actionnano6
nano6 时间:2021-01-17 阅读:(
)
LaserInducedGraphene:EnRoutetoSmartSensingLibeiHuang1,JianjunSu1,YunSong1,RuquanYe1,2**RuquanYe,ruquanye@cityu.
edu.
hk1DepartmentofChemistry,CityUniversityofHongKong,Kowloon,HongKong,People'sRepublicofChina2StateKeyLabofMarinePollution,CityUniversityofHongKong,Kowloon,HongKong,People'sRepublicofChinaHIGHLIGHTSSummarizingthestrategiesforthesynthesisandengineeringoflaser-inducedgraphene,whichisessentialforthedesignofhigh-performancesensors.
IntroducingLIGsensorsforthedetectionofvariousstimuliwithafocusonthedesignprincipleandworkingmechanism.
DiscussingtheintegrationofLIGsensorswithsignaltransducersandconveyingtheprospectsofsmartingsensingsystemstocome.
ABSTRACTThediscoveryoflaser-inducedgraphene(LIG)frompolymersin2014hasarousedmuchattentioninrecentyears.
Abroadrangeofapplications,includingbatteries,catalysis,sterilization,andseparation,havebeenexplored.
TheadvantagesofLIGtechnologyoverconventionalgraphenesynthesismeth-odsareconspicuous,whichincludedesignablepatterning,environmentalfriend-liness,tunablecompositions,andcontrollablemorphologies.
Inaddition,LIGpossesseshighporosity,greatflexibility,andmechanicalrobustness,andexcel-lentelectricandthermalconductivity.
Thepatternableandprintablemanufactur-ingprocessandtheadvantageouspropertiesofLIGilluminateanewpathwayfordevelopingminiaturizedgraphenedevices.
Itsuseinsensingapplicationshasgrownswiftlyfromasingledetectioncomponenttoanintegratedsmartdetectionsystem.
Inthisminireview,westartwiththeintroductionofsyntheticeffortsrelatedtothefabricationofLIGsensors.
Then,wehighlighttheachieve-mentofLIGsensorsforthedetectionofadiversityofstimuliwithafocusonthedesignprincipleandworkingmechanism.
Futuredevelopmentofthetechniquestowardinsituandsmartdetectionofmultiplestimuliinwidespreadapplicationswillbediscussed.
KEYWORDSLaser-inducedgraphene;Smartsensor;Printableelectronics;DesignprincipleISSN2311-6706e-ISSN2150-5551CN31-2103/TBREVIEWCiteasNano-MicroLett.
(2020)12:157Received:23April2020Accepted:9July2020Publishedonline:3August2020TheAuthor(s)2020https://doi.
org/10.
1007/s40820-020-00496-0FabricationandengineeringMechanicpropertiesNon-specificbindingSpecificbindingPressStretchBendLIGsynthesisMechanicsensorChemicalsensorBiomimeticnosePathogenRNAGlucoseMotioncaptureSoundOHHOHOHOHHHHOOHHFabricationandengineeringMechanicpropertiesNon-specificbindingSpecificbindingPressStretchBendLIGsynthesisMechanicsensorChemicalsensorBiomimeticnosePathogenRNAGlucoseMotioncaptureSoundOHHOHOHOHHHHOOHHNano-MicroLett.
(2020)12:157157Page2of17https://doi.
org/10.
1007/s40820-020-00496-01IntroductionThereportofhighelectronmobilityandstabilityofhigh-qualityfew-layergrapheneexfoliatedbythe"ScotchTape"in2004wasreputedagroundbreakingexperimentinmaterialsscience[1].
Sincethen,manyresearchershavebeendevotedtoexploringitsfundamentalpropertiesanddevelopingappli-cationsinbroadfields.
Tocommercializegraphene,varioussynthesisprotocolshavebeendeveloped,suchasmechanicalexfoliation,chemicalvapordeposition,andchemicalreduc-tionofgrapheneoxide[2].
Thesemethodshavetheadvan-tageinmanufacturinggrapheneofdifferentgrades,yettheirscale-upproductionscouldbehamperedbytheweaknesssuchaslowproductivity,highenergyconsumption,andmas-sivewastesgeneration.
In2014,itwasfoundthatpolymerssuchaspolyimide(PI)couldbedirectlyconvertedtoporousgrapheneusinganinfraredCO2laser,amachinethatiscom-monlyfoundinindustry[3].
BesidesinfraredCO2(10.
6μm)laser,visiblelaser[4–9]andultravioletlaser[10]havealsobeensuccessfullyusedtosynthesizeLIG.
Forinfraredlaser,thephotothermaleffectwassuggestedtoaccountforthetran-sition.
Underinstantaneouspyrolysis,thechemicalbondsintheprecursorwouldbebrokenandrecombinedwiththereleaseofgas[3].
Forultravioletlaser,aphotochemicalpro-cesswasmorelikelytohappen.
Sincethephotoenergyofultravioletlaserisclosetothatofchemicalbonds,itcoulddirectlybreakthechemicalbondsinprecursorandgenerateLIG[10].
Forvisiblelaser,bothphotothermaleffectandpho-tochemicaleffectcontributetotheLIGformation[4,9].
Thelaserirradiationprocesswasperformedinambientconditionswithminisculewastesgenerated.
Inaddition,theshapeofLIGcouldbeeasilycontrolledbythecomputerdesign,whichholdsagreatpromisetowardthedevelopmentofprintableelectronics.
TheLIGhasasurfaceareaof428m2g1andresistanceof≤10Ω/[11,12],whicharecomparabletothegraphenesynthesizedbytheconventionalmethods.
PriortoLIGtechnology,manymanufacturingmethodsthatarealsopatternablehavebeendevelopedtofabricategraphene,suchasscreenprinting[13–15],3Dprinting[16–21],andphoto-lithography[22–24].
Table1analyzesthesetechnologies'meritsandflaws.
TheuniqueadvantagesofLIGhavemadeitapopulargraphenesynthesismethodnowadays.
SinceLIG'sdiscovery,tremendousresearcheffortsacrosstheglobehavebeenpaidtoimprovethesynthesisofLIGandtransitingitintoaplethoraofapplicationareas.
Forthesynthesis,theprecursorshavebeenextendedfromPItoalmostallkindsofsubstratessuchasvariouscommercialpolymers[3,25],metal/plasticcomposites[26,27],andnaturallyoccurringmaterials[12,28].
Inaddition,LIGcanbeeasilyembeddedinotherhostmaterialstoformfunctionalcomposites[29,30],whichimprovesthemechanicalflexibilityandstretchability.
Thescale-upmanufacturingofLIG,suchaslaminatedprintingandroll-to-rollproductioncouldbeachievedviatheoptimiza-tionoflasersettingsandthedesignofanautomationstream-line[31–33].
TheadvancesinLIGsynthesisandengineer-inghaveexpandeditsuseindiversefields.
Forexample,thehigh-performancemicro-supercapacitorsbasedonLIGcouldbeattainedbyengineeringeffortssuchasseriesorparallelconfiguration[34]andchemicalspathwaysuchasheteroatomdopingormakingacomposite[27,35,36].
Theself-sterilizingpropertyofLIGwasstudiedforwatertreatment[29,37,38].
Avarietyofchemicalreactions,suchasoxygenreductionreaction[26],oxygenevolutionreaction[28],andhydrogenperoxidegeneration[38],couldbecatalyzedbythemetal/LIGandmetaloxide/LIGcomposites.
Inadditiontotheabove-mentionedapplications,theabilitytocontroltheshapeofLIGandtheexcellentprop-ertiesofLIGhavemadeitapowertechniqueindevelopinghighlysensitiveandrobustsensorsforthedetectionofadiversityofstimuli.
Thedevelopmentofhighlysensitivesensorsisimperativeinourdailylives.
Forinstance,theoutbreakofcoronavirusdisease(COVID-19)sweptglob-allyandhasbeendesignatedaglobalhealthemergencybytheworldhealthorganization(WHO)[39].
Almosttenthousandcholeraandotherwater-bornediseasecasesandtheongoingglobalwarmingaffectpeople'sdailylife[40].
Totackletheseproblems,sensorsplayanessentialrole.
Forexample,healthcaresensorsformonitoringbodytemperatureandrespiratorycouldreflecttheconditionsofpatients.
Thedetectionofenvironmentalqualitysuchasairandwaterareimportantformaintainingahealthyandsafelivingenvironment.
Fortunately,withglobalresearchefforts,theLIGtechniquehasbeendevelopedtodetectabroadrangeofstimuli.
Thisreviewfocusesontheadvance-mentofsensorsfabricatedfromtheLIGtechnology.
Wefirstbrieflyintroducethefabricationandstructuralmodi-ficationofLIG.
Thedesign,mechanism,andtheperfor-manceofLIG-basedsensorsarethensummarizedinthefollowingsection.
Finally,wewilldiscusstheimpactofLIGanditsfuturedevelopment.
Nano-MicroLett.
(2020)12:157Page3of171572SynthesisofLIGInthissection,wewilloverviewthesyntheticeffortsforthesynthesisofLIGanditsmodificationspertainingtothefabricationofLIG-basedsensors.
2.
1FabricationandEngineeringofLIGIn2014,JianLinfoundthatthePIcouldtransformintoporousgraphenewhenitwaslasedbyaCO2laserinambi-entconditions[3].
Theshapeofgraphene,asdemonstratedbythe"owl"shapedLIGinFig.
1a,wascontrolledbytheprogrammablecomputerdesignwithoutusingamask.
Thescanningelectronicmicroscopy(SEM)andhigh-resolutiontransmissionelectronmicroscope(HRTEM)inFig.
1bshowgraphene'shighporosityandcharacteristiclatticespaceof~3.
4.
Withthecontrolofatmosphericcompositions,thegrouptunedthesurfacepropertiesofLIGwithacontactanglerangingfrom0°to>150°(Fig.
