accidental海贼王644

海贼王644  时间:2021-01-20  阅读:()
Op.
52ConstructingDigitalSignaturesfromaOneWayFunctionLeslieLamportComputerScienceLaboratorySRIInternational18October1979CSL-98333RavenswoodAve.
MenloPark,California94025(415)326-6200Cable:SRIINTLMPKTWX:910-373-124611.
IntroductionAdigitalsignaturecreatedbyasenderPforadocumentmisadataitemOp(m)havingthepropertythatuponreceivingmandap(m),onecandetermine(andifnecessaryproveinacourtoflaw)thatPgeneratedthedocumentm.
Aonewayfunctionisafunctionthatiseasytocompute,butwhoseinverseisdifficulttocompute[1].
Morepreciselyaonewayfunctionisafunctionfromasetofdataobjectstoasetofvalueshavingthefollowingtwoproperties:1.
Givenanyvaluev,itiscomputationallyinfeasibletofindadataobjectdsuchthat(d)=v.
2.
Givenanydataobjectd,itiscomputationallyinfeasibletofindadifferentdataobjectdfsuchthat(d!
d)Ifthesetofdataobjectsislargerthanthesetofvalues,thensuchafunctionissometimescalledaonewayhashingfunction.
Wewilldescribeamethodforconstructingdigitalsignaturesfromsuchaonewayfunction.
OurmethodisanimprovementofamethoddevisedbyRabin[2].
LikeRabin's,itrequiresthesenderPtodepositapieceofdataocinsometrustedpublicrepositoryforeachdocumenthewishestosign.
Thisrepositorymusthavethefollowingproperties:-otcanbereadbyanyonewhowantstoverifyPfssignature.
-ItcanbeproveninacourtoflawthatPwasthecreaterofoc.
Onceochasbeenplacedintherepository,Pcanuseittogenerateasignatureforanysingledocumenthewishestosend.
Rabin'smethodhasthefollowingdrawbacksnotpresentinours.
1.
ThedocumentmmustbesenttoasinglerecipientQ,whothenrequestsadditionalinformationfromPtovalidatethesignature.
Pcannotdivulgeanyadditionalvalidatinginformationwithoutcompromisinginformationthatmustremainprivatetopreventsomeoneelsefromgeneratinganewdocumentmfwithavalidsignatureap(mf).
2.
Foracourtoflawtodetermineifthesignatureisvalid,itisnecessaryforPtogivethecourtadditionalprivateinformation.
Thishasthefollowingimplications.
.
P—oratrustedrepresentativeofP—mustbeavailabletothecourt,-Pmustmaintainprivateinformationwhoseaccidentaldisclosurewouldenablesomeoneelsetoforgehissignatureonadocument.
Withourmethod,Pgeneratesasignaturethatisverifiablebyanyone,withnofurtheractiononPfspart.
Aftergeneratingthesignature,Pcandestroytheprivateinformationthatwouldenablesomeoneelsetoforgehissignature.
TheadvantagesofourmethodoverRabin'sareillustratedbythefollowingconsiderationswhenthesigneddocumentmisacheckfromPpayabletoQ.
1.
ItiseasyforQtoendorsethecheckpayabletoathirdpartyRbysendinghimthesignedmessage"makempayabletoRlf.
However,withRabin'sscheme,RcannotdetermineifthecheckmwasreallysignedbyP,sohemustworryaboutforgerybyQaswellaswhetherornotPcancoverthecheck.
Withourmethod,thereisnowayforQtoforgethecheck,sotheendorsedcheckisasgoodasacheckpayabledirectlytoRsignedbyP.
(However,someadditionalmechanismmustbeintroducedtoprevent0fromcashingtheoriginalcheckafterhehassigneditovertoR.
)2.
IfPdieswithoutleavingtheexecutorsofhisestatetheinformationheusedtogeneratehissignatures,thenRabin'smethodcannotpreventQfromundetectablyalteringthecheckm—forexample,bychangingtheamountofmoneypayable.
Suchposthumousforgeryisimpossiblewithourmethod.
3.
WithRabin'smethod,tobeabletosuccessfullychallengeanyattemptbyQtomodifythecheckbeforecashingit,Pmustmaintaintheprivateinformationheusedtogeneratehissignature.
Ifanyone(notjustQ)stolethatinformation,thatpersoncouldforgeacheckfromPpayabletohim.
OurmethodallowsPtodestroythisprivateinformationaftersigningthecheck.
2.
TheAlgorithmWeassumeasetMofpossibledocuments,asetICofpossiblekeys,1TheelementsofKarenotkeysintheusualcryptographicsense,butarearbitrarydataitems.
WecallthemkeysbecausetheyplaythesameroleasthekeysinRabin'salgorithm.
andasetV^ofpossiblevalues.
Let2denotethesetofallsubsetsof{1,.
.
.
,40}containingexactly20elements.
(Thenumbers40and20arearbitrary,andcouldbereplacedby2nandn.
WeareusingthesenumbersbecausetheywereusedbyRabin,andwewishtomakeiteasyforthereadertocompareourmethodwithhis.
)Weassumethefollowingtwofunctions.
1.
AfunctionF:IC->V_withthefollowingtwoproperties:a.
GivenanyvaluevinVfitiscomputationallyinfeasibletofindakeykinKsuchthatF(k)=v.
b.
Foranysmallsetofvaluesv1f.
.
.
,vffl,itiseasytofindakeyksuchthatF(k)isnotequaltoanyofthevi2.
AfunctionG:M^->2withthepropertythatgivenanydocumentminM,itiscomputationallyinfeasibletofindadocumentm1imsuchthatG(mf)=G(m).
