滤波算法低通滤波器的计算公式公式

滤波算法  时间:2021-07-16  阅读:()

数字滤波器的算法到底有几种,八种吗,怎么还有Wiener,卡尔曼等算法,还有分布式算法

数字滤波器的算法到底有几种,首先你要弄清楚滤波是什么意思,就是一个信号,通过一个系统(函数),变成了另外一个新的信号,这个新的信号里含有你想要的信息,但是比滤波之前的信息跟明确。

从这个角度来说,滤波器可以有无穷多种,只要是能够实现信息过滤提取的,都是可以叫滤波器。

FIR和IIR 的分类是从这个系统本身对一个冲击信号的响应长度来说的,一般来说,这个系统是能够用有理多项式表示的系统,谈IIR和FIR才有意义。

Wiener,卡尔曼滤波,这个里面用到了高度复杂的非线性函数,但本质上还是提取你想要的信息。

已经不是有理多项式能表述的系统了,这个跟IIR和FIR没有太多的关系。

分布式算法的话,那是把同一个事情,交给很多个cpu一起做,这个跟前面说的滤波算法又是另外一回事了。

假定你有一个滤波算法,输入是A,输出是B,中间经过了A1,A2,....,An个步骤,你编程的时候把A1,A2,....,An全实现成一个函数,一个cpu来跑,这就是串行算法;你也可以搞n台电脑,每台电脑做一个步骤,最后把结果B汇总出来,运算速度比原来快了N倍,那就是分布式算法。

简述数字滤波技术,其算法有哪些

1、定义 所谓数字滤波, 就是通过一定的计算或判断程序减少干扰在有用信号中的比重。

故实质上它是一种程序滤波。

2、算法 算术平均值法、 中位值滤波法、 限幅滤波法、 惯性滤波法。

什么是滤波器,滤波器是什么?

数字滤波器是现在电视中常用的电路元件之一。

数字滤波器(digital filter)是由数字乘法器、加法器和延时单元组成的一种装置。

其功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。

由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。

数字滤波器是一个离 散时间系统(按预定的算法,将输入离散时间信号转换为所要求的输出离散时间信号的特定功能装置)。

应用数字滤波器处理模拟信号时,首先须对输入模拟信号进行限带、抽样和模数转换。

数字滤波器输入信号的抽样率应大于被处理信号带宽的两倍,其频率响应具有以抽样频率为间隔的周期重复特性,且以折叠频率即1/2抽样频率点呈镜像对称。

为得到模拟信号,数字滤波器处理的输出数字信号须经数模转换、平滑。

数字滤波器具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。

数字滤波器在语言信号处理、图像信号处理、医学生物信号处理以及其他应用领域都得到了广泛应用。

数字滤波器有低通、高通、带通、带阻和全通等类型。

它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。

应用最广的是线性、时不变数字滤波器.

滤波在数学上是如何实现的

在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。

为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。

滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。

采用数字滤波算法克服随机干扰的误差具有以下优点: 1、数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻抗匹配问题。

尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。

2、数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统开支。

3、只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这对于滤除低频干扰和随机信号会有较大的效果。

4、在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤波法、加权平均滤波法、滑动平均滤波等。

(1)限幅滤波算法 该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。

A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则取上次采样值作为本次数据的样本。

算法的程序代码如下: #defineA //允许的最大差值 chardata; //上一次的数据 char filter() { chardatanew; //新数据变量 datanew=get_data(); //获得新数据变量 if((datanew-data)>A||(data-datanew>A)) return data; else returndatanew; } 说明:限幅滤波法主要用于处理变化较为缓慢的数据,如温度、物体的位置等。

使用时,关键要选取合适的门限制A。

通常这可由经验数据获得,必要时可通过实验得到。

(2)中值滤波算法 该运算的过程是对某一参数连续采样N次(N一般为奇数),然后把N次采样的值按从小到大排列,再取中间值作为本次采样值,整个过程实际上是一个序列排序的过程。

