spannedlet美人2
let美人2 时间:2021-01-15 阅读:(
)
Tightrelative2-designsontwoshellsinJohnsonassociationschemeYanZhuJointwithEiichiBannaiandEtsukoBannaiShanghaiJiaoTongUniversityMay24,2014AssociationschemeX=aniteset,{R0,R1,Rd}=thesetofrelationsonX(i.
e.
,RiX*X).
R0={(x,x)|x∈X}.
R0R1.
.
.
Rd=X*X,andRiRj=ifi=j.
tRi=Rjforsomej∈{0,1,d},wheretRi={(y,x)|(x,y)∈Ri}.
Given(x,y)∈Rk,then|{z∈X|(x,z)∈Ri,(z,y)∈Rj}|=pki,j.
ThenX=(X,{Ri}0≤i≤d)isanassociationscheme.
Moreover,XissymmetriciftRi=Ri.
2/21AdjacencymatrixThei-thadjacencymatrixAiofXisdenedby(Ai)xy=1,if(x,y)∈Ri0,otherwiseA0=I.
A0+A1Ad=J.
tAi=Ajforsomej∈{0,1,d}.
AiAj=di=0pki,jAk=AjAi.
{A0,A1,Ad}formanalgebrawhichiscalledtheBose-Mesneralgebraoftheassociationscheme.
3/21MatrixversionSymmetricassociationscheme:X=(X,{Ri}i=0,.
.
.
,d).
Adjacencymatrices:A0,Ad.
Primitiveidempotents:E0,Ed.
Bose-Mesneralgebra:C[A0,Ad]=C[E0,Ed]AiAj=di=0pki,jAkandEiEj=1|X|di=0qki,jEk.
Eigenmatrices:(A0,Ad)=(E0,Ed)P(E0,Ed)=1|X|(A0,Ad)Q4/21Denition1.
1LetXbeacollectionofd-elementsubsetsof[v]withd≤v2.
(x,y)∈Riif|x∩y|=di.
ThenX=(X,{Ri}0≤i≤d)isasymmetricassociationschemeofclassdandiscalledJohnsonassociationschemeJ(v,d).
u0∈X:axedpointarbitrarily.
Xi={x∈X|(u0,x)∈Ri},thenX0,X1,XdarecalledshellsofX.
F(X):thevectorspaceconsistsofalltherealvaluedfunctionsonX.
Lj(X):thesubspaceofF(X)spannedbyallthecolumnsofEj.
F(X)=L0(X)⊥L1(XLd(X).
5/21Denition1.
2[1]Let(Y,w)beaweightedsubsetofXwithpositivefunctionwonY.
(Y,w)iscalledarelativet-designwithrespecttou0ifthefollowingconditionholds.
pi=1x∈XriWri|Xri|f(x)=y∈Yw(y)f(y)foranyfunctionf∈L0(X)⊥L1(XLt(X),whereWri=y∈Yriw(y),i=1,2,p.
Let{r1,r2,rp}={r|XrY=}andS=Xr1Xr2.
.
.
Xrp.
DenoteYri=YXri,i=1,2,p.
XiscalledaQ-polynomialschemewithrespecttoE0,E1,Ed,ifthereexistsomepolynomialsvi(x)ofdegreeisuchthatEi=vi(E1).
6/21Theorem1.
3[1]Let(Y,w)bearelative2e-designofaQ-polynomialscheme.
Thenthefollowinginequalityholds.
|Y|≥dim(L0(S)+L1(S)Le(S))()whereLj(S)={f|S,f∈Lj(X)},j=0,1,e.
Denition1.
4Ifequalityholdsin(),then(Y,w)iscalledatightrelative2e-designwithrespecttou0.
Theorem1.
5[2]XisaQ-polynomialschemeandG=Aut(X).
Let(Y,w)beatightrelative2e-designwithrespecttou0.
AssumethatthestabilizerGu0actstransitivelyoneveryshellXr,1≤r≤d.
ThenweightfunctionwisconstantoneachYri(1≤i≤p).
7/21Theorem2.
1TakeasequenceelementsfromXasu0={1,2,d},ui={1,2,d1,d+i+1},(1≤i≤vd1)ui={1,2,d,d+1}\{i(vd)+1},(vd≤i≤v1)i.
e.