ForthefunctionF,wecanuseanyonewayfunctionwhosedomainisthesetofkeys.
ThesecondpropertyofFfollowseasilyfromthesecondpropertyoftheonewayfunction.
WewilldiscusslaterhowthefunctionGcanbeconstructedfromanordinaryonewayfunction.
Forconvenience,weassumethatPwantstogenerateonlyasinglesigneddocument.
Later,weindicatehowhecansignmanydifferentdocuments.
ThesenderPfirstchooses40keysk^suchthatallthevaluesFCk.
^)aredistinct.
(OursecondassumptionaboutFmakesthiseasytodo.
)Heputsinapublicrepositorythedataitemat=(F(k.
F(kjj0)).
NotethatPdoesnotdivulgethekeys^,whichbyourfirstassumptionaboutFcannotbecomputedfroma.
Togenerateasignatureforadocumentra,PfirstcomputesG(m)toobtainasetli-j,.
.
.
,i2o^°^integers.
Thesignatureconsistsofthe20keysk,L.
Moreprecisely,wehaveap(m)=(k_.
k_.
),i1i2Qri1i20wherethei-aredefinedbythefollowingtworequirements:(i)G(m)=Ult.
.
.
,i20}.
(ii)i1computationallyinfeasible.
)Suchfunctionsaredescribedin[1]and[2].
TheobviouswaytoconstructtherequiredfunctionGistolet$besuchaonewayfunction,anddefineG(m)toequalR((m)),whereR:{0,.
.
.
,2n-1}-2.
ItiseasytoconstructafunctionRhavingtherequiredrangeanddomain.
Forexample,onecancomputeR(s)inductivelyasfollows:1.
Dividesby40toobtainaquotientqandaremainderr2.
Usertochooseanelementxfrom{1,.
.
.
,40}.
(Thisiseasytodo,since0rjtobesurethattheresultingfunctionGhastherequiredproperty.
Wesuspectthatformostonewayfunctions,thismethodwouldwork.
However,wecannotprovethis.
ThereasonconstructingGinthismannermightnotworkisthatthefunctionRfrom{0,.
.
.
,2n}into2isamanytoonemapping,andtheresulting"collapsing11ofthedomainmightdefeattheonewaynatureof.
However,itiseasytoshowthatifthefunctionRisonetoone,thenproperty(ii)ofimpliesthatGhastherequiredproperty.
ToconstructG,weneedonlyfindaneasilycomputableonetoonefunctionRfrom{0,.
.
.
,2n-1}into2,forareasonablylargevalueofn.
WecansimplifyourtaskbyobservingthatthefunctionGneednotbedefinedontheentiresetofdocuments.
Itsufficesthatforanydocumentm,itiseasytomodifyminaharmlesswaytogetanewdocumentthatisinthedomainofG.
Forexample,onemightincludeameaninglessnumberaspartofthedocument,andchoosedifferentvaluesofthatnumberuntilheobtainsadocumentthatisinthedomainofG.
Thisisanacceptableprocedureif(i)itiseasytodeterminewhetheradocumentisinthedomain,and(ii)theexpectednumberofchoicesonemustmakebeforefindingadocumentinthedomainissmall.
Withthisinmind,weletn=MOanddefineR(s)asfollows:ifthebinaryrepresentationofscontainsexactly20ones,thenR(s)={i:theitjibitofsequalsone},otherwiseR(s)isundefined.
Approximately13%ofall40bitnumberscontainexactly20ones.
Hence,iftheonewayfunctionissufficientlyrandomizing,thereisa.
13probabilitythatanygivendocumentwillbeinthedomainofG.
Thismeansthatrandomlychoosingdocuments(ormodificationstoadocument),theexpectednumberofchoicesbeforefindingoneinthedomainofGisapproximately8.
Moreover,after17pchoices,theprobabilityofnothavingfoundadocumentinthedomainofGisabout1/10^.
(Ifweuse60keysinsteadof40,theexpectednumberofchoicestofindadocumentinthedomainbecomesabout10,and22pchoicesareneededtoreducetheprobabilityofnotfindingoneto1/10p.
)Iftheonewayfunctionkiseasytocompute,thenthesenumbersindicatethattheexpectedamountofefforttocomputeGisreasonable.
However,itdoesseemundesirabletohavetotrysomanydocumentsbeforefindingoneinthedomainofG.
WehopethatsomeonecanfindamoreelegantmethodforconstructingthefunctionG,perhapsbyfindingaoneto.
onefunctionRwhichisdefinedonalargersubsetof{0,.
.
.
,2n}.
Note;WehavethusfarinsistedthatG(m)beasubsetof{1,.
.
.
,40}consistingofexactly20elements.
ItisclearthatthegenerationandverificationprocedurecanbeappliedifG(m)isanypropersubset.
AnexaminationofourcorrectnessproofshowsthatifweallowG(m)tohaveanynumberofelementslessthan40,thenourmethodwouldstillhavethesamecorrectnesspropertiesifGsatisfiesthefollowingproperty:-ForanydocumentmfitiscomputationallyinfeasibletofindadifferentdocumentmfsuchthatG(mf)isasubsetofG(m).
BytakingtherangeofGtobethecollectionof20elementsubsets,weinsurethatG(mf)cannotbeapropersubsetofG(m).
However,itmaybepossibletoconstructafunctionGsatisfyingthisrequirementwithoutconstrainingtherangeofGinthisway.
REFERENCES[1]Diffie,W.
andHellman,M.
"NewDirectionsinCryptography".
IEEETrans,^nInformationTheoryIT-22_(November1976),544-654.
[2]Rabin,M.
"DigitalizedSignatures",inFoundationsofSecureComputing,AcademicPress(1978),155-168.

