat"fsign(x2)jx2jg(26)isnite-time-convergentwithrespecttotheoriginwithina-nitetimeTf,anditissatisedwithAssumptions1–4.
From[16]and[18,Ex.
3.
2],wehavethatjxi(2)jjxi(1)jwhen10k>0;i=1;.
.
.
;n(30)0=r2;(i+1)ri+1(i01+1)ri>0;i=1;.
.
.
;n02;n01>0(31)constantli>0fori=1;.
.
.
;n,andsig(x)=jxjsign(x)(32)foracontinuousandpiecewisen-orderderivablesignalv(t),thereex-ists>0[where>nand=n01i=0(ri+1+k)=(ri+1i)],suchthatxi0v(i01)(t)=O("0i+1)(33)fortj>ttj01+"0(4(")e+(tj01)),j=1;.
.
.
;k+1,i=1;.
.
.
;n,withxn(tj)0v(n01)0(tj)=O("0n+1),j=1;.
.
.
;k.
Infact,weknowthat[17],[18](34)and(35),asshownatthebottomofthepage,arenite-time-convergentwithrespecttotheoriginwithinanitetimeTf,andtheyaresatisedwithAssumptions1–4(letmi=1dx1dt=x2111dxn01dt=xn"ndxndt=un(28)u0=0ui+1(x10v(t);.
.
.
;"ixi+1)=0li+1sigsig"ixi+10siguix10v(t);.
.
.
;"i01xi(r+k)=(r);i=0;.
.
.
;n01;n2(29)_x1=x2111_xn01=xn_xn=un(34)u0=0ui+1(x1;.
.
.
;xi+1)=0li+1sigsig(xi+1)0sig(ui(x1;.
.
.
;xi))(r+k)=(r);i=0;.
.
.
;n01;n2(35)IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.
52,NO.
9,SEPTEMBER20071735in[17]).
FromTheorem1,weobtained(33)forthedifferentiator(28)and(29).
III.
SIMULATIONSInthefollowingsimulations,weselectthefunctionsofsintandtriangularwave,respectively,asthesignalv(t).
Moreover,usinganIntelCeleronMProcessor1.
50-GHz760-MBcomputer,weconsiderthetimecomputationsforthedifferentiatorsanddifferentvaluesof",andtheinputsignal"sint"isillustrated.
Theinitialconditionsarex1(0)=0,x2(0)=0,andx3(0)=0.
1)Two-slidingalgorithmdifferentiator[5]dx1dt=x201jx10v(t)j(1=2)sign(x10v(t))dx2dt=02sign(x10v(t))y=x2where1=1:6=0:04and2=5=0:04.
2)Linearhigh-gaindifferentiator[4]dx1dt=x20(x10v(t))0:04dx2dt=02(x10v(t))0:04y=x2:3)Finite-time-convergentsecond-orderdifferentiatordx1dt=x2"2dx2dt=0sat1x10v(t)+35("x2)(5=3)(1=5)0sat1f("x2)(1=3)gy=x2sat1(x)=x;jxj<1sign(x);jxj1:4)Thenite-time-convergentthird-orderdifferentiatordx1dt=x2dx2dt=x30:043dx3dt=023=54x10v(t)+(0:04x2)9=71=3040:042x33=5y1=x2y2=x3:Fromthesimulationsabove,wendthatthechatteringphenom-enonhappensinthetwo-slidingdifferentiator,andsteadyerrorap-pearsobviously[seeFig.
2(b)and(c)].
In[5],selecting1=6and2=8,steadyerrordoesnotappear;however,slowconvergenceandthechatteringphenomenonexist.
Theintensivevibrationhappensinthehigh-gaindifferentiator[seeFig.
3(b)and(c)].
Rapidandhigh-pre-cisiontrackingcanbeguaranteedforthenite-time-convergentdif-ferentiator[seeFig.
4(a)–(d)].
Bydecreasingtheperturbationparam-eter",thecomputedderivativebecomesbetterandbetter[seeFig.
4(b)(where"=0:04and"=0:1,respectively)],andthequalityindexofcomputedderivative(i.
e.
,themaximumabsolutevalue)becomesbiggerandbigger.
Whentheblockofsimulinkisadoptedtocarryoutthederivativeofthetriangularwaveor"sint,"slowconvergencehap-pensobviously[seeFig.
4(b)].
Fig.
5showsthesimulationcurvesofthepresentedthird-orderdiffer-entiator.
Itmeansthatx2andx3tracktheidealrst-orderandsecond-Fig.
2.
Two-slidingdifferentiator.
(a)Tracking"sint"wave(computationtime:23s)(b)Themagniedgureof(a).
(c)Tracking"triangular"wave.
orderderivativesoftheinput(sint),respectively.
Notimelaggingphe-nomenonhappensobviously.
