AnIntroductiontoTheTwinPrimeConjectureAllisonBerkeDecember12,2006AbstractTwinprimesareprimesoftheform(p,p+2).
Therearemanyproofsfortheinnitudeofprimenumbers,butitisverydiculttoprovewhetherthereareaninnitenumberofpairsoftwinprimes.
Mostmathematiciansagreethattheevidencepointstowardthisconclusion,butnumerousattemptsataproofhavebeenfalsiedbysubsequentreview.
Theproblemitself,oneofthemostfamousopenproblemsinmathematics,hasyieldedanumberofrelatedresults,includingBrun'sconjecture,Mertens'theorems,andtheHardy-LittlewoodConjecture.
Alongwiththeseconjectures,thereareanumberofresultswhichareeasiertoarriveat,butneverthelesshelpmathematiciansthinkabouttheinnitudeofprimes,andthespecialpropertiesoftwinprimes.
Thispaperwillintroducetheaforementionedconjecturesassociatedwiththetwinprimeconjecture,andworkthroughsomeexercisesthatilluminatethedicultiesandintricaciesofthetwinprimeconjecture.
1Introduction:TheOriginalConjectureandFailedProofsThetermtwinprimewascoinedbyPaulStackelinthelatenineteenthcentury.
Sincethattime,mathematicianshavebeeninterestedinthepropertiesofrelatedprimes,bothinrelationtonumbertheoryasawhole,andasspecic,well-denedproblems.
Oneoftherstresultsoflookingattwinprimeswasthediscoverythat,asidefrom(3,5),alltwinprimesareoftheform6n±1.
Thiscomesfromnoticingthatanyprimegreaterthan3mustbeoftheform6n±1.
Toshowthis,notethatanyintegercanbewrittenas6x+y,wherexisanyinteger,andyis0,1,2,3,4or5.
Nowconsidereachyvalueindividually.
Wheny=0,6x+y=6xandisdivisibleby6.
Wheny=1therearenoimmediatelyrecognizablefactors,sothisisacandidateforprimacy.
Wheny=2,6x+2=2(3x+1),andsoisnotprime.
Forthecasewhen·y=3:6x+3=3(2x+1)andisnotprime.
Wheny=4:6x+4=2(3x+2)··andisnotprime.
Wheny=5,6x+5hasnoimmediatelyrecognizablefactors,andisthesecondcandidateforprimacy.
Thenallprimescanberepresentedaseither6n+1or6n1,andtwinprimes,sincetheyareseparatedbytwo,willhavetobe6n1and6n+1.
1TwinPrimeConjecture2Furtherresearchintotheconjecturehasbeenconcernedwithndingexpressionsforaformoftheprimecountingfunctionπ(x)thatdependonthetwinprimeconstant.
Theprimecountingfunctionisdenedasπ(x)={N(p)|px}whereN(p)denotesthenumberofprimes,p.
Onemotivationfordeningtheprimecountingfunctionisthatitcanbeusedtodetermineaformulaforthesizeoftheintervalsbetweenprimes,aswellasgivingusanindicationoftherateofdecaybywhichprimesthinoutinhighernumbers.
Ithasbeenshownalgebraicallythattheprimecountingfunctionincreasesasymptoticallywiththelogarithmicintegral[12].
Inthefollowingexpression,π2(x)referstothenumberofprimesoftheformpandp+2greaterthanx,andisthetwin2primeconstant,whichisdenedbytheexpression(19p11)2)overprimesp2.
ThetermO(x),meaning"ontheorderofx,"isdenedasfollows:iff(x)andg(x)aretwofunctionsdenedonthesameset,thenf(x)isO(g(x))asxgoestoinnityifandonlyifthereexistssomex0andsomeMsuchthat|f(x)|M|g(x)|forxgreaterthanx0.
Thisexpressionforthetwinprimecountingfunctionisπ2(x)cΠ2x[1+O(ln(ln(x)))](1)(ln(x))2ln(x)whichisthebestthathasbeenproventhusfar.
Theconstantcin(1)hasbeenreducedto6.
8325,downfrompreviousvaluesashighas9[12].
TheformationofthisinequalityinvolvestwoofMerten'stheoremswhichwillbediscussedinthefollowingsection.
HardyandLittlewood[3]haveconjecturedthatc=2,andusingthisassumptionhaveformulatedwhatisnowcalledtheStrongTwinPrimeConjecture.
Inthefollowingexpression,abmeansthataapproaches1batthelimitsoftheexpressionsaandb.
Inthiscase,thelimitisasxapproachesinnity.
xdxπ2(x)2Π2(ln(x))2.
(2)2Anecessaryconditionforthestrongconjecture(2)isthattheprimegapsconstant,Δ≡limsupn→∞pn+1pnbeequaltozero.
ThemostrecentattemptedpnproofofthetwinprimeconjecturewasthatofArenstorf,in2004[1],butanerrorwasfoundshortlyafteritspublication,anditwaswithdrawn,leavingtheconjectureopentothisday.