,u1={1,2,d1,d+2}u2={1,2,d1,d+3}.
.
.
uvd1={1,2,d1,v}uvd={2,3,d1,d,d+1}uvd+1={1,3,d1,d,d+1}.
.
.
uv1={1,2,d1,d+1}Then{φ0|S,φ1|Sφv1|S}isabasisofL0(S)+L1(S),whereS=Xr1Xr2.
8/21Somenotationsφ0(x)=φ(0)u0(x)=|X|E0(x,u0)≡1,φi(x)=φ(1)ui(x)=|X|E1(x,ui).
Innerproductisdenedby=2i=1Wri|Xri|x∈Xrif(x)g(x).
d0=,c0=,for1≤i≤v1c1,5=,for1≤i≤v1c1,1=,for1≤i=j≤vd1c1,2=,forvd≤i=j≤v2c1,3=,for1≤i≤vd1c1,4=,forvd≤i≤v2c2=.
for1≤i≤vd1,vd≤j≤v29/21OrthonormalbasisGram-Schmidt'smethod:{φ1,φv1,φ0}→{1,2,v}.
1=φ1c0,i=1√Di1Di.
.
.
.
.
φ1φ2.
.
.
φiTheGramdeterminantDiisgivenbyDi=.
.
.
.
.
10/21PropertyoforthonormalbasisMatrixHisindexedbyY*[v]whose(y,j)-entryisdenedbyw(y)j(y).
Then(tHH)j,k=δj,kand(HtH)x,y=δx,yimplyy∈Yw(y)j(y)k(y)=δj,kvj=1w(y)j(x)j(y)=δx,yx∈Xri(i=1,2),x={1,2,dri,d+1,d+2,d+ri}1wri=vs=12s(x).
(1)11/21x,y∈Xriand(x,y)∈Rαi,i=1,2.
x={1,2,dri,d+1,d+2,d+ri},y={1,2,ai,dri+1,2d2riai,d+1,2dαiai,d+ri+1,2ri+αi+ai},(d2ri≤ai≤dri).
vs=1s(x)s(y)=f(Wr1,Wr2,v,d,ri,αi,ai)g(Wr1,Wr2,v,d,ri,αi,ai).
(2)x∈Xr1,y∈Xr2,(x,y)∈Rγ,r1x={1,2,dr1,d+1,d+2,d+r1},y={1,2,a3,dr1+1,2dr1r2a3,d+1,2dγa3,d+r1+1,r1+r2+γ+a3},(dr1r2≤a3≤dr2).
vs=1s(x)s(y)=f(Wr1,Wr2,v,d,r1,r2,a3,γ)g(Wr1,Wr2,v,d,r1,r2,a3,γ).
(3)12/21Determineparametersetvs=1s(x)s(y)=0fordistinctx,y∈Y,i.
e.
,numeratorsof(2)and(3)haveacommonfactork1Wr1k2Wr2suchthatk2k1ispositive.
Step1:Givenv,d,r1,r2,solvetheequationsvs=1s(x)s(y)=0.
Ifthenumeratorofthesethreeexpressionshavesuchcommonfactor,thenkeeptheparametersv,d,r1,r2,α1,a1,α2,a2,γ,a3.
13/21Step2:Assumewr1=1,thenWr1=Nr1,Wr2=(vNr1)wr2.
1wr1=vs=12s(x)forx∈Xr1.
Weobtainwr2(Nr1).
Step3:Substitutealltheparametersaboveintovs=1s(x)s(y)=0forx,y∈Xr1.
SolveNr1(=|Yr1|)andkeeptheintegralsolutions.
14/21Listofpossibleparameters4≤v≤50vdr1r2α1a1α2a2γa3Nr1Nr2wr1wr212424304030102851663540240,14010611996852304113681328123956708324423281281284406024412321210129260602752336157109269049051521136157119112294333107361610169240803151231361610161054080315123115/21vdr1r2α1a1α2a2γa3Nr1Nr2wr1wr23912912931008036310940151015907091337711451281190390,190,13312145151015100901003965465451891811090120423674518918116701203873557451812181127010038721384518151890908042327355018161814290904289145020152012280100446325516/21Example2(16,6,2)design={v,d,r1,r2,Nr1,Nr2}={16,6,3,5,10,6}G=Z4*Z4BaseblockDandB={gD|g∈G}.