Inaddition,thenonlineardifferentialequationsbecomecomplicatedcomparedwithlineardifferentialequations,andsonumericalproblemsforthesimulationcomeout.
However,thedevelopmentofhigh-per-formanceprocessorsandthealgorithmsofnumericalsolutionsofnon-1736IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.
52,NO.
9,SEPTEMBER2007Fig.
3.
Linearhigh-gaindifferentiator.
(a)Tracking"sint"wave(computationtime:1s)(b)Themagniedgureof(a).
(c)Tracking"triangular"wave.
lineardifferentialequationsprovideusanappropriatebasementofthealgorithmsofthenonlineardifferentiators.
Somesimulationmethodsareexploited,whichhaveasatisfyingexecutiontime;forexample,thefunctionof'ode45'inMATLABboxisquitetforthenonlineardiffer-entialequations.
Moreover,forthispresentednonlineardifferentiator,Fig.
4.
Finite-time-convergentsecond-orderdifferentiator.
(a)Tracking"sint"wave("=0:04(computationtime:3s);"=0:1(computationtime:1.
5s).
(b)Themagniedgureof(a).
(c)Tracking"triangular"wave("=0:04).
(d)Themagniedgureof(c).
somesimplepowerfunctionsareused,whichareeasytocomputeinsimulationorinoating-pointdigitalsignalprocessors.
IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.
52,NO.
9,SEPTEMBER20071737Fig.
5.
Finite-time-convergentthird-orderdifferentiator.
IV.
CONCLUSIONSInthispaper,wepresentanalgorithmofnite-time-convergentdifferentiatorbasedonsingularperturbationtechnique.
Becausethetheoryoftimeoptimizationandthesingularperturbationareintroducedintothepresenteddifferentiator,itcankeeprapid-conver-gentvelocityandcanbeadaptedtothesystems,whichneedrapidconvergence.
Withtheintroductionofsaturatingvariousterms,thechatteringphenomenoncanbeavoidedandthenite-time-stabilitycanbestillguaranteed.
Besidesthederivativesofthederivablesignals,thegeneralizedderivativesofsomeclassesofsignalscanbeobtainedthroughthistypeofdifferentiator.
REFERENCES[1]S.
-C.
PeiandJ.
-J.
Shyu,"DesignofFIRHilberttransformersanddifferentiatorsbyeigenlter,"IEEETrans.
Acoust.
,Speech,SignalProcess.
,vol.
37,pp.
505–511,1989.
[2]B.
KumarandS.
C.
D.
Roy,"Designofdigitaldifferentiatorsforlowfrequencies,"Proc.
IEEE,vol.
76,pp.
287–289,1988.
[3]L.
R.
RabinerandK.
Steiglitz,"Thedesignofwide-bandrecursiveandnonrecursivedigitaldifferentiators,"IEEETrans.
AudioElectroa-coust.
,vol.
AU-18,pp.
204–209,1970.
[4]H.
Kahlil,"Robustservomechanismoutputfeedbackcontrollerforfeedbacklinearizablesystems,"Automatica,vol.
30,pp.
1587–1599,1994.
[5]A.
Levant,"Robustexactdifferentiationviaslidingmodetechnique,"Automatica,vol.
34,pp.
379–384,1998.
[6]A.
Levant,"High-orderslidingmodes,differentiationandoutput-feed-backcontrol,"Int.
J.
Contr.
,vol.
76,no.
9/10,pp.
924–941,2003.
[7]J.
Moffat,"Thesystemdynamicsoffuturewarfare,"Eur.
J.
Oper.
Res.
,vol.
90,no.
3,pp.
609–618,1996.
[8]A.
PisanoandE.
Usai,"Output-feedbackcontrolofanunderwaterve-hicleprototypebyhigher-orderslidingmodes,"Automatica,vol.
40,pp.
1525–1531,2004.
[9]P.
V.
Kokotovic,H.
K.
Khalil,andJ.
O.
Reilly,SingularPerturba-tionMethodsinControl:AnalysisandDesign.
NewYork:Academic,1998.
[10]A.
Isidori,S.
S.
Sastry,P.
V.
Kokotovic,andC.
I.
Byrnes,"Singularperturbedzerodynamicsofnonlinearsystems,"IEEETrans.