1c)[41].
Bychangingtheradiationenergy,operationalmodes,pulsesdensity,andlaserdutycycle,thegraphenemorphologycouldvaryfromsheettofiber(Fig.
1d)andtodroplets[42],aswellasspheri-cal[25]andtubularstructure[43].
Themorphictransitionhelpsthemanipulationofproperties.
Forexample,theLIGchangedfromhydrophilictosuperhydrophobicduetothedifferentsurfacetension[43].
InadditiontoPI,otherbioma-terialsorsyntheticpolymerssuchaspolyetherimide(PEI)[3],wood[12],food[44],andpolysulfone(PSU)[37]havealsobeensuccessfullyconvertedtoLIGbymultiplestep-wiselasing,additionoffireretardantordefocusedlasing.
ThecompositionengineeringofLIGhelpstoimproveitschemicalandmechanicalproperties.
Thisincludestheheteroatomdoping,formationofhybridcomposites,andtheembeddedstructures.
TheheteroatomdopingofLIGcouldbeachievedbyusingadditives-containingprecur-sororpolymercompositesandchangingcarriergasesinthelasingatmosphere[27,37].
TheLIGhybridmaterialcouldbeobtainedbysubsequentdepositionoffunctionalmaterialsontoLIG.
Thiscanbeachievedbyelectrodepo-sition[45]orbyasecondlasingofthemetalsalts-loadedLIG[35].
TheembeddedstructurewasattainedbyfirstsynthesizingLIGonPIsubstrateandtheninfiltratingfillersuchasPVAandPDMS.
Aftercuring,thePIsubstratewaspeeledoffandtheLIGwouldbeleftinthefillers.
ThisembeddedstructurecouldgreatlyimprovetheadherencebetweensubstrateandLIG[29].
2.
2MechanicPropertiesofLIGTheachievementincontrollingthestructureandcomposi-tionofLIGhasfurtherimproveditspropertiesandexpandeditsuse.
Sensorsworkingindifferentenvironmentrequiredifferentmechanicproperties.
Forexample,forwearableelectronics,themechanicflexibilityandstretchabilityshouldbeafforded.
Figure2a,bshowsthemechanicflexibilityofaLIGsupercapacitorfabricatedonaPIsubstrate.
Benefit-ingfromthemechanicalstrengthofPIandtheintegrityofLIGstructure,thecapacitanceretentionofboron-dopedLIGcapacitancestillachievednearly100%atabendradiusof17mm[27].
Figure2c,dshowstheimagesandstretchabilitytestofasinglestretchablemicro-supercapacitors(S-MSC)madefromLIGcomposites.
S-MSCunderdifferentstretch-ingstatesshowedsimilarcapacitivepropertiesandonly15%lossoftheinitialcapacitanceafterrepeating100%stretch-ing[46].
Forsensorsusedinconstruction,themechanicintegrityandrigidityaremoreimportantforadaptingtothesurroundingextremeenvironment.
ALIGembeddedwithcementgassensorwasfabricatedbytheprocessshowninFig.
2e.
ThecementwaswellintercalatedwithintheLIGlargeporesandtheLIGpatternkeptintactaftertransferringLIGfromPItocement(Fig.
2f).
ThissystemcouldworkTable1Comparisonofscreenprinting,3Dprinting,photolithogra-phy,andLIGScreenprinting3Dprint-ingPhotoli-thographyLIGPatternableMask/mold-free***Highresolution(40μm)(150nm)(atomic)(12μm)Highyield*Lowcost*GO-free***Directcontrolofsurfacemorphologyandproperties**Nano-MicroLett.
(2020)12:157157Page4of17https://doi.
org/10.
1007/s40820-020-00496-0underultrahightemperaturewhilemaintainingthestructuralintegrity[47].
3LIGBasedChemicalSensorsChemicalsensorsarebroadlyusedintheexaminationoffoodsafety,thecontaminantsinaquaculture,andportablewater,airqualityaroundindustrieswithhazardgasemis-sions,andthemetabolitessuchasglucose,lacticacid,anddopamineinpointofcare.
Theworkingmechanismofchemicalsdetectionusuallyreliesonthevariationinelec-tricsignalsincludingresistance,capacitance,andthechargetransferresistanceinducedbythestimuli.
Thedetectionofsuchvariationcouldbecatalogedintotwomaingroups,oneisbasedonthespecificbindingofchemicalstothesurfaceofLIG,andtheotheristhenon-specificbindingdetectionpathway.
3.
1SpecificBindingofChemicalSensorsThespecific-binding-typechemicalsensorsareestablishedonthesurfacefunctionalizationoftheLIGwithprobessuchasantibodies(animmunoglobulinwhichcouldrecognizeauniquemoleculeofthepathogen),enzyme(biologicalcatalysts),andaptamers(ashortDNAsequencewhichcanspecificallycombinewiththrombin).
Duetotheprecisecombinationbetweenrecognitionelementsandtargetedchemicals,thesensorsoftenshowextraordinarysensingsensitivity.
Cardosonetal.
preparedLIGelectrodecom-binedwithabiorecognitionelementtodetectchloramphen-icol(CAP)[48].
Figure3ashowsthefabricationofthreeelectrodesbyone-stepandmask-freeLIGtechnologyandthemodificationoftheworkingelectrode.
TostabilizetheloosenLIGparticlesandreceivemoresensinglayers,the3,4-ethylenedioxythiophene(EDOT)waselectrochemicallyAirorO23%H2/ArAr(Chamber)H2(Chamber)16012080400Contactangle(°))d()c((a)LaserPILIG3.
37(b)all0.
50.
512460.
5124Laserdutycycle(%)6Fig.
1TunablestructureandcompositionsofLIG.
aSchematicofthesynthesisprocessofLIGfromPI.
bSEMandHRTEM(inset)imageofLIG,scalebaris10μmand5nm,respectively.
a,bAdaptedwiththepermissionfromRef.
[3],Copyright2014SpringerNature.
cContactanglesofLIGsamplespreparedunderdifferentgasatmosphereswithdifferentlaserdutycycles.
AdaptedwiththepermissionfromRef.
[41],Copyright2017WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheim.
dSEMimageofLIGfiber,scalebaris500μm.
Adaptedwiththeper-missionfromRef.
[42],Copyright2018ElsevierNano-MicroLett.
(2020)12:157Page5of17157polymerizedtoformPEDOTintheworkingelectrode.
ThesamestrategyofthePEDOTdepositionwasappliedinLIG-baseddopaminesensor[49],whichsignificantlyenhancedtheelectrontransferresponsesandthesensingperformance.
EriochromeblackT(EBT)waselectropolymerizedinthepresenceoftheCAPtemplate.
Molecularlyimprintedpoly-mer(MIP)wasthenformedandservedastherecognitionelementofCAPsensor.
ThesensorwhichwasassembledwithoutCAPtemplatewasreferredtoNIP.
Whenthecon-centrationofCAPincreased,therewouldbemoreinter-actionbetweenCAPandMIP,whichinterferedwiththeinteractionbetweentheelectrodesurfaceandelectrolyte.
Thechargetransferresistance(Rct),aparameterreflectingthechargetransferbetweentheelectrodesurfaceandelec-trolyte,couldthereforebeusedtomeasuretheconcentra-tionofCAP.
TheanalyticalperformanceofCAPsensorwasdemonstratedinFig.
3b,c.
TheMIPmaintainedthelinearbehaviorattheconcentrationfrom1nMto10mMwithanaverageslopof162.
5Ω/decadeandalimitofdetec-tion(LOD)aslowas0.
62nM,whileNIPhadnospecificresponsewitharandomrelationshipbetweenRctandCAPconcentration.
ThedifferentresponsebehaviorbetweenMIPandNIPunderlinedthekeyroleofspecificbinding.
Inaddition,theselectivityofMIPwasstudiedbyinter-feringwithoxytetracycline(OTC),sodiumsulfadiazine,andamoxicillin(AMC).
Thelowvalueofrelativestandarddeviation(RSD)forinterferencespeciesOTCandAMCindicatedtheexcellentselectivityofMIP.
ThoughRSDforsodiumsulfadiazinereached24.
79%,itwasbecauseofthechemicalreactionbetweenCAPandsulfadiazineratherthantheinterferingeffectofsensingsurface.
Theresponsesen-sitivityandselectivityofLIG-basedMIPsensorwerecom-parablewithsensorsmadebycommercialgraphene-andcarbon-basedscreen-printedelectrode.
TheworkshowedahighpotentialofprintableLIG-basedMIPsensorforon-siteanalysis.
11010090807060501.
00.
60.
20.
20.
61.
0Retention(%)510Bentradius(mm)2015(b)(d)(c)(e)(f)LIGLaseCasecementPeelPICompositeCementPILIGGasSensorCement1cm(a)0%25%50%100%0.
20.
20.
6Potential(V)Current(mA)1.
00%25%50%100%Fig.
2MechanicLIGanditscomposites.
aDigitalphotographofabentboron-dopedLIGatabendingradiusof10mm.
bCapacitancereten-tionofboron-dopedLIGcapacitanceatdifferentbendingradii.
a,bAdaptedwiththepermissionfromRef.
[27],Copyright2018ElsevierLtd.
ImagescandstretchabilitytestdofaS-MSCat0,25,50,and100%stain.
c,dAdaptedwiththepermissionfromRef.
[46],Copyright2019WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheim.
eSchematicshowingtheprocessofembeddingaLIG-basedsensorintocement.
fOpti-calimageoftheLIGsensor-embeddedincement.
e,fAdaptedwiththepermissionfromRef.
[47],Copyright2019AmericanChemicalSocietyNano-MicroLett.
(2020)12:157157Page6of17https://doi.
org/10.
1007/s40820-020-00496-0Usingsimilarspecificbindingmechanism,ahostofmate-rialshavebeensuccessfullydetected,rangingfromsmallmoleculestobiomoleculesandevenpathogen.