青云互联:美国洛杉矶CN2弹性云限时八折,15元/月起,可选Windows/可自定义配置

青云互联怎么样?青云互联是一家成立于2020年6月的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务,目前提供有美国免费主机、香港主机、香港服务器、美国云服务器,让您的网站高速、稳定运行。美国cn2弹性云主机限时8折起,可选1-20个IP,仅15元/月起,附8折优惠码使用!点击进入:青云互联官方网站地址青云互联优惠码:八折优惠码:ltY8sHMh (续费同价)青云互联活动方案:美国洛杉矶...

日本CN2、香港CTG(150元/月) E5 2650 16G内存 20M CN2带宽 1T硬盘

提速啦简单介绍下提速啦 是成立于2012年的IDC老兵 长期以来是很多入门级IDC用户的必选商家 便宜 稳定 廉价 是你创业分销的不二之选,目前市场上很多的商家都是从提速啦拿货然后去分销的。提速啦最新物理机活动 爆炸便宜的香港CN2物理服务器 和 日本CN2物理服务器香港CTG E5 2650 16G内存 20M CN2带宽 1T硬盘 150元/月日本CN2 E5 2650 16G内存 20M C...

青云互联-洛杉矶CN2弹性云限时五折,9.5元/月起,三网CN2gia回程,可选Windows,可自定义配置

官方网站:点击访问青云互联官网优惠码:五折优惠码:5LHbEhaS (一次性五折,可月付、季付、半年付、年付)活动方案:的套餐分为大带宽限流和小带宽不限流两种套餐,全部为KVM虚拟架构,而且配置都可以弹性设置1、洛杉矶cera机房三网回程cn2gia 洛杉矶cera机房                ...

海贼王644为你推荐
金士顿内存真假怎么样辨别金士顿内存条真伪金士顿4g内存条威刚4g内存和金士顿4g内存哪个好1点?桌面背景图片淡雅桌面壁纸的壁纸美化聚酯纤维和棉哪个好纯棉和聚酯纤维的最佳比例涡轮增压和自然吸气哪个好涡轮增压和自然吸气哪个更好,优缺点是什么?迈腾和帕萨特哪个好一汽迈腾和上海大众帕萨特哪个好华为p40和mate30哪个好华为mate30和荣耀3O那个好?游戏加速器哪个好网游加速器那个好?游戏盒子哪个好lol游戏盒子哪个好核芯显卡与独立显卡哪个好独立显卡和核心显卡哪个好
租服务器 中国万网域名注册 highfrequency 42u机柜尺寸 ev证书 丹弗 193邮箱 秒杀预告 免费个人空间 789电视 广州服务器 支持外链的相册 多线空间 国外视频网站有哪些 万网空间管理 湖南idc 工信部网站备案查询 成都主机托管 国外代理服务器 cdn加速 更多