Autom.
Control,vol.
37,pp.
1625–1631,1992.
[11]A.
SaberiandH.
Khalil,"Quadratic-typeLyapunovfunctionsforsin-gularlyperturbedsystems,"IEEETrans.
Autom.
Control,vol.
AC-29,pp.
542–550,1984.
[12]J.
-I.
LeeandI.
-J.
Ha,"Anovelapproachtocontrolofnonminimum-phasenonlinearsystems,"IEEETrans.
Autom.
Control,vol.
47,pp.
1480–1486,2002.
[13]H.
Kahlil,NonlinearSystems,3nded.
EnglewoodCliffs,NJ:Pren-tice-Hall,2002.
[14]S.
J.
WilsonandP.
A.
Webley,"Perturbationtechniquesforacceleratedconvergenceofcyclicsteadystate(CSS)inoxygenvsasimulations,"Chem.
Eng.
Sci.
,vol.
57,pp.
4145–4159,2002.
[15]S.
P.
BhatandD.
S.
Bernstein,"Finite-timestabilityofcontinuousau-tonomoussystems,"SIAMJ.
Contr.
Optim.
,vol.
38,no.
3,pp.
751–766,2000.
[16]S.
P.
BhatandD.
S.
Bernstein,"Continuousnite-timestabilizationofthetranslationalandrotationaldoubleintegrators,"IEEETrans.
Autom.
Control,vol.
43,pp.
678–682,1998.
[17]Y.
Hong,"Finite-timestabilizationandstabilizabilityofaclassofcon-trollablesystems,"Syst.
Contr.
Lett.
,no.
46,pp.
231–236,2002.
[18]X.
Huang,W.
Lin,andB.
Yang,"Globalnite-timestabilizationofaclassofuncertainnonlinearsystems,"Automatica,vol.
41,pp.
881–888,2005.
[19]N.
Piskunov,DifferentialandIntegralCalculus,2nded.
Moscow,Russia:MIR,1974.
SolvingRank-ConstrainedLMIProblemsWithApplicationtoReduced-OrderOutputFeedbackStabilizationSeog-JooKim,Young-HyunMoon,andSoonmanKwonAbstract—Thispaperpresentsaniterativepenaltyfunctionmethodforsolvingrank-constrainedlinearmatrixinequality(LMI)problemsandil-lustratesitsapplicationtoreduced-orderoutputfeedbackstabilization.
Weproposeapenalizedobjectivefunctiontoreplacetherankcondition,sothatasolutiontotheoriginalnonconvexLMIfeasibilityproblemcanbeobtainedbysolvingaseriesofconvexLMIoptimizationsubproblems.
Nu-mericalexperimentswereperformedtodemonstratetheproposedmethod.
IndexTerms—Linearmatrixinequality(LMI),penaltyfunctionmethod,rankcondition,reduced-orderoutputfeedback.
I.
INTRODUCTIONReduced-orderoutputfeedback(ROF)stabilizationoflineartime-invariant(LTI)systemsisoneofthemostchallengingproblemsincon-trolengineering(seesurveypaper[1]).
ROFstabilizationischaracter-izedasarank-constrainedlinearmatrixinequality(LMI)problemintheconventionalLMIframeworkbythecelebratedeliminationlemma(e.
g.
,[2]),wheretwoLyapunovmatricesarecoupledwitharankcon-dition[3],[4].
Theproblembecomesnonconvexanddifculttosolveduetothiscouplingrankcondition.
Overthelastdecade,manyiterativetechniqueshavebeenpresentedtosolverank-constrainedLMIproblems.
Theseincludealternatingprojectionmethods[5]–[7],alinearizationmethod[4],andaugmentedLagrangianmethods[8]–[10].
Recently,anotherlocalalgorithmbasedManuscriptreceivedDecember7,2004;revisedMarch6,2006,November15,2006,andMarch5,2007.
RecommendedbyAssociateEditorC.
Beck.
S.
-J.
KimandS.
KwonarewithI&CGroup,KoreaElectrotechnologyResearchInstitute,Kyungnam641-120,Korea(e-mail:sjkim@keri.
re.
kr;smkwon@keri.
re.
kr).
Y.
-H.
MooniswiththeDepartmentofElectricalandElectronicEngineering,YonseiUniversity,Seoul120-749,Korea(e-mail:moon@yonsei.
ac.
kr).
DigitalObjectIdentier10.
1109/TAC.
2007.
9042930018-9286/$25.
002007IEEE