Forexam-ple,smallmoleculessuchasthrombin(anenzymeemerg-inginclottingprocessthatpromotesplateletactivationandaggregation)[50]andbisphenolA(BPA)[51]weredetectedbyimmobilizingspecificaptamersontoLIG.
Glucose[52],biogenicamines[53],andurea[54]sensorswerefabricatedbyanchoringenzymes,andtherecognitionofionsandthemeasurementofconcentrationswereachievedbythefunc-tionalizationofionophores[55].
Thesesensorsarebasedonthechangeofsurfacepropertiesafterinteractingwiththechemicals,whichcanbetransducedintoelectricsignalsrangingfromsurfacecapacitancetoredoxcurrentdensi-ties,andresistance.
Figure4aillustratestheassemblypro-cessofaptamerfunctionalizedLIGelectrodeforthrombindetectionusingtheredoxcurrentdensity.
Thefunctionaliza-tionof1-pyrenebutyricacid(PBA)onLIGprovideselec-trodeenoughcarboxylgroups,whichcouldberapidlyandcovalentlybondedwiththeamino-functionalizedaptamer.
Accordingtothedifferentialpulsevoltammetry(DPV),thebareLIGelectrodewithoutPBAmodificationshowedalmostnochangebeforeandafteraptamerfunctionalization,under-liningtheimportantroleofPBA.
LIGpossesseshighspe-cificsurfacearea,ithasalargenumberofedgeplane/defectsitesandhighheterogeneouselectrontransferrate.
PotassiumNCNOOOpolyimidegrapheneencapsulationelectrodefabricationPlGraphenePEDOTdepositionAminationTemplateremovalElectropolymerizationPlasticSilverinkGrapheneEBTAminePEDOTCAPElectrodefabrication(a))c()b(ElectrodemodificationCO2lasery=162.
5x+1813.
3R2=0.
9923180090001470CAPCAP+AMC11.
96%3.
44%24.
79%CAP+OTCCAP+sulfadiazineLog(CAP,M)Rct()12006000Rct()Fig.
3FabricationprocessandsensingperformanceofCAPsensor.
aSchematicrepresentationoftheworkflowemployedontheproductionoftheLIGelectrodes(top)andtheMIPfabrication(bottom)fortheelectrochemicalbiosensorfordetectionofCAP.
bDependenceofRctonCAPconcentration.
cSelectivitybehaviorofthebiosensorforCAPagainstOTC,AMCandsulfadiazine.
a–cAdaptedwiththepermissionfromRef.
[48],Copyright2018ElsevierB.
VNano-MicroLett.
(2020)12:157Page7of17157ferricyanide(Fe(CN)63/4)wasthenusedastheinner-sphereredoxspeciestoindicatethesurfacepropertyofelectrodes[56,57].
Inshort,thepeakcurrentofredoxcoupledecreaseswiththereductioninedgeplanecontentofelectrodes.
Theincreaseinthrombinconcentrationleadedtothereductioninpeakcurrent,whichwasbecausethatthethrombincapturedbyaptamerreducedtheedgeplaneareaanddecreasedtheheterogeneouselectrontransferrateofFe(CN)63/4[50].
Asaresult,thehigherthrombinconcentration,thelessLIGelectrodesurfacewasavailableforhexacyanoferrate(III),andthus,thelowerpeakcurrentrenderedinDPV.
Besidestheredoxsignalasusedbythethrombinsensors,thevaria-tioninsurfacecapacitanceofLIGuponspecificbindingisanothereffectivemediatorfordetection.
ThiswasshownbyChengetal.
,whodevelopedaLIGsensorforthedetectionofBPA(Fig.
4b)[51].
WhenBPAbondedtoaptamer,astheBPAparticlesarenon-conductive,itinhibitedtheinterfacialchargeaccommodationandhencereducedthecapacitance.
TheauthorsalsofoundthatintroducingalternatingcurrentcanspeedupthetransportationofBPAmolecules,whichsignificantlycurtailedtheresponsetime.
Thesuperhighsen-sitivityofthisBPAsensorwereascribedtotheporousnano-structureofLIGandthespecificbindingbetweenaptamerandBPA.
Athirdtypeofspecificdetectionmethodsisfromthecatalyticreactionofenzyme.
Figure4cshowsthedetec-tionmechanismofanenzymaticglucosesensorfromcascadereactions[52].
Ag/AgClandLIG(rGO)servedasreferenceelectrodeandworkingelectrode,respectively.
Thedepositionofsilvernanowires(AgNW)onLIGwastoimprovethecon-ductivityofLIGundermechanicaldeformation.
Thefiltra-tionofPDMSwasforfurtherpeelingoffelectrodesfromPI.
AndtheadditionalAuandPtnanoparticles(AuPtNP)wereusedasthecatalyststogreatlyincreasetheelectrochemicallyactivepropertiesanddeformability.
Atthepresenceofglu-cose,theglucoseoxidase(GOX)willproducegluconicacidandhydrogenperoxide(H2O2).
ThegeneratedH2O2willthenbedetectedbytheLIGworkingelectrodefromtheampero-metriccurrentresponseinducedbytheoxidationreactionofH2O2.
Fromthecurrentdensity,theglucoseconcentrationcouldbereflected[58].
Theglucosecouldbedetectedwithhighsensitivityandnotaffectedbytheadditionofascorbicacid(AA),uricacid(UA),andNaClsolution,astheglucoseoxidaseinteractsspecificallywithglucose.
Thedetectionofglucosecouldalsobeachievedusingothersensingelementssuchasfluorescentprobes[59],whichalsoshowhighselec-tivityandsensitivityindetection.
YettheLIGsensorsmighthaveadvantagesincertainscenarioasitdoesnotrequirespecificinstrumentation.
Otheranalytes,suchasurea[54],canalsobeselectivelymonitoredbyusingtheircorrespond-ingenzymes.
Inadditiontosmallmoleculesandbiomolecules,thedetectionofpathogenfromthevariationofelectrodeimped-ancewasreportedbyWang'sgroup[60].
Theantibodyandbovineserumalbumin(BSA)wereanchoredontoLIGforthespecificabsorptionofpathogenE.
coliO157:H7(Fig.
4d).
WhenE.
ColicoveredtheLIGsurface,itinterferedwiththechargetransferbetweentheelectrodeandtheelectrolyteandincreasedtheresistance.
Therefore,astheconcentrationofE.
colirangedfrom1*102to1*108cfumL1,thesemicirclediameterofNyquistplotsincreasedandalinearrelationshipbetweentheE.
coliconcentrationandtheelectrontransferresistancewasfound(Fig.
4e,f).
Yetthenon-targetbacteriahadnosignificantresponse.
Theauthoralsocompareddif-ferentelectricsignalsinducedbytheadsorbedE.
coliandfoundthatthechargetransferresistancehadamuchhigherdetectionsensitivitythansheetresistanceanddoublelayercapacitance.
Insignificantimpedancechangeof≤10%afterhundredsofbendingcyclesconfirmedtheexcellentflex-ibilityoftheLIG-basedpathogensensor.
3.
2NonspecificBindingofChemicalSensorsNon-specificbindingchemicalsensorsalsoplayanimpor-tantpartinchemicalsensors.
Withouttheuseofrecognitionelementssuchasantibodyandaptamer,thecostofthenon-specificbindingsensorsisusuallylower.
Boththeintrinsicchemicalredoxreactionsandthephysicalpropertiesofthechemicalsareinformativesourcesforsensing.
3.
2.
1ChemicalRedoxReactionThechemicalredoxreactionhasbeencommonlyusedforthedetectionofsolutesandevengasmolecules.
Thedetec-tioncouldbebothqualitativeandquantitative.
Forexample,theredoxpotentialshelptodifferentiatedifferentanalytes,andthecurrentdensityrelatedtotheredoxreactioncanpro-videinformationontheconcentrationsofanalytes.
Gao'sgroupreportedawearablesensorforuricacid(UA)andtyrosine(Tyr)detectioninsweat[61].
DPViscapabletoevaluatedifferentanalytesbyextrapolatinginformationfromNano-MicroLett.
(2020)12:157157Page8of17https://doi.
org/10.
1007/s40820-020-00496-0theoxidationcurrentpeakintensitiesandoxidationpoten-tials.
TheoxidationpeaksofUAandTyrlocatedat~0.
39and~0.
64V,respectively,whichsimultaneouslydetecteddifferentmetabolites.
TehraniandBavarianfabricatedadis-posalglucosesensorusingdirectlaserengravedgraphene(DLEG)withdecompositionofcoppernanocubes(CuNCs)[62].
Whenaddedglucosewithdifferentconcentration,thecurrentincreasedwithdifferentamplitude(Fig.
5a),show-ingthefeasibilityofquantitativedetection.
Figure5billus-tratesthecurrentwereinlinearrelationshipwiththeglucose[Fe(CN)6]4(a)(c)(d)ASBydobitnAE.
coliNafionEnz.
layerPtAuNPLIGAgNWAg/AgClPDMS(b)FluidflowBPAAptamerBPS(interference)6-Mercaptohexanol[Fe(CN)6]4[Fe(CN)6]3ThrombinbindingLIGGlucoseOxidaselayerAu/rGO/AuPtNPNafionMembraneGlucoseGluconicAcidAptamer1-Pyrenebutyricacid[Fe(CN)6]3eO2H2O2H2O2GOx(Ox)GOx(Red)1501209060300150250(e)(f)4501*102-1*108cfumL1Realimpedance()Imaginaryimpedance()350420360300240180Electrontransferresistance()Y=131.
06+29.
93XR2=0.
9551234Concentrationofbacteria(LogcfumL1)5678Fig.
4Variousspecificbindingsensors.
Schematicofathrombinsensor,bBPAsensor,andcenzymaticglucosebiosensorsensor.