2Mertens'TheoremsAnumberofimportantresultsaboutthespacingofprimenumberswerederivedbyFranzMertens,aGermanmathematicianofthelatenineteenthandearlytwentiethcentury.
ThefollowingproofsofMertens'conjecturesleaduptotheresultthatthesumofthereciprocalsofprimesdiverges,whichwillcontrast3TwinPrimeConjecturewithBrun'sconjecture,thatthesumofthereciprocalsoftwinprimesconverges.
First,weshouldbrieyshowthattheprimesareinnite,forotherwisetheimplicationsofMertens'theoremsarenotobvious.
Euclid'sproofofthispostulate,hissecondtheorem,isasfollows.
Let2,3,5,.
.
.
,pbeanenumerationofallprimenumbersuptop,andletq=(235·.
.
.
p)+1.
Thenqisnotdivisiblebyanyoftheprimesup···toandincludingp.
Therefore,itiseitherprimeordivisiblebyaprimebetweenpandq.
Intherstcase,qisaprimegreaterthanp.
Inthesecondcase,thedivisorofqbetweenpandqisaprimegreaterthanp.
Thenforanyprimep,thisconstructiongivesusaprimegreaterthanp.
Thus,thenumberofprimesmustbeinnite[4].
NowwecanresumewithMertens'theorems.
MertensTheorem1:Foranyrealnumberx≥1,x0≤ln(n)0suchthat11p=ln(ln(x))+b1+O(ln(x)),x≥2.
(6)p≤x6TwinPrimeConjectureProof:Wecanwrite1=ln(p)1=u(n)f(n)ppln(p)p≤xp≤xn≤xwhereu(n)=ln(pp)ifn=p,and0otherwise,andf(t)=ln(1t).
WedenenewfunctionsU(t)andg(t)asfollowsln(p)U(t)=u(n)==ln(t)+g(t)pn≤tp≤tThenU(t)=0fort3TheformulationoftheHardy-LittlewoodconjecturebuildsuponsomeofthetechniquesusedtoproveBrun'sconjecture,namelytheBrunsievetechniques.
TheBrunsievecanbeconstructedasfollows:LetXbeanonempty,nitesetofNobjects,andletP1,PrberdierentpropertiesthattheelementsofthesetXmighthave.
LetN0denotethenumberofelementsofXthathavenoneoftheseproperties.
ForanysubsetI={i1,ik}of{1,2,r},letN(1)=N(i1,ik)denotethenumberofelementsofXthathaveeachofthepropertiesPi1,Pi2Pik.
LetN()=|X|=N.
Ifmisanonnegativeeveninteger,thenmN0≤(1)kN(I).
(9)k=0|I|=kIfmisanonnegativeoddinteger,thenmN0≥(1)kN(I).
[8](10)k=0|I|=kTheproofgiveninNathanson[8]isasfollows.
LetxbeanelementofthesetX,andsupposethatxhasexactlylpropertiesPi.
Ifl=0,thenxiscountedonceinN0andonceinN(),butisnotcountedinN(I)ifIisnonempty.
Ifl≥1,thenxisnotcountedinN0.
Byrenumberingtheproperties,wecanassumethatxhasthepropertiesP1,P2,Pl.
LetI{1,2,l,r}.
Ifi∈Iforsomei>l,thenxisnotcountedinN(I).
IfI{1,2,l}thenxcontributes1toN(I).
Foreachk=0,1,l,thereareexactlyklsuchsubsetswith|I|=k.
Ifm≥l,thentheelementxcontributesll(1)k=0kk=0TwinPrimeConjecture9totherightsidesoftheinequalities.
Ifm2cln(ln(x)),then·rrcln(ln(x)))k1xy(·m≤x2k2cln(ln(x)).
Ifweletc=max{2c,(ln(2)1)},andlet·ln(y)1x=e(3c·ln(ln(y)))=y3c·ln(ln(y))m=2[cln(ln(y))]·Thensinceln(y)ln(x)=3c·ln(ln(y))yy(ln(ln(y)))22c·ln(ln(y))2,y4y4y4y2m<22c·ln(ln(y))=(ln(y))2c·ln(2)≤(ln(y))2Thenm2cln(ln(y))2c·ln(ln(y)ln(y))32x≤x·=exp(ln(ln(y)))=y3c·Finally,x(ln(ln(x)))2π2(x)<<.
(ln(x))2TwinPrimeConjecture126ConclusionThetwinprimeconjecturemayneverbeproven,butstudyingthepropertiesoftwinprimesiscertainlyarewardingexercise.
RecentworkonthetwinprimeconjecturebyDanGoldstonandCemYilidrimhasfocusedoncreatingexpressionsforthegapsizebetweenprimes,andinparticularfocusingontheexpressionΔ=liminfpn+1pn=1n→∞ln(pn)ResearchintobetterexpressionsfortheintervalbetweenconsecutiveprimesiscurrentlybeingconductedatStanford,sponsoredbytheAmericanInstituteofMathematics[12].