PacificRack 下架旧款方案 续费涨价 谨慎自动续费

前几天看到网友反馈到PacificRack商家关于处理问题的工单速度慢,于是也有后台提交个工单问问,没有得到答复导致工单自动停止,不清楚商家最近在调整什么。而且看到有网友反馈到,PacificRack 商家的之前年付低价套餐全部下架,而且如果到期续费的话账单中的产品价格会涨价不少。所以,如果我们有需要续费产品的话,谨慎选择。1、特价产品下架我们看到他们的所有原来发布的特价方案均已下架。如果我们已有...

香港九龙湾(27元) 2核2G 20元 香港沙田

弘速云是创建于2021年的品牌,运营该品牌的公司HOSU LIMITED(中文名称弘速科技有限公司)公司成立于2021年国内公司注册于2019年。HOSU LIMITED主要从事出售香港VPS、美国VPS、香港独立服务器、香港站群服务器等,目前在售VPS线路有CN2+BGP、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。可联系商家代安装iso系统。国庆活动 优惠码:hosu10-1产品介绍...

EtherNetservers年付仅10美元,美国洛杉矶VPS/1核512M内存10GB硬盘1Gpbs端口月流量500GB/2个IP

EtherNetservers是一家成立于2013年的英国主机商,提供基于OpenVZ和KVM架构的VPS,数据中心包括美国洛杉矶、新泽西和杰克逊维尔,商家支持使用PayPal、支付宝等付款方式,提供 60 天退款保证,这在IDC行业来说很少见,也可见商家对自家产品很有信心。有需要便宜VPS、多IP VPS的朋友可以关注一下。优惠码SUMMER-VPS-15 (终身 15% 的折扣)SUMMER-...

let美人2为你推荐
独立ip空间如何给网站申请独立的IP空间独立ip主机独立IP虚拟主机是什么?有哪些优势?免费com域名注册有没有完全免费的域名?租服务器租个一般的服务器大概多少钱啊?com域名空间那里有免费的com域名和空间申请啊!免费网站域名申请那里 可以申请免费的 网站域名啊??国内ip代理谁给我几个北京或国内的IP代理啊,高分,能用的台湾主机台湾的电脑硬件比韩国,日本,美国强?大连虚拟主机大连建网站哪里好?长沙虚拟主机长沙哪里虚拟主机和主机托管比较关好!
广西虚拟主机 顶级域名 域名中介 3322动态域名 bluevm vps.net 域名优惠码 抢票工具 win8.1企业版升级win10 彩虹ip 网通ip 权嘉云 新天域互联 adroit 卡巴斯基试用版 免费申请网站 最好的qq空间 酷番云 上海电信测速网站 www789 更多