算法的程序代码如下: #define N11 //定义获得的数据个数 char filter() { charvalue_buff[N]; //定义存储数据的数组 char count,i,j,temp; for(count=0;count { value_buf[count]=get_data(); delay(); //如果采集数据比较慢,那么就需要延时或中断 } for(j=0;j { for(value_buff[i]>value_buff[i+1] { temp=value_buff[i]; value_buff[i]=value_buff[i+1]; value_buff[i+1]=temp; } } returnvalue_buff[(N-1)/2]; } 说明:中值滤波比较适用于去掉由偶然因素引起的波动和采样器不稳定而引起的脉动干扰。

若被测量值变化比较慢,采用中值滤波法效果会比较好,但如果数据变化比较快,则不宜采用此方法。

(3)算术平均滤波算法 该算法的基本原理很简单,就是连续取N次采样值后进行算术平均。

算法的程序代码如下: char filter() { int sum=0; for(count=0;count { sum+=get_data(); delay(): } return (char)(sum/N); } 说明:算术平均滤波算法适用于对具有随机干扰的信号进行滤波。

这种信号的特点是有一个平均值,信号在某一数值附近上下波动。

信号的平均平滑程度完全到决于N值。

当N较大时,平滑度高,灵敏度低;当N较小时,平滑度低,但灵敏度高。

为了方便求平均值,N一般取4、8、16、32之类的2的整数幂,以便在程序中用移位操作来代替除法。

(4)加权平均滤波算法 由于前面所说的“算术平均滤波算法”存在平滑度和灵敏度之间的矛盾。

为了协调平滑度和灵敏度之间的关系,可采用加权平均滤波。

它的原理是对连续N次采样值分别乘上不同的加权系数之后再求累加,加权系数一般先小后大,以突出后面若干采样的效果,加强系统对参数变化趋势的认识。

各个加权系数均小于1的小数,且满足总和等于1的结束条件。

这样加权运算之后的累加和即为有效采样值。

其中加权平均数字滤波的数学模型是: 式中:D为N个采样值的加权平均值:XN-i为第N-i次采样值;N为采样次数;Ci为加权系数。

加权系数Ci体现了各种采样值在平均值中所占的比例。

一般来说采样次数越靠后,取的比例越大,这样可增加新采样在平均值中所占的比重。

加权平均值滤波法可突出一部分信号抵制另一部分信号,以提高采样值变化的灵敏度。

样例程序代码如下: char codejq[N]={1,2,3,4,5,6,7,8,9,10,11,12}; //code数组为加权系数表,存在程序存储区 char codesum_jq=1+2+3+4+5+6+7+8+9+10+11+12; char filter() { char count; char value_buff[N]; int sum=0; for(count=0;count { value_buff[count]=get_data(); delay(); } for(count=0;count sum+=value_buff[count]*jq[count]; return(char)(sum/sum_jq); } (5)滑动平均滤波算法 以上介绍和各种平均滤波算法有一个共同点,即每获取一个有效采样值必须连续进行若干次采样,当采速度慢时,系统的实时得不到保证。

这里介绍的滑动平均滤波算法只采样一次,将一次采样值和过去的若干次采样值一起求平均,得到的有效采样值即可投入使用。

如果取N个采样值求平均,存储区中必须开辟N个数据的暂存区。

每新采集一个数据便存入暂存区中,同时去掉一个最老数据,保存这N个数据始终是最新更新的数据。

采用环型队列结构可以方便地实现这种数据存放方式。

程序代码如下: char value_buff[N]; char i=0; char filter() { char count; int sum=0; value_buff[i++]=get_data(); if(i==N) i=0; for(count=0;count sum=value_buff[count]; return (char)(sum/N); } (6)低通滤波 将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能,经推导,低通滤波算法如下: Yn=a* Xn+(1-a) *Yn-1 式中 Xn——本次采样值 Yn-1——上次的滤波输出值; ,a——滤波系数,其值通常远小于1; Yn——本次滤波的输出值。

由上式可以看出,本次滤波的输出值主要取决于上次滤波的输出值(注意不是上次的采样值,这和加权平均滤波是有本质区别的),本次采样值对滤波输出的贡献是比较小的,但多少有些修正作用,这种算法便模拟了具体有教大惯性的低通滤波器功能。

滤波算法的截止频率可用以下式计算: fL=a/2Pit pi为圆周率3.14… 式中 a——滤波系数; , t——采样间隔时间; 例如:当t=0.5s(即每秒2次),a=1/32时; fL=(1/32)/(2*3.14*0.5)=0.01Hz 当目标参数为变化很慢的物理量时,这是很有效的。