AdaptedwiththepermissionfromaRef.
[50],Copyright2017AmericanChemicalSociety;bRef.
[51],Copyright2016AmericanChemicalSociety;cRef.
[52],Copyright2018ElsevierB.
V.
dSchematicillustrationoftheAuNPs-LIG-basedimmunosensorforthedetectionofE.
coliO157:H7.
eNyquistplotsofE.
colisensor.
fCalibrationcurveoftheimpedanceresponsewiththeconcentrations.
d–fAdaptedwiththepermissionfromRef.
[60],Copyright2019ElsevierB.
VNano-MicroLett.
(2020)12:157Page9of17157concentration,andtheexcellentsensitivityof4532.
2A/mM/cm2andlinearrangefrom25Mto40mMwereachieved.
Non-enzymaticH2O2sensor[63]anddopaminesensor[64]basedonthereductioncurrentandconcentrationofH2O2wasalsosuccessfullymade.
3.
2.
2PhysicalPropertiesThephysicalpropertiessuchastheresistanceofLIGuponinteractingwithanalyteandtheconductivityorimpedanceofanalytesolutionarealsousedtoprobetheresponsefromstimuli.
Forexample,anartificialnosebasedonthechemi-calbondingbetweenpalladium(Pd)andhydrogen(H2)forhydrogendetectionwasmadebytheParkgroup[65].
Theturbinateplaysanimportantroleforodorperceptionduetothelargesurfaceareanatureandtheabilitytopropelairtowardtheolfactionnervereceptors.
Inspiredbythetur-binatestructure,biomimeticturbinate-likeLIG-basedH2sensorwasdeveloped.
ThesensormadeuseofLIG'shighporosityandelectricconductivity,whichhelpedtoimprovethesensitivityofthedevice.
ThePdnanoparticles(NPs)wereusedasthemediumforhydrogensensingbecauseofthehighaffinityofhydrogentoPd.
Figure6aillustratesthecatalyticreactionmechanismofLIG/Pdsenor.
Theas-preparedLIGshowedn-typebehaviorduetoconsiderableoxygenandnitrogenatomsonLIG.
TheabsorptionofH2byPdNPschangedtheFermienergylevelofPdandreducedtheworkfunctionofPd.
ThechargesthentransferredfromPdtoLIG,andthus,thechargecarrierdensityofn-typeLIGincreases,leadingtothedecreaseinLIG'sresistance.
TheresistancevariedwithH2concentrationlinearly.
TheauthorsfurthertransferredtheLIG/Pdcompositesintoflexiblepolyethyleneterephthalate(PET)substrateandmeasuredtheresistanceresponseunderdifferentbendingstates(Fig.
6b).
Thenegligiblevariationinresistanceresponseunderdif-ferentbendingstrengthevidencedtheexcellentmechanicflexibilityoftheH2sensor.
SimilarworkingmechanismwasemployedinNO2detectionbyHogroup[66].
Thethermalconductivityofgasisanotherusefulparam-eterforthefabricationofgassensors,asreportedbyTour'sgroup[47].
ThesensorwasfabricatedbylinkingaLIGfila-mentwithawidthof57mtotwoplanarLIGelectrodes(Fig.
2f).
WhenthedevicewasJoule-heated,mostofheatlocalizedaroundthefilamentbecauseofitslargeresistance.
Whenthesensorwasexposedtogas,theheatedfilamentcooleddownduetotheconvectiveheatlosstothegas.
Gaswithhigherthermalconductivitydecreasesthetemperatureoffilamentmoresignificantly.
Sincetheresistanceofthefilamentistemperature-dependent,thevariationinresist-ancewouldthereforehelptoidentifythegas.
Thekathar-ometer-likegassensorcouldbeusedtomonitorvariousgasoncethethermalconductivity,andthetemperaturerelation-shipoftestedgaswasunequivocal.
Variousgasessuchasair,helium,oxygen,andcarbondioxidehavebeendetected(Fig.
6c).
Figure6dshowsresponseofairsensorbendingwitharadiusofcurvatureof7mmwithin1000cycles,andtheminorvariationsimpliedthattheLIG-basedgassensorpossessedrobustresponseandgoodmechanicflexibility.
Inaddition,theauthorembeddedthegassensorintocementanddemonstratedtheviabilityofusingthissmartbuildingmaterialforthemonitoringofthecompositionsinfluegas.
Therearealsoothernon-specificbindingchemicalsen-sorsbuiltontheextrinsicpropertiesofanalytes.
Forexam-ple,Nag'sgroupexploitedsalinity(sodium)sensor[67]25M0.
1mM0.
25mMDLEG-CuNCsDLEG1mM4.
54.
03.
53.
02.
52.
01.
51.
00.
50Current(mA)0100200Time(s)0.
350.
310.
270.
230.
190.
15300400Current(mA)5070t(s)901100.
00450.
00400.
00350.
00300.
00250.
00200.
00150.
00100.
00050Current(A)00.
0020.
0040.
0060.
0080.
010Glucoseconcentration(M)y=0.
6795x+0.
0002R2=0.
9936(a)(b)Fig.
5aAmperometriccurrentresponsewithsuccessiveadditionofdifferentglucoseconcentrations.
bCalibrationcurveoftheglucosesensor.
a,bAdaptedwiththepermissionfromRef.
[62],Copyright2016SpringerNatureNano-MicroLett.
(2020)12:157157Page10of17https://doi.
org/10.
1007/s40820-020-00496-0andnitratesensor[68]fromtheresistanceofthesolution.
Theimpedanceofasolutionconsistsofinternalcapaci-tance(Cint),resistanceofsolution(Rsol),andcapacitanceofsolution(Csol).
RsolandCsolareinfluencedbythesolu-tionmedium.
TherealpartofimpedanceRsolwasusedtoinvestigatetheionconcentrations.
Whentheconcentrationofsolutionincreased,theRsolreducedduetotheenhancedionicconductivity.
Figure6edepictsthelinearimped-anceresponsetowardnitrateconcentration,andthesensorachievedawidedetectionrangeof1–70ppm.
Sincetheionicconductivitycouldalsobeaffectedbytemperature,theauthorfurtheraddedaLIG-basedtemperaturesensortocorrectthetemperatureeffect.
ThetemperaturesensorwasdesignedfromthesamemechanismastheTour's[47],whichwasbasedonthecorrelationbetweentheresistanceofLIGandthesurroundingtemperature.
Figure6fshowsthatthemeasuredtemperaturefromtheLIG-basedsensorwasconsistentwiththeactualtemperature.
Thecompensationoftemperatureinterferencegreatlyimprovedtheprecisionofsensing.
TheLIG-basedhumiditysensorsalsoutilizedtheextrinsicproperties(changeofcapacitance)[69,70].
AlthoughextrinsicpropertiesofanalyteprovideasimpleEcH2H2Currentflow(e)(f)n-typeEfEvρ=+∞ρ=3cmρ=2cm0.
60.
91.
21.
51.
82.
12.
4Response(R/R0%)0123456782010010203040505040302010043210R/RHe(%)R/RHe(%)0.
2(b)(a)(c)(d)0.
40.
6Sensitivity(a.
u.
)Concentration(%)0.
81.
01.
2VacuumAirAirHeHeO2O2VacuumVacuumVacuumVacuumVacuumVacuum0100Time(s)200300400y=667.
97x+9196.
9R2=0.
96y=1.
0122x0.
2736R2=0.
99500010002004006008001000Bendingcycles200300Air1000bendingcycles0bendingcyclesTime(s)Realimpedance(k)01020304050607001020304050Actualtemperature(°C)Calculatedtemperature(°C)Nitrae-Nconcentration(ppm)CintCsolRsolFig.
6Non-specificbindingsensorsfromtheintrinsicandextrinsicproperties.
aBandenergyanalysisoftheH2gasactingontoLIG(top)andcatalyticreactionofH2onLIG/Pd(bottom).
bResponseversusH2concentrationwithdifferentbendingstates.
a,bAdaptedwiththepermis-sionfromRef.
[65],Copyright2019AmericanChemicalSociety.
cResponsesofgassensortowardavarietyofgases.
dMagnitudeofresponseofgassensortoairafterbendingitwitharadiusofcurvatureof7mm.
Insetfigureshowstheresponseofthegassensortoairafter0and1000bendingcycles.
c,dAdaptedwiththepermissionfromRef.
[47],Copyright2019AmericanChemicalSociety.
eNitratesensorresponsetothenitrateconcentration.
Insetistheequivalentcircuitofsensorimmersedinsolution.
fComparisonofactualandmeasuredtemperature.
e,fAdaptedwiththepermissionfromRef.
[68],Copyright2017ElsevierB.
VNano-MicroLett.
(2020)12:157Page11of17157detectionpathway,thistypeofchemicalsensorusuallyhasinferioraccuracyandprecisionwhencomparetothespecific-bindingsensorsandthenon-specific-bindingonesbasedontheintrinsicandcharacteristicchemicalandphysi-calpropertiesofanalytes.
Forexample,ionconcentrationsensorwillbeinterferedbyotherionsinacomplexsystemwherethereareallsortsofchemicalsratherthanasinglespecies.
4LIGBasedMechanicSensorsMechanicsensorsarewidelyusedinsubtlehumanmotiondetection,signlanguagetranslation,andsoftroboticgripper.
TheLIG-basedmechanicsensorsareusuallybuiltonthepiezoresistiveeffect,whichdetectsthechangeofresistanceduetotheshapedeformationinducedbythestimuli.
Forexample,Zhao'sgroupcombinedthe3DprintingtechniquewiththeLIGprocesstofabricatesmartcomponents(SC),whichhelpedtoreflecttheconditionssuchastheworkingprocessandabrasion(Fig.
7a)[71].
Withcomputer-controldesign,theyfabricatedsmartgearfrompolyetheretherketone(PEEK)withLIGpatterns.
ThePEEK-LIGSCrespondedtoboththebendingandstretchingofPEEKcomponents,asshowninFig.
7b,c.
TheresistanceresponseofstrainsensorwascorrelatedwiththeconnectionandcompactnessofLIGonPEEK.
WhentheSCwasbendedoutwardorstretched,theresistanceincreasedduetothealoosenedconnectionofLIG.
Incontrast,bendinginwarddensifiedtheLIGandthereforereducedtheresistance.
Thegaugefactor(GF)was212.
35and155.
36forstretchingandbending,respectively,whichsuggestedahighersensitivityofplanarstrain.
Theresponsetimeandrecoverytimewereshort(Fig.
7d),whichwasascribedtothehighelasticitymodulusofPEEK.
AsshowninFig.
7e,theresistanceofgearswascorrelatedwiththeconditionsoftheLIG.
Whenthegearwasabrased,theresistanceincreasedaccordingly.
Theproposedsmartgearcoulddetectitsrotationandabrasionwhileitwasworking,showinggreatpromiseforself-monitoringsystems.
Byrecordingthepiezoresistiveeffectchronologically,LIG-basedmechanicsensorscanbeusedfortheinsitudetectionofavarietyofstimulisuchasheartbeat,motions,andsounds.
Forexample,byattachingtheLIGmechanicsensorstodif-ferentlocationsofhumanbody,Lin'sgrouphassuccessfullydetecteddifferentelectrophysiologicalprocessessuchaselec-troencephalograms(EEGs),electrocardiograms(ECGs),andelectromyograms(EMGs)[72].
ThemechanicsensorsweremadebytransferringLIGintoanelastomerinakirigamidesign,whichimprovedthestretchabilityofthedevices.
AsshowninFig.
8a,alpharhythmwithfrequencycenteredat10Hzfromsensorsonforeheadimpliedthatthebrainwavesweresuccessfullyrecorded.
ThecharacteristicP-wave,QRScomplex,andT-waveofECGwereidentifiedclearly.
AndtheEMGsignalsrespondedtofingerbending,whichcanbeusedforhuman–machineinterfaceapplication.
Tao'sgroupreportedthefabricationofaLIG-basedartificialthroatforsoundsensing(Fig.
8b)[7].
WhenthethroatwasattachedwithaLIGsensor,thevibrationofthroatcordschangedtheresist-anceofLIGsynchronously.
Asdifferentsoundsgenerateddif-ferentwaveshapesofresistance,byrecordingadatabaseandcombiningwithmachinelearning,therecognitionofsoundwasattainable.
ThereportofLIG-basedsoundsourcewasalsofoundintheliterature[73,74].
Withsimilardetectionprinci-ple,somegroupsreportedtheimprovementintheperformanceofLIG-basedpiezoresistivesensorsbymodifyingthestruc-tureandcompositionofthedevices.
Forexample,Luoetal.
foundthatthelaserconditionsdictatingthemorphologyandstructureofLIGhadgreateffectonpiezoelectricsensor'sper-formance,andtheoptimizedLIGsensorshowedhighergaugesensitivitythancommercialstraingaugebynearly10times[75].
Chhetryandco-workersdesignedaMoS2/LIGstrainsen-sorforthedetectionofvoice,eye-blinking,andpulsewave[76].
ThedecorationofMoS2significantlyreducedthecrackinLIGandimprovedthemechanicalstrengthofthesensor.
ByreplacingthePIfilmwithaPIpaperasthesubstrateforLIGsynthesis,Wangetal.
improvedthehomogeneityandintegrityoftheLIGanddemonstratedtheapplicationasastrainsensortocapturethemotionsofhumanfingerandsoftrobot[77].
UtilizingthemechanicalandacousticalperformanceofLIG,Taoetal.
fabricatedadual-functionaldeviceforphysiologi-calsignals(wristpulseandrespiratory)detection,andselfalarming,whichoffersabrandnewideaforhealthmonitoringsensors[78].
5SummaryandOutlookSincethediscoveryofLIGin2014,theadvancesinsyn-thesisofLIGtechnologyhavesignificantlyimprovedthepropertiesofgrapheneandaddedtotheversatilityofapplications.
Forinstance,thewavelengthoflaserextendsfrominfraredtovisibleandevenultraviolet,whichhelpstoNano-MicroLett.
(2020)12:157157Page12of17https://doi.
org/10.
1007/s40820-020-00496-0improvethespatialresolutionoftheLIGstructureto~12m[6].
ThestrategiesfortheformationofLIGcomposites,suchastheinsituandexsitumodificationprocess,canenhancethephysicalpropertiesofLIGsuchasmechanicalstrengthandconductivity,aswellasthechemicalpropertiesbyincorporatingfunctionalmaterials[32,33].
ThelowcostofLIGtechnologyandsimplicityinsynthe-sispromotesthedevelopmentofaserialofLIGsensorsandmakesitapotentialcandidateforindustrialproduction.
Withtherationaldesignofsensingmechanism,alargediversityofstimulihasbeendetectedrangingfromvariouschemicalstosounds,motions,andtemperature.
Thesesensorsoftenshowhighsensitivityandhighstabilityduetothehighsur-faceareaandchemicalstabilityofLIG.
Inaddition,thehighconductivityofLIGmakesitanidealtransducerforconvert-ingthestimuliintoelectricalsignal.
PristineLIGmadefrompolymersisoftenflexible,anditstransfertoothersubstratessuchaselastomersorcementscouldconferitstretchabilityorrigidity,whichmakesLIGfeasibleforuseindifferentscenariossuchaswearableelectronicsandsmartbuilding.
ThedevelopmentofLIGsensorshasevolvedfromasin-gledetectioncomponentintointegratedsystems.
Real-timeandcontinuousdetectionofstimulihasbeenachievedbytheintegrationofwirelesstransmissionandmicrocontrollerFig.
7aSchematicofthe3DprintingofthePEEKcomponentandthesynthesisprocessofLIGfromthe3DprintedPEEKgear.
bWorkingmechanismofPEEK–LIGSCforbidirectionalbendingandstretching.
cRelativechangeinresistanceofthesensorversustheappliedstrains.
(Thedatawereobtainedaftermorethan1000unloadingcyclesforthebendingandstretching.
)dRespondtimeandrecoverytimeforbending(0–5%strain).
eCircuitresistanceincreasesbecauseofabradingofthegear.
Theinsetphotographsshowedthreedifferentabrasiondegreesofthesmartgear.
(I)Notabrased,(II)partlyabrased,and(III)fullyabrased.
a–eAdaptedwiththepermissionfromRef.
[71],Copyright2019AmericanChemicalSocietyNano-MicroLett.
(2020)12:157Page13of17157moduleswithsensorsforInternetofThings(IoT)applica-tions[47,65,67,79].
Forexample,Gao'sgroupincor-poratedflexibleprintedcircuitboard(FPCB)andmicro-controllerwithLIG-basedUAandTyrsensor[61].
Thisintegratedsystemcanwirelesslyrecordsensingsignalsandconvertthedigitalsignaltoanalogoutput,whichpavesawayfortheinsituandnoninvasivemonitoringofhealthcon-ditions.
TheBrukittgroupassembledthesensorwithsmartmicrocontrollersystemandwirelessconnection,whichhelpstoformadistributedsensingnetworkforthereal-timemoni-toringofthewaterquality[68].
Beingapatternableandprintablemanufacturingtech-nique,theLIG-basedsensorsilluminateanewpathwayfordevelopingintegratedminiaturizeddevices.
YettherearestillsomeroomsforimprovingtheLIGtechnologyforprac-ticalapplications.
Forexample,thebondingofLIGlayerandprecursorsubstrateisnotstrongenoughinsomescenarios.
ThoughcircumventionofLIGsuchasitsfunctionalizationwithviscouspolymerortransferringtheLIGtoelastomercanresolvesuchissue,theconsumptionofchemicalsandadditionalmanufacturingstepsisnotdesirableforproduc-tion.
SomeproposedLIGsensorswerenotdemonstratedforinvivooron-sitedetection,whichmightnotreflectthefeasibility,stabilityanddurabilityofthesensorsinrealsitu-ations.
This,however,isimportantforpracticalapplications,asinterferencesfromtheenvironmentandthevariationinconditionsfromlaboratorycouldpotentiallyaffectthesensitivityandreliabilityofthesensors.
Nonetheless,withresearcheffortsfromtheglobe,thediversityofthetransi-tionsofLIGintovarioussensorshasbeenrewardinganddelightfultobehold.
Withfuturedevelopment,LIGsensorswillfindacommonplaceinwidespreadapplications.
AcknowledgementsWeacknowledgethefundingsupportfromtheCityUNewResearchInitiatives/InfrastructureSupportfromCentralunderGrantAPRC-9610426andtheStateKeyLaboratoryofMarinePollution(SKLMP)SeedCollaborativeResearchFund121110981501005001.
00.
50.
00.
51.
0210Fequency(Hz)012Time(min)30.
0LIGResistance(a.
u.
)Time(s)0.
5012Time(s)3456789Amplitude(mV)PSTRQV2(Hz)EEGECGEMGAmplitude(mV)0510CoughHumScreamSwallowNodTime(s)20253015(a)(b)Fig.
8aEEG,ECG,andEMGmeasurements.
AdaptedwiththepermissionfromRef.
[72],Copyright2018WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheim.
bLIG-basedartificialthroatwithsound-sensing.
AdaptedwiththepermissionfromRef.
[7],Copyright2017SpringerNatureNano-MicroLett.
(2020)12:157157Page14of17https://doi.
org/10.
1007/s40820-020-00496-0underSKLMP/SCRF/0021.
TheauthorsgratefullyacknowledgeMr.
ZhengtongLifordrawingTOCgraphic.
OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.
0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicence,andindicateifchangesweremade.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCom-monslicence,unlessindicatedotherwiseinacreditlinetothematerial.