Du001230***1*2*3*=01230**1**2**3Xr1={gD|g∈G},whereG={(0,0),(0,1),(0,2),(1,1),(1,3),(2,2),(2,3),(1,0),(2,0),(3,0)}.
Xr2=B\Xr1.
17/21vdr1r2α1a1α2a2γa3Nr1wr1wr21663540240,1401013615710926904905151451281190390,190,133164281418160121601016010361642815211601216061607561962015191604160,1160,176110045222725120250182501845181361536196179024076919993621362301318024092182318/21FutureworkDoeseverytightrelative2-designontwoshellsinJ(v,d)havethestructureofcoherentcongurationArethereanysuchdesignswithnon-constantweight19/21ReferenceEi.
Bannai,Et.
Bannai,Remarksontheconceptsoftdesigns,J.
ApplMathComput.
40no.
1-2,(2012),195-207.
Ei.
Bannai,Et.
Bannai,Hi.
Bannai,Ontheexistenceoftightrelative2-designsonbinaryHammingassociationschemes,arXiv:1304.
5760Ei.
Bannai,Et.
Bannai,S.
Suda,H.
Tanaka,Onrelativet-designsinpolynomialassociationschemes,arXiv:1303.
7163Ei.
Bannai,Ta.
Ito,AlgebraiccombinatoricsI:Associationschemes,Benjamin/Cummings,MenloPark,CA,1984.
Th.
Beth,D.
Jungnickel,H.
Lenz,Designtheory,BibliographischesInstistu,1985.
20/21Thankyou!
LightNode是一家成立于2002年,总部位于香港的VPS服务商。提供基于KVM虚拟化技术.支持CentOS、Ubuntu或者Windows等操作系统。公司名:厦门靠谱云股份有限公司官方网站:https://www.lightnode.com拥有高质量香港CN2 GIA与东南亚节点(河内、曼谷、迪拜等)。最低月付7.71美金,按时付费,可随时取消。灵活满足开发建站、游戏应用、外贸电商等需求。首...
racknerd怎么样?racknerd今天发布了几款美国特价独立服务器的促销,本次商家主推高配置的服务器,各个配置给的都比较高,有Intel和AMD两种,硬盘也有NVMe和SSD等多咱组合可以选择,机房目前有夏洛特、洛杉矶、犹他州可以选择,性价比很高,有需要独服的朋友可以看看。点击进入:racknerd官方网站RackNerd暑假独服促销:CPU:双E5-2680v3 (24核心,48线程)内存...
青果云香港CN2_GIA主机测评青果云香港多线BGP网络,接入电信CN2 GIA等优质链路,测试IP:45.251.136.1青果网络QG.NET是一家高效多云管理服务商,拥有工信部颁发的全网云计算/CDN/IDC/ISP/IP-VPN等多项资质,是CNNIC/APNIC联盟的成员之一。青果云香港CN2_GIA主机性能分享下面和大家分享下。官方网站:点击进入CPU内存系统盘数据盘宽带ip价格购买地...
let美人2为你推荐
域名空间代理我想做域名空间代理!独立ip主机独立ip虚拟主机怎么样?是不是真的很好用,和vps有什么区别吗?海外服务器租用国外服务器租用深圳网站空间深圳网站设计 哪家好一些?虚拟主机控制面板万网的虚拟主机控制面板指的是什么呢?万网虚拟主机万网云虚拟主机怎么用,如何配置虚拟主机软件问虚拟主机用什么版本的软件比较好大连虚拟主机大连哪些地方的网通机房好?下载虚拟主机电脑虚拟机怎么弄论坛虚拟主机最近想买虚拟主机,用来做论坛。
台湾主机 长沙虚拟主机 过期域名 华为云服务 stablehost 韩国俄罗斯 双11抢红包攻略 patcha 国外在线代理 阿里云浏览器 免空 seednet 刀片服务器的优势 静态空间 共享主机 1g内存 电信托管 彩虹云 下载速度测试 全能空间 更多