另外一方面,它不能滤除高于1/2采样频率的干搅信号,本例中采样频率为2Hz,故对1Hz以上的干搅信号应采用其他方式滤除, 低通滤波算法程序于加权平均滤波相似,但加权系数只有两个:a和1-a。

为计算方便,a取一整数,1-a用256-a,来代替,计算结果舍去最低字节即可,因为只有两项,a和1-a,均以立即数的形式编入程序中,不另外设表格。

虽然采样值为单元字节(8位A/D)。

为保证运算精度,滤波输出值用双字节表示,其中一个字节整数,一字节小数,否则有可能因为每次舍去尾数而使输出不会变化。

设Yn-1存放在30H(整数)和31H(小数)两单元中,Yn存放在32H(整数)和33H(小数)中。

滤波程序如下: 虽千万里,吾往矣。

低通滤波器的计算公式公式

f=1/2πRC 从电阻端进入,然后通过一个电容接地 从电容端取信号,我们知道,电容是通高频阻低频,所以电容对高频信号呈现很低的阻抗,信号被接地,所以低频信号通过,称为低通滤波器,高通滤波器和低通滤波器正好相反,电阻和电容位置互换。

CloudCone 新增洛杉矶优化线路 年付17.99美元且简单线路测试

CloudCone 商家在以前的篇幅中也有多次介绍到,这个商家也蛮有意思的。以前一直只有洛杉矶MC机房,而且在功能上和Linode、DO、Vultr一样可以随时删除采用按时计费模式。但是,他们没有学到人家的精华部分,要这样的小时计费,一定要机房多才有优势,否则压根没有多大用途。这不最近CloudCone商家有点小变化,有新人洛杉矶优化线路,具体是什么优化的等会我测试看看线路。内存CPU硬盘流量价格...

美国高防云服务器 1核 1G 26元/月 香港/日本站群服务器 E5 16G 1600元/月 触摸云

触摸云国内IDC/ISP资质齐全商家,与香港公司联合运营, 已超8年运营 。本次为大家带来的是双12特惠活动,美国高防|美国大宽带买就可申请配置升档一级[CPU内存宽带流量选一]升档方式:CPU内存宽带流量任选其一,工单申请免费升级一档珠海触摸云科技有限公司官方网站:https://cmzi.com/可新购免费升档配置套餐:地区CPU内存带宽数据盘价格购买地址美国高防 1核 1G10M20G 26...

UCloud新人优惠中国香港/日本/美国云服务器低至4元

UCloud优刻得商家这几年应该已经被我们不少的个人站长用户认知,且确实在当下阿里云、腾讯云服务商不断的只促销服务于新用户活动,给我们很多老用户折扣的空间不多。于是,我们可以通过拓展选择其他同类服务商享受新人的福利,这里其中之一就选择UCloud商家。UCloud服务商2020年创业板上市的,实际上很早就有认识到,那时候价格高的离谱,谁让他们只服务有钱的企业用户呢。这里希望融入到我们大众消费者,你...

滤波算法为你推荐
stackoverflowerrorjava.lang.StackOverflowError 是什么意思ioeucl-ioe的学位证到底是ucl?还是后面加了一个ioelinux修改文件名Linux中,怎样修改文件名?weakhashmapJava中isEmpty方法如何使用?溢出隐藏overflow:hidden是什么意思?tvosTVOS推广怎么样?jql建筑设计图纸上JQL 梁,是不是地下正负零基础梁?急急!vipjrvipjr怎么样?有真实体验的来说一下有b吗有什么好看的b级片booth算法用Booth算法计算-4×3的4位补码乘法运算,要求写出每一步运算过程及运算结果 麻烦详细说明每一步的操作
东莞虚拟主机 紧急升级请记住新域名 动态ip的vps 阿里云邮箱登陆首页 java主机 密码泄露 web服务器架设软件 申请个人网站 hostker nerds 东莞数据中心 cdn加速是什么 鲁诺 绍兴电信 台湾谷歌 中国电信测速器 云营销系统 上海电信测速 广东服务器托管 双十二促销 更多