Ifmaterialisnotincludedinthearticle'sCreativeCom-monslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Toviewacopyofthislicence,visithttp://creativecommons.
org/licenses/by/4.
0/.
References1.
K.
S.
Novoselov,Electricfieldeffectinatomicallythincar-bonfilms.
Science306(5696),666–669(2004).
https://doi.
org/10.
1126/science.
11028962.
R.
Ye,J.
M.
Tour,Grapheneatfifteen.
ACSNano13(10),10872–10878(2019).
https://doi.
org/10.
1021/acsnano.
9b067783.
J.
Lin,Z.
Peng,Y.
Liu,F.
Ruiz-Zepeda,R.
Yeetal.
,Laser-inducedporousgraphenefilmsfromcommercialpolymers.
Nat.
Commun.
5(1),5714(2014).
https://doi.
org/10.
1038/ncomms67144.
Z.
Zhang,M.
Song,J.
Hao,K.
Wu,C.
Li,C.
Hu,Visiblelightlaser-inducedgraphenefromphenolicresin:anewapproachfordirectlywritinggraphene-basedelectrochemicaldevicesonvarioussubstrates.
Carbon127,287–296(2018).
https://doi.
org/10.
1016/j.
carbon.
2017.
11.
0145.
F.
Romero,A.
Salinas-Castillo,A.
Rivadeneyra,A.
Albre-cht,A.
Godoy,D.
Morales,N.
Rodriguez,In-depthstudyoflaserdiodeablationofKaptonpolyimideforflexibleconduc-tivesubstrates.
Nanomaterials8(7),517(2018).
https://doi.
org/10.
3390/nano80705176.
M.
G.
Stanford,C.
Zhang,J.
D.
Fowlkes,A.
Hoffman,I.
N.
Ivanov,P.
D.
Rack,J.
M.
Tour,High-resolutionlaser-inducedgraphene.
Flexibleelectronicsbeyondthevisiblelimit.
ACSAppl.
Mater.
Interfaces12(9),10902–10907(2020).
https://doi.
org/10.
1021/acsami.
0c013777.
L.
Tao,H.
Tian,Y.
Liu,Z.
Ju,Y.
Pangetal.
,Anintelligentartificialthroatwithsound-sensingabilitybasedonlaserinducedgraphene.
Nat.
Commun.
8(1),14579(2017).
https://doi.
org/10.
1038/ncomms145798.
M.
R.
Bobinger,F.
J.
Romero,A.
Salinas-Castillo,M.
Becherer,P.
Luglietal.
,Flexibleandrobustlaser-inducedgrapheneheatersphotothermallyscribedonbarepolyimidesubstrates.
Carbon144,116–126(2019).
https://doi.
org/10.
1016/j.
carbon.
2018.
12.
0109.
J.
Cai,C.
Lv,A.
Watanabe,Cost-effectivefabrica-tionofhigh-performanceflexibleall-solid-statecarbonmicro-supercapacitorsbyblue-violetlaserdirectwritingandfurthersurfacetreatment.
J.
Mater.
Chem.
A4(5),1671–1679(2016).
https://doi.
org/10.
1039/C5TA09450J10.
A.
F.
Carvalho,A.
J.
S.
Fernandes,C.
Leito,J.
Deuermeier,A.
C.
Marquesetal.
,Laser-inducedgraphenestrainsensorsproducedbyultravioletirradiationofpolyimide.
Adv.
Funct.
Mater.
28(52),1805271(2018).
https://doi.
org/10.
1002/adfm.
20180527111.
M.
Burke,C.
Larrigy,E.
Vaughan,G.
Paterakis,L.
Sygel-louetal.
,Fabricationandelectrochemicalpropertiesofthree-dimensional(3D)porousgraphiticandgraphenelikeelectrodesobtainedbylow-costdirectlaserwritingmethods.
ACSOmega5(3),1540–1548(2020).
https://doi.
org/10.
1021/acsomega.
9b0341812.
R.
Ye,Y.
Chyan,J.
Zhang,Y.
Li,X.
Han,C.
Kittrell,J.
M.
Tour,Laser-inducedgrapheneformationonwood.
Adv.
Mater.
29(37),1702211(2017).
https://doi.
org/10.
1002/adma.
20170221113.
M.
Qian,T.
Feng,H.
Ding,L.
Lin,H.
Li,Y.
Chen,Z.
Sun,Electronfieldemissionfromscreen-printedgraphenefilms.
Nanotechnology20(42),425702(2009).
https://doi.
org/10.
1088/0957-4484/20/42/42570214.
K.
Arapov,E.
Rubingh,R.
Abbel,J.
Laven,G.
DeWith,H.
Friedrich,Conductivescreenprintinginksbygelationofgraphenedispersions.
Adv.
Funct.
Mater.
26(4),586–593(2016).
https://doi.
org/10.
1002/adfm.
20150403015.
W.
J.
Hyun,E.
B.
Secor,M.
C.
Hersam,C.
D.
Frisbie,L.
F.
Francis,High-resolutionpatterningofgraphenebyscreenprintingwithasiliconstencilforhighlyflexibleprintedelectronics.
Adv.
Mater.
27(1),109–115(2015).
https://doi.
org/10.
1002/adma.
20140413316.
J.
H.
Kim,W.
S.
Chang,D.
Kim,J.
R.
Yang,J.
T.
Hanetal.
,3Dprintingofreducedgrapheneoxidenanowires.
Adv.
Mater.
27(1),157–161(2015).
https://doi.
org/10.
1002/adma.
20140438017.
D.
Zhang,B.
Chi,B.
Li,Z.
Gao,Y.
Du,J.
Guo,J.
Wei,Fabricationofhighlyconductivegrapheneflexiblecircuitsby3Dprinting.
Synth.
Met.
217,79–86(2016).
https://doi.
org/10.
1016/j.
synthmet.
2016.
03.
01418.
C.
Zhu,T.
Y.
J.
Han,E.
B.
Duoss,A.
M.
Golobic,J.
D.
Kuntz,C.
M.
Spadaccini,M.
A.
Worsley,Highlycompressible3Dperiodicgrapheneaerogelmicrolattices.
Nat.
Commun.
6,1–8(2015).
https://doi.
org/10.
1038/ncomms796219.
X.
Wei,D.
Li,W.
Jiang,Z.
Gu,X.
Wang,Z.
Zhang,Z.
Sun,3Dprintablegraphenecomposite.
Sci.
Rep.
5,1–7(2015).
https://doi.
org/10.
1038/srep1118120.
D.
Lin,S.
Jin,F.
Zhang,C.
Wang,Y.
Wang,C.
Zhou,G.
J.
Cheng,3Dstereolithographyprintingofgrapheneoxidereinforcedcomplexarchitectures.
Nanotechnology26(43),434003(2015).
https://doi.
org/10.
1088/09574484/26/43/43400321.
Q.
Zhang,F.
Zhang,S.
P.
Medarametla,H.
Li,C.
Zhou,D.
Lin,3Dprintingofgrapheneaerogels.
Small12(13),1702–1708(2016).
https://doi.
org/10.
1002/smll.
20150352422.
M.
H.
Gass,U.
Bangert,A.
L.
Bleloch,P.
Wang,R.
R.
Nair,A.
K.
Geim,Free-standinggrapheneatatomicresolution.
Nat.
Nano-MicroLett.
(2020)12:157Page15of17157Nanotechnol.
3(11),676–681(2008).
https://doi.
org/10.
1038/nnano.
2008.
28023.
R.
Shi,H.
Xu,B.
Chen,Z.
Zhang,L.
M.
Peng,Scalablefabricationofgraphenedevicesthroughphotolithogra-phy.
Appl.
Phys.
Lett.
102(11),113102(2013).
https://doi.
org/10.
1063/1.
479533224.
M.
Sprinkle,M.
Ruan,Y.
Hu,J.
Hankinson,M.
Rubio-Royetal.
,ScalabletemplatedtrowthoftraphenenanoribbonsonSiC.
Nat.
Nanotechnol.
5(10),727–731(2010).
https://doi.
org/10.
1038/nnano.
2010.
19225.
R.
Ye,X.
Han,D.
V.
Kosynkin,Y.
Li,C.
Zhangetal.
,Laser-inducedconversionofteflonintofluorinatednanodiamondsorfluorinatedgraphene.
ACSNano12(2),1083–1088(2018).
https://doi.
org/10.
1021/acsnano.
7b0587726.
R.
Ye,Z.
Peng,T.
Wang,Y.
Xu,J.
Zhangetal.
,Insituforma-tionofmetaloxidenanocrystalsembeddedinlaser-inducedgraphene.
ACSNano9(9),9244–9251(2015).
https://doi.
org/10.
1021/acsnano.
5b0413827.
Z.
Peng,R.
Ye,J.
A.
Mann,D.
Zakhidov,Y.
Lietal.
,Flexibleboron-dopedlaser-inducedgraphenemicrosupercapacitors.
ACSNano9(6),5868–5875(2015).
https://doi.
org/10.
1021/acsnano.
5b0043628.
X.
Han,R.
Ye,Y.
Chyan,T.
Wang,C.
Zhangetal.
,Laser-inducedgraphenefromwoodimpregnatedwithmetalsaltsanduseinelectrocatalysis.
ACSAppl.
NanoMater.
1(9),5053–5061(2018).
https://doi.
org/10.
1021/acsanm.
8b0116329.
A.
K.
Thakur,S.
P.
Singh,M.
N.
Kleinberg,A.
Gupta,C.
J.
Arnusch,Laser-inducedgraphene-PVAcompositesasrobustelectricallyconductivewatertreatmentmembranes.
ACSAppl.
Mater.
Interfaces11(11),10914–10921(2019).
https://doi.
org/10.
1021/acsami.
9b0051030.
D.
X.
Luong,K.
Yang,J.
Yoon,S.
P.
