Jordanwest

west  时间:2021-01-25  阅读:()
WEST:ModernTechnologiesforWebPeopleSearchDmitriV.
KalashnikovZhaoqiChenRabiaNuray-TuranSharadMehrotraZhengZhangComputerScienceDepartmentUniversityofCalifornia,IrvineI.
INTRODUCTIONInthispaperwedescribeWEST(WebEntitySearchTech-nologies)systemthatwehavedevelopedtoimprovepeoplesearchovertheInternet.
RecentlytheproblemofWebPeopleSearch(WePS)hasattractedsignicantattentionfromboththeindustryandacademia.
IntheclassicformulationofWePSproblemtheuserissuesaquerytoawebsearchenginethatconsistsofanameofapersonofinterest.
Forsuchaquery,atraditionalsearchenginesuchasYahooorGooglewouldreturnwebpagesthatarerelatedtoanypeoplewhohappenedtohavethequeriedname.
ThegoalofWePS,instead,istooutputasetofclustersofwebpages,oneclusterpereachdistinctperson,containingallofthewebpagesrelatedtothatperson.
Theuserthencanlocatethedesiredclusterandexplorethewebpagesitcontains.
TheWePSapproachofferssignicantadvantages.
Forex-ample,considersearchingforapersonwhoisanamesakeoftheformerPresidentBillClinton.
Thewebpagesofthelessfamouspersonwillbeovershadowedintoday'ssearchenginesandwillappearfarinthesearch.
WePSsystemsaddressthisproblembyrstpresentingtotheuserthesetofclusters,amongwhichtheuserthencanselecttheclustercontainingthewebpagesofthenamesakeofinterest.
ThekeytechnologyofanyWePