深度学习ssd#算法工程师#想转深度学习,感觉看书都是云里雾里,有没有什么好的途径可以增强应用

深度学习ssd  时间:2021-08-17  阅读:()

深度学习主机配置,可支持多个GPU卡的GPU工作站或服务器?

推荐品牌: LINKZOL(联众集群),可咨询:1381O114665 推荐配置一: 计算平台采用:LZ743GR-2G/Q 系统:Ubuntu 14.04.3 x64 CPU:Intel Xeon十核E5-2630v4(2.2GHz,8.0 GT/s) 内存:原厂64GB内存 (16GB×4) DDR4 2133MHZ ECC-REG.(带内存校错技术,最大支持2T) 系统硬盘:INTEL 2.5寸240G 企业级SSD固态硬盘(最大支持8块硬盘,类型:SATA,SSD) 系统硬盘:希捷3.5寸4T 7200RPM 企业级硬盘(最大支持8块硬盘,类型:SATA,SSD;) GPU卡:2块NVIDIA TATAN-X GPU卡 (CUDA核心数3584个核心,12G DDR5 显存,最大2个GPU卡) 电源:1200W High efficiency (96%)金牌电源 推荐配置二: 计算平台采用:LZ-748GT 系统:Ubuntu 14.04.3 x64 CPU:Intel Xeon十二核E5-2650v4(2.2GHz,9.6 GT/s) 内存:原厂256GB内存 (16GB×16) DDR4 2133MHZ ECC-REG.(带内存校错技术,最大支持2T) 系统硬盘:2块INTEL 2.5寸480G 企业级SSD固态硬盘(最大支持8块硬盘,类型:SATA,SSD) 系统硬盘:3块希捷3.5寸4T 7200RPM 企业级硬盘(最大支持8块硬盘,类型:SATA,SSD;) GPU卡:4块TESLA TITANX GPU计算卡或者4块tesla P4O GPU卡 (CUDA核心数3584个核心,12G DDR5 显存,最大4个GPU卡) 电源:2000W High efficiency (94%)冗余钛金电源 推荐配置三: 计算平台采用:LZ428GR-8G/Q 系统:Ubuntu 14.04.3 x64 CPU:Intel Xeon十四核E5-2690v4(2.6GHz,9.6GT/s) 内存:原厂256GB内存 (16GB×16) DDR4 2133MHZ ECC-REG.(带内存校错技术,最大支持2T) 系统硬盘:2块INTEL 2.5寸480G 企业级SSD固态硬盘(最大支持8块硬盘,类型:SATA,SSD) 系统硬盘:3块希捷2.5寸2T 7200RPM 企业级硬盘(最大支持8块硬盘,类型:SATA,SSD;) GPU卡:8块TESLA P40 GPU计算卡或者8块NVIDIA TATAN-X GPU卡 (CUDA核心数3584个核心,12G DDR5 显存,最大8个GPU卡) 电源:1600W(2+2) High efficiency (96%)钛金电源

CPU和GPU跑深度学习差别有多大

GPU 的架构与 CPU 很不zd一样。

首先,GPU 并不具备多功能性。

其次,与消费级 CPU 个位数的核心数目不同,消费级的 GPU 通常有上千个核心——特别适合处理大型数据集。

由于 GPU 在设计之初有且只有一个目的:最大化并行计算。

每一代制程缩减直接带来更多的核心数量(摩尔定律对于 GPU 更明显),意味着 GPU 每年有大约 40% 的性能提升。

GPU适合深度学习的三大理由(按重要程度排序):高宽带的内存;多线程并行下的内存访问隐藏延迟;数内量多且速度快的可调整的寄存器和L1缓存。

深度学习之中使用神经网络训练,一个最大的问题就是训练速度的问题,特别是对于深度学习而言,过多的参数会消耗很多的时间,在神经网络训练过程中,运算最多的是关于矩阵的运算,这个时候就正好用到容了GPU,GPU本来是用来处理图形的,但是因为其处理矩阵计算的高效性就运用到了深度学习之中。

怎样提升深度学习的性能

怎样提升深度学习的性能 提升算法性能思路   这个列表里提到的思路并完全,但是一个好的开始。

  我的目的是给出很多可以尝试的思路,希望其中的一或两个你之前没有想到。

你经常只需要一个好的想法就能得到性能提升。

  如果你能从其中一个思路中得到结果,请在评论区告诉我。

我很高兴能得知这些好消息。

  如果你有更多的想法,或者是所列思路的拓展,也请告诉我,我和其他读者都将受益!有时候仅仅是一个想法或许就能使他人得到突破。

  我将此博文分为四个部分:   1. 通过数据提升性能   2. 通过算法提升性能   3. 通过算法调参提升性能   4. 通过嵌套模型提升性能   通常来讲,随着列表自上而下,性能的提升也将变小。

例如,对问题进行新的架构或者获取更多的数据,通常比调整最优算法的参数能带来更好的效果。

虽然并不总是这样,但是通常来讲是的。

  我已经把相应的链接加入了博客的教程中,相应网站的问题中,以及经典的Neural Net FAQ中。

  部分思路只适用于人工神经网络,但是大部分是通用的。

通用到足够你用来配合其他技术来碰撞出提升模型性能的方法。

  OK,现在让我们开始吧。

  1. 通过数据提升性能   对你的训练数据和问题定义进行适当改变,你能得到很大的性能提升。

或许是最大的性能提升。

  以下是我将要提到的思路:   获取更多数据   创造更多数据   重放缩你的数据   转换你的数据   特征选取   重架构你的问题   1) 获取更多数据   你能获取更多训练数据吗?   你的模型的质量通常受到你的训练数据质量的限制。

为了得到最好的模型,你首先应该想办法获得最好的数据。

你也想尽可能多的获得那些最好的数据。

  有更多的数据,深度学习和其他现代的非线性机器学习技术有更全的学习源,能学得更好,深度学习尤为如此。

这也是机器学习对大家充满吸引力的很大一个原因

如何配置一部4块Titan X GPU的深度学习机器

支持Intel 59xx和6字头的i7处理器。

不喜欢这块板子的也可以试试rampage v edition 10,或者rampage v extreme。

可能也有便宜的板子支持4 GPU,不过你要特别关注PCIe 3.0插槽的数量和布局:一块显卡通常会占据2个口的位置。

CPU: 通常来说CPU在多核GPU的深度学习系统里还是比较重要的,因为要并行处理参数。

我这次选用了网友推荐的i7 5930K,一共6核12线程,性价比还算凑合,跑起来也没什么太大问题。

内存:这个基本要看CPU能支持多少了,5930K貌似只可以支持64G,我就卖了两条Kington valueRAM DDR4 32G。

当然省钱的做法是买8条8G的用。

存储:SSD还是比HDD快了不少,所以在这种情况下,我选择了2块Samsung 850 EVO 1TB的SSD内存。

如果数据集太大,也可以考虑搞个4TB的HDD来存一下(10TB和8TB的还是有点贵)。

CPU冷却:我选了Corsair H60水冷。

注意装的时候有两套4个螺丝钉,要选短的螺钉,短的装在板子上,另一端长的接在风冷上。

H60自带涂层,不过要注意水冷必须安装特别紧,一点点空气缝隙也不能留,不然估计深度学习压力测试你的CPU会到80度。

不放心的可以上H100i。

电源:电源还是很重要的基本2个选择 Corsair 1500W或者EVGA 1600W,因为一个GPU可能到250W。

当然实际运行的时候一般到不了那么高。

我之前选了一个 Corsair 1200W,居然self-test风扇不转,只要连主板就会reboot loop,明显是次品,赶紧趁机RMA换了1600W。

机箱:不少人推荐Corsair Carbide Air 540,这是一个中塔机箱。

我最后选择了一个全塔机箱Corsair 900D,通风好,但是特别重(配上所有东西超过50多斤重。





保险箱的节奏)。

大机箱可以放很多硬盘,如果你需要的话。

最后用USB 3.1启动机器,几分钟就装好了Ubuntu 16.04。

注意最好UEFI BIOS配置取消Secure Boot功能,不然你装Titan X驱动和CUDA 8.0 RC会有问题。

装TensorFlow也没什么问题,就是要是找不到CUDA库的错误,可以用sudo ldconfig /usr/local/cuda/lib64和LD_LIBRARY_PATH / LIBRARY_PATH来解决。

我测试了4块Titan X Pascal跑TF的CIFAR多GPU训练,训练几天时间一切都很正常,GPU的温度最高70度(设计80 C温度范围内,其他几块会低),GPU风扇也不会到50%速度。

目前我也在测Supermicro的superserver多显卡配置,可能成本会更低。

#算法工程师#想转深度学习,感觉看书都是云里雾里,有没有什么好的途径可以增强应用

有编程经验的话,首先,根据个人喜好挑选一个框架。

喜欢python则tensorflow,喜欢c/c++,则caffe、 。

然后,尝试跑一个实例,mnist、cifar10等。

看着屏幕一行行跳动,loss在一行行减小,动力就有了。

然后,下载一个开源深度学习项目,如yolo、ssd等,自己跑通整个流程:包括数据制作、训练、测试、部署等。

过程中尝试调节不同参数,分析其中变化的原因。

然后,基本上你可以算已经入门了。

当然,无编程经验的话,可以尝试google新发布的autoML,据说0门槛。

以上是我半年来自学心得,仅供参考。

  • 深度学习ssd#算法工程师#想转深度学习,感觉看书都是云里雾里,有没有什么好的途径可以增强应用相关文档

香港E3 16G 390元/ 香港E5*2 32G 600元/ 香港站群 4-8C 1200元/ 美国200G高防 900/ 日本100M 700元

3C云国内IDC/ISP资质齐全商家,与香港公司联合运营, 已超6年运营 。本次为大家带来的是双12特惠活动,香港美国日本韩国|高速精品|高防|站群|大带宽等产品齐全,欢迎咨询问价。3C云科技有限公司官方网站:http://www.3cccy.com/客服QQ:937695003网页客服:点击咨询客户QQ交流群:1042709810价目表总览升级内存 60元 8G内存升级硬盘 1T机械 90元 2...

HostYun 新上美国CN2 GIA VPS 月15元

HostYun 商家以前是玩具主机商,这两年好像发展还挺迅速的,有点在要做点事情的味道。在前面也有多次介绍到HostYun商家新增的多款机房方案,价格相对还是比较便宜的。到目前为止,我们可以看到商家提供的VPS主机包括KVM和XEN架构,数据中心可选日本、韩国、香港和美国的多个地区机房,电信双程CN2 GIA线路,香港和日本机房,均为国内直连线路。近期,HostYun上线低价版美国CN2 GIA ...

百纵科技:美国独立服务器租用/高配置;E52670/32G内存/512G SSD/4IP/50M带宽,999元/月

百纵科技怎么样?百纵科技国人商家,ISP ICP 电信增值许可证的正规公司,近期上线美国C3机房洛杉矶独立服务器,大带宽/高配置多ip站群服务器。百纵科技拥有专业技术售后团队,机器支持自动化,自助安装系统 重启,开机交付时间 30分钟内交付!美国洛杉矶高防服务器配置特点: 硬件配置高 线路稳定 洛杉矶C3机房等级T4 平价销售,支持免费测试,美国独服适合做站,满意付款。点击进入:百纵科技官方网站地...

深度学习ssd为你推荐
seasonalholiday 和weekend seasonal activities 有什么区别巴西时区巴西现在和北京时间 的时间差是多少啊?巴西时区巴西和中国的时差是多少 里约和北京时差怎么算diskgenius免费版diskgenius 破解版?横幅广告促销横幅怎么写jspushjavascript数组 如果一直只做push 那么数组的index为-1的地方是什么值充值卡充值移动如何用充值卡充话费空间图片QQ空间图片眼镜片品牌镜片哪个牌子好,十大光学镜片品牌排名推荐移动硬盘提示格式化移动硬盘无法读取,提示要格式化
虚拟主机软件 虚拟主机99idc 未注册域名查询 cn域名价格 香港vps主机 申请免费域名 qq云存储 国内免备案主机 cpanel 789电视网 33456 四川电信商城 网购分享 php服务器 中国联通宽带测试 创速 杭州电信 睿云 亿库 什么是dns 更多