Singh,T.
Wang,C.
J.
Arnusch,J.
M.
Tour,Laser-inducedgraphenecompositesasmultifunctionalsurfaces.
ACSNano13,8b09626(2019).
https://doi.
org/10.
1021/acsnano.
8b0962631.
J.
Sha,Y.
Li,R.
VillegasSalvatierra,T.
Wang,P.
Dongetal.
,Three-dimensionalprintedgraphenefoams.
ACSNano11(7),6860–6867(2017).
https://doi.
org/10.
1021/acsnano.
7b0198732.
R.
Ye,D.
K.
James,J.
M.
Tour,Laser-inducedgraphene.
Acc.
Chem.
Res.
51(7),1609–1620(2018).
https://doi.
org/10.
1021/acs.
accounts.
8b0008433.
R.
Ye,D.
K.
James,J.
M.
Tour,Laser-inducedgraphene:fromdiscoverytotranslation.
Adv.
Mater.
31(1),1803621(2019).
https://doi.
org/10.
1002/adma.
20180362134.
S.
Wang,Y.
Yu,R.
Li,G.
Feng,Z.
Wuetal.
,High-perfor-mancestackedin-planesupercapacitorsandsupercapacitorarrayfabricatedbyfemtosecondlaser3DDirectwritingonpolyimidesheets.
Electrochim.
Acta241,153–161(2017).
https://doi.
org/10.
1016/j.
electacta.
2017.
04.
13835.
M.
Ren,J.
Zhang,J.
M.
Tour,Laser-inducedgraphenesyn-thesisofCo3O4ingrapheneforoxygenelectrocatalysisandmetal-airbatteries.
Carbon139,880–887(2018).
https://doi.
org/10.
1016/j.
carbon.
2018.
07.
05136.
L.
Ge,Q.
Hong,H.
Li,C.
Liu,F.
Li,Direct-laser-writingofmetalsulfide-graphenenanocompositephotoelectrodetowardsensitivephotoelectrochemicalsensing.
Adv.
Funct.
Mater.
29(38),1904000(2019).
https://doi.
org/10.
1002/adfm.
20190400037.
S.
P.
Singh,Y.
Li,J.
Zhang,J.
M.
Tour,C.
J.
Arnusch,Sulfur-dopedlaser-inducedporousgraphenederivedfrompolysul-fone-classpolymersandmembranes.
ACSNano12(1),289–297(2018).
https://doi.
org/10.
1021/acsnano.
7b0626338.
S.
P.
Singh,Y.
Li,A.
Be'er,Y.
Oren,J.
M.
Tour,C.
J.
Arnusch,Laser-inducedgraphenelayersandelectrodespreventsmicrobialfoulingandexertsantimicrobialaction.
ACSAppl.
Mater.
Interfaces9(21),18238–18247(2017).
https://doi.
org/10.
1021/acsami.
7b0486339.
WHO,Namingthecoronavirusdisease(COVID-19)andthevirusthatcausesit.
https://www.
who.
int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.
Accessed3Apr202040.
M.
Ali,A.
R.
Nelson,A.
L.
Lopez,D.
A.
Sack,Updatedglobalburdenofcholerainendemiccountries.
PLoSNegl.
Trop.
Dis.
9(6),e0003832(2015).
https://doi.
org/10.
1371/journal.
pntd.
000383241.
Y.
Li,D.
X.
Luong,J.
Zhang,Y.
R.
Tarkunde,C.
Kittrelletal.
,Laser-inducedgrapheneincontrolledatmospheres:fromsupe-rhydrophilictosuperhydrophobicsurfaces.
Adv.
Mater.
29(27),1700496(2017).
https://doi.
org/10.
1002/adma.
20170049642.
L.
X.
Duy,Z.
Peng,Y.
Li,J.
Zhang,Y.
Ji,J.
M.
Tour,Laser-inducedgraphenefibers.
Carbon126,472–479(2018).
https://doi.
org/10.
1016/j.
carbon.
2017.
10.
03643.
A.
Tiliakos,C.
Ceaus,S.
M.
Iordache,E.
Vasile,I.
Stamatin,Morphictransitionsofnanocarbonsvialaserpyrolysisofpoly-imideFilms.
J.
Anal.
Appl.
Pyrolysis121,275–286(2016).
https://doi.
org/10.
1016/j.
jaap.
2016.
08.
00744.
Y.
Chyan,R.
Ye,Y.
Li,S.
P.
Singh,C.
J.
Arnusch,J.
M.
Tour,Laser-inducedgraphenebymultiplelasing:towardelectron-icsoncloth,paper,andfood.
ACSNano12(3),2176–2183(2018).
https://doi.
org/10.
1021/acsnano.
7b0853945.
L.
Li,J.
Zhang,Z.
Peng,Y.
Li,C.
Gaoetal.
,High-perfor-mancepseudocapacitivemicrosupercapacitorsfromlaser-inducedgraphene.
Adv.
Mater.
28(5),838–845(2016).
https://doi.
org/10.
1002/adma.
20150333346.
F.
Tehrani,M.
Beltrán-Gastélum,K.
Sheth,A.
Karajic,L.
Yinetal.
,Laser-inducedgraphenecompositesforprinted,stretch-able,andwearableelectronics.
Adv.
Mater.
Technol.
4(8),1900162(2019).
https://doi.
org/10.
1002/admt.
20190016247.
M.
G.
Stanford,K.
Yang,Y.
Chyan,C.
Kittrell,J.
M.
Tour,Laser-inducedgrapheneforflexibleandembeddablegassensors.
ACSNano13(3),3474–3482(2019).
https://doi.
org/10.
1021/acsnano.
8b0962248.
A.
R.
Cardoso,A.
C.
Marques,L.
Santos,A.
F.
Carvalho,F.
M.
Costaetal.
,Molecularly-imprintedchloramphenicolsensorwithlaser-inducedgrapheneelectrodes.
Biosens.
Bioelec-tron.
124–125,167–175(2019).
https://doi.
org/10.
1016/j.
bios.
2018.
10.
01549.
G.
Xu,Z.
A.
Jarjes,V.
Desprez,P.
A.
Kilmartin,J.
Travas-Sejdic,Sensitive,selective,disposableelectrochemicalNano-MicroLett.
(2020)12:157157Page16of17https://doi.
org/10.
1007/s40820-020-00496-0dopaminesensorbasedonPEDOT-modifiedlaserscribedgraphene.
Biosens.
Bioelectron.
107,184–191(2018).
https://doi.
org/10.
1016/j.
bios.
2018.
02.
03150.
C.
Fenzl,P.
Nayak,T.
Hirsch,O.
S.
Wolfbeis,H.
N.
Alsha-reef,A.
J.
Baeumner,Laser-scribedgrapheneelectrodesforaptamer-basedbiosensing.
ACSSens.
2(5),616–620(2017).
https://doi.
org/10.
1021/acssensors.
7b0006651.
C.
Cheng,S.
Wang,J.
Wu,Y.
Yu,R.
Lietal.
,BisphenolAsensorsonpolyimidefabricatedbylaserdirectwritingforonsiteriverwatermonitoringatattomolarconcentration.
ACSAppl.
Mater.
Interfaces8(28),17784–17792(2016).
https://doi.
org/10.
1021/acsami.
6b0374352.
X.
Xuan,J.
Y.
Kim,X.
Hui,P.
S.
Das,H.
S.
Yoon,J.
Y.
Park,Ahighlystretchableandconductive3Dporousgraphenemetalnanocompositebasedelectrochemical–physiologicalhybridbiosensor.
Biosens.
Bioelectron.
120,160–167(2018).
https://doi.
org/10.
1016/j.
bios.
2018.
07.
07153.
D.
Vanegas,L.
Patio,C.
Mendez,D.
Oliveira,A.
Torres,C.
Gomes,E.
McLamore,Laserscribedgraphenebiosensorfordetectionofbiogenicaminesinfoodsamplesusinglocallysourcedmaterials.
Biosensors8(2),42(2018).
https://doi.
org/10.
3390/bios802004254.
E.
R.
Mamleyev,S.
Heissler,A.
Nefedov,P.
G.
Weidler,N.
Nor-dinetal.
,Laser-inducedhierarchicalcarbonpatternsonpoly-imidesubstratesforflexibleureasensors.
NPJFlex.
Electron.
3(1),2(2019).
https://doi.
org/10.
1038/s41528-018-0047-855.
N.
T.
Garland,E.
S.
McLamore,N.
D.
Cavallaro,D.
Mendiv-elso-Perez,E.
A.
Smith,D.
Jing,J.
C.
Claussen,Flexiblelaser-inducedgraphenefornitrogensensinginsoil.
ACSAppl.
Mater.
Interfaces10(45),39124–39133(2018).
https://doi.
org/10.
1021/acsami.
8b1099156.
K.
Griffiths,C.
Dale,J.
Hedley,M.
D.
Kowal,R.
B.
Kaner,N.
Keegan,Laser-scribedgraphenepresentsanopportunitytoprintanewgenerationofdisposableelectrochemicalsen-sors.
Nanoscale6(22),13613–13622(2014).
https://doi.
org/10.
1039/c4nr04221b57.
P.
Nayak,N.
Kurra,C.
Xia,H.
N.
Alshareef,Highlyefficientlaserscribedgrapheneelectrodesforon-chipelectrochemicalsensingapplications.
Adv.
Electron.
Mater.
2(10),1600185(2016).
https://doi.
org/10.
1002/aelm.
20160018558.
X.
Xuan,H.
S.
Yoon,J.
Y.
Park,Awearableelectrochemicalglucosesensorbasedonsimpleandlow-costfabricationsup-portedmicro-patternedreducedgrapheneoxidenanocompos-iteelectrodeonflexiblesubstrate.
Biosens.
Bioelectron.
109,75–82(2018).
https://doi.
org/10.
1016/j.
bios.