Thoughnumbertheoryhasbeenthefoundationofmanydierentbranchesofhighermathematics,itsfundamentalproblemsremaininterestingandfruitfulforresearchersinterestedinthepropertiesofprimenumbers.
References[1]Arenstorf,R.
F.
"ThereAreInnitelyManyPrimeTwins.
"26May2004.
http://arxiv.
org/abs/math.
NT/0405509.
[2]Guy,R.
K.
"GapsbetweenPrimes.
TwinPrimes.
"A8inUnsolvedProblemsinNumberTheory,2nded.
NewYork:Springer-Verlag,pp.
19-23,1994.
[3]Hardy,G.
H.
andLittlewood,J.
E.
"SomeProblemsof'PartitioNumerorum.
'III.
OntheExpressionofaNumberasaSumofPrimes.
"ActaMath.
44,1-70,1923.
[4]Hardy,G.
H.
andWright,E.
M.
AnIntroductiontotheTheoryofNumbers,5thed.
Oxford,England:ClarendonPress,1979.
[5]Havil,J.
Gamma:ExploringEuler'sConstant.
Princeton,NJ:PrincetonUniversityPress,pp.
30-31,2003.
[6]Miller,S.
J.
andTakloo-Bighash,R.
AnInvitationtoNumberTheory.
Princeton,NJ:PrincetonUniversityPress,pp.
326-328,2006.
[7]Narkiewicz,W.
TheDevelopmentofPrimeNumberTheory.
Berlin,Germany:SpringerPress,2000.
[8]Nathanson,M.
B.
AdditiveNumberTheory.
NewYork,NewYork:SpringerPress,1996.
[9]Ribenboim,P.
TheNewBookofPrimeNumberRecords.
NewYork:Springer-Verlag,pp.
261-265,1996.
[10]Shanks,D.
SolvedandUnsolvedProblemsinNumberTheory,4thed.
NewYork:Chelsea,p.
30,1993.
13TwinPrimeConjecture[11]Tenenbaum,G.
"ReArenstorf'spaperontheTwinPrimeConjecture.
"8Jun2004.
[12]Weisstein,EricW.
"TwinPrimeConjecture"http://mathworld.
wolfram.
com/TwinPrimeConjecture.
html,2006.
[13]Young,R.
M.
ExcursionsinCalculus.
TheMathematicalAssociationofAmerica,1992.
PacificRack在本月发布了几款特价产品,其中最低款支持月付仅1.5美元,基于KVM架构,洛杉矶机房,PR-M系列。PacificRack简称PR,QN机房旗下站点,主要提供低价VPS主机产品,基于KVM架构,数据中心为自营洛杉矶机房,现在只有PR-M一个系列,分为了2个类别:常规(Elastic Compute Service)和多IP产品(Multi IP Server)。下面列出几款秒...
ShockHosting商家在前面文章中有介绍过几次。ShockHosting商家成立于2013年的美国主机商,目前主要提供虚拟主机、VPS主机、独立服务器和域名注册等综合IDC业务,现有美国洛杉矶、新泽西、芝加哥、达拉斯、荷兰阿姆斯特丹、英国和澳大利亚悉尼七大数据中心。这次有新增日本东京机房。而且同时有推出5折优惠促销,而且即刻使用支付宝下单的话还可获赠10美金的账户信用额度,折扣相比之前的常规...
imidc对日本独立服务器在搞特别促销,原价159美元的机器现在只需要88美元,而且给13个独立IPv4,30Mbps直连带宽,不限制流量。注意,本次促销只有一个链接,有2个不同的优惠码,你用不同的优惠码就对应着不同的配置,价格也不一样。88美元的机器,下单后默认不管就给512G SSD,要指定用HDD那就发工单,如果需要多加一个/28(13个)IPv4,每个月32美元...官方网站:https:...
let美人双胞胎姐妹为你推荐
国内ip代理谁能推荐一款最快的ip代理。海外域名我想了解一下“国内域名”,“国外域名”以及“海外服务器”这三个方面的一些知识1g虚拟主机我要做一个下载资料类网站,刚买了一个虚拟主机1G的,提供商说一次,只能上传一个小于10M的文件郑州虚拟主机59互联 亿恩科技 和郑州景安那一个公司的虚拟主机最好!我指的是速度和服务!谢谢!请大家凭良心说话!下载虚拟主机虚拟机软件到那里下载。怎么安装虚拟主机测评虚拟主机哪个最好域名解析域名解析怎么弄?域名停靠如何停靠域名,是免费的吗申请域名申请一个域名要多少钱?买域名买域名的时候需要那些注意?
独立ip虚拟主机 x3220 naning9韩国官网 谷歌香港 表格样式 parseerror 免费博客空间 天互数据 免空 韩国名字大全 hostloc shuang12 沈阳主机托管 智能dns解析 东莞主机托管 中国linux 第八届中美互联网论坛 windows2008 优惠服务器 cloudflare 更多