2018.
02.
05459.
Y.
Liu,C.
Deng,L.
Tang,A.
Qin,R.
Hu,J.
Z.
Sun,B.
Z.
Tang,Specificdetectionofd-glucosebyatetraphenylethene-basedfluorescentsensor.
J.
Am.
Chem.
Soc.
133(4),660–663(2011).
https://doi.
org/10.
1021/ja107086y60.
Z.
You,Q.
Qiu,H.
Chen,Y.
Feng,X.
Wang,Y.
Wang,Y.
Ying,Laser-inducednoblemetalnanoparticle-graphenecompositesenabledflexiblebiosensorforpathogendetection.
Biosens.
Bioelectron.
150,111896(2020).
https://doi.
org/10.
1016/j.
bios.
2019.
11189661.
Y.
Yang,Y.
Song,X.
Bo,J.
Min,O.
S.
Paketal.
,Alaser-engravedwearablesensorforsensitivedetectionofuricacidandtyrosineinsweat.
Nat.
Biotechnol.
38(2),217–224(2020).
https://doi.
org/10.
1038/s41587-019-0321-x62.
F.
Tehrani,B.
Bavarian,Facileandscalabledisposablesensorbasedonlaserengravedgrapheneforelectrochemicaldetec-tionofglucose.
Sci.
Rep.
6(1),27975(2016).
https://doi.
org/10.
1038/srep2797563.
Y.
Zhang,H.
Zhu,P.
Sun,C.
K.
Sun,H.
Huangetal.
,Laser-inducedgraphene-basednon-enzymaticsensorfordetectionofhydrogenperoxide.
Electroanalysis31(7),1334–1341(2019).
https://doi.
org/10.
1002/elan.
20190004364.
X.
Hui,X.
Xuan,J.
Kim,J.
Y.
Park,AHighlyflexibleandselectivedopaminesensorbasedonPt-Aunanoparticle-mod-ifiedlaser-inducedgraphene.
Electrochim.
Acta328,135066(2019).
https://doi.
org/10.
1016/j.
electacta.
2019.
13506665.
J.
Zhu,M.
Cho,Y.
Li,I.
Cho,J.
H.
Suhetal.
,Biomimeticturbinate-likeartificialnoseforhydrogendetectionbasedon3Dporouslaser-inducedgraphene.
ACSAppl.
Mater.
Inter-faces11(27),24386–24394(2019).
https://doi.
org/10.
1021/acsami.
9b0449566.
W.
Yan,W.
Yan,T.
Chen,J.
Xu,Q.
Tian,D.
Ho,Size-tunableflowerlikeMoS2nanospherescombinedwithlaser-inducedgrapheneelectrodesforNO2sensing.
ACSAppl.
NanoMater.
3(3),2545–2553(2020).
https://doi.
org/10.
1021/acsanm.
9b0261467.
A.
Nag,S.
C.
Mukhopadhyay,J.
Kosel,Sensingsystemforsalinitytestingusinglaser-inducedgraphenesensors.
Sens.
ActuatorsAPhys.
264,107–116(2017).
https://doi.
org/10.
1016/j.
sna.
2017.
08.
00868.
M.
E.
E.
Alahi,A.
Nag,S.
C.
Mukhopadhyay,L.
Burkitt,Atem-perature-compensatedgraphenesensorfornitratemonitoringinreal-timeapplication.
Sens.
ActuatorsAPhys.
269,79–90(2018).
https://doi.
org/10.
1016/j.
sna.
2017.
11.
02269.
J.
Nie,Y.
Wu,Q.
Huang,N.
Joshi,N.
Lietal.
,Dewpointmeasurementusingacarbon-basedcapacitivesensorwithactivetemperaturecontrol.
ACSAppl.
Mater.
Interfaces.
11(1),1699–1705(2019).
https://doi.
org/10.
1021/acsami.
8b1853870.
K.
K.
Adhikari,C.
Wang,T.
Qiang,Q.
Wu,Polyimide-derivedlaser-inducedporousgraphene-incorporatedmicrowavereso-natorforhigh-performancehumiditysensing.
Appl.
Phys.
Express12(10),106501(2019).
https://doi.
org/10.
7567/1882-0786/ab3c7a71.
W.
Yang,W.
Zhao,Q.
Li,H.
Li,Y.
Wang,Y.
Li,G.
Wang,Fabricationofsmartcomponentsby3Dprintingandlaser-scribingtechnologies.
ACSAppl.
Mater.
Interfaces12(3),3928–3935(2020).
https://doi.
org/10.
1021/acsami.
9b1746772.
B.
Sun,R.
N.
McCay,S.
Goswami,Y.
Xu,C.
Zhangetal.
,Gas-permeable,multifunctionalon-skinelectronicsbasedonlaser-inducedporousgrapheneandsugar-templatedelasto-mersponges.
Adv.
Mater.
30(50),1804327(2018).
https://doi.
org/10.
1002/adma.
20180432773.
L.
Tao,Y.
Liu,Z.
Ju,H.
Tian,Q.
Xie,Y.
Yang,T.
L.
Ren,Aflexible360-degreethermalsoundsourcebasedonlaserinducedgraphene.
Nanomaterials6(6),112(2016).
https://doi.
org/10.
3390/nano6060112Nano-MicroLett.
(2020)12:157Page17of1715774.
P.
LaTorraca,L.
Larcher,P.
Lugli,M.
Bobinger,F.
J.
Romero,etal.
,Acousticcharacterizationoflaser-inducedgraphenefilmthermoacousticloudspeakers,in2019IEEE19thInternationalConferenceonNanotechnology(IEEE-NANO);IEEE;(2019),pp.
5–8.
https://doi.
org/10.
1109/NANO46743.
2019.
899368175.
S.
Luo,P.
T.
Hoang,T.
Liu,Directlaserwritingforcreat-ingporousgraphiticstructuresandtheiruseforflexibleandhighlysensitivesensorandsensorarrays.
Carbon96,522–531(2016).
https://doi.
org/10.
1016/j.
carbon.
2015.
09.
07676.
A.
Chhetry,M.
Sharifuzzaman,H.
Yoon,S.
Sharma,X.
Xuan,J.
Y.
Park,MoS2-decoratedlaser-inducedgrapheneforahighlysensitive,hysteresis-free,andreliablepiezoresistivestrainsensor.
ACSAppl.
Mater.
Interfaces11(25),22531–22542(2019).
https://doi.
org/10.
1021/acsami.
9b0491577.
Y.
Wang,Y.
Wang,P.
Zhang,F.
Liu,S.
Luo,Laser-inducedfreestandinggraphenepapers:anewrouteofscalablefabrica-tionwithtunablemorphologiesandpropertiesformultifunc-tionaldevicesandstructures.
Small14(36),1802350(2018).
https://doi.
org/10.
1002/smll.
20180235078.
X.
Chen,F.
Luo,M.
Yuan,D.
Xie,L.
Shenetal.
,Adual-functionalgraphene-basedself-alarmhealth-monitoringE-skin.
Adv.
Funct.
Mater.
29(51),1904706(2019).
https://doi.
org/10.
1002/adfm.
20190470679.
R.
Rahimi,M.
Ochoa,B.
Ziaie,Directlaserwritingofporous-carbon/silvernanocompositeforflexibleelectronics.
ACSAppl.
Mater.
Interfaces8(26),16907–16913(2016).
https://doi.
org/10.
1021/acsami.
6b02952
前几天有关注到Megalayer云服务器提供商有打算在月底的时候新增新加坡机房,这个是继美国、中国香港、菲律宾之外的第四个机房。也有工单询问到官方,新加坡机房有包括CN2国内优化线路和国际带宽,CN2优化线路应该是和菲律宾差不多的。如果我们追求速度和稳定性的中文业务,建议还是选择CN2优化带宽的香港服务器。这里有要到Megalayer新加坡服务器国际带宽的测试服务器,E3-1230配置20M国际带...
SugarHosts 糖果主机商我们算是比较熟悉的,早年学会建站的时候开始就用的糖果虚拟主机,目前他们家还算是为数不多提供虚拟主机的商家,有提供香港、美国、德国等虚拟主机机房。香港机房CN2速度比较快,美国机房有提供优化线路和普通线路适合外贸业务。德国欧洲机房适合欧洲业务的虚拟主机。糖果主机商一般是不会发布黑五活动的,他们在圣圣诞节促销活动是有的,我们看到糖果主机商发布的圣诞节促销虚拟主机低至6折...
#年终感恩活动#华纳云海外物理机688元/月,续费同价,50M CN2 GIA/100M国际大带宽可选,超800G 防御,不限流华纳云成立于2015年,隶属于香港联合通讯国际有限公司。拥有香港政府颁发的商业登记证明,作为APNIC 和 ARIN 会员单位,现有香港、美国等多个地区数据中心资源,百G丰富带宽接入,坚持为海内外用户提供自研顶级硬件防火墙服务,支持T B级超大防护带宽,单IP防护最大可达...
nano6为你推荐
域名空间注册免费注册域名 空间国际域名注册如何在国外域名注册商注册国际域名哩免费虚拟空间找个免费的虚拟主机空间,20M以上的中国互联网域名注册什么叫做网络域名 怎么注册网络域名 以及它的收费方式免费国外空间国外免费空间有哪些好用?ip代理地址ip代理有什么用?有图片..网站空间域名网站制作 域名和空间重庆网站空间重庆建网站的公司 我司准备建一个好点的网站,求推荐虚拟主机评测网哪里有可靠的免费虚拟主机万网虚拟主机万网虚拟主机可以做几个网站
ftp空间 阿里云搜索 企业主机 dreamhost 狗爹 163网 特价空间 发包服务器 html空间 骨干网络 193邮箱 空间出租 圣诞促销 百度云1t Updog 多线空间 银盘服务是什么 中国电信宽带测速器 免费私人服务器 万网空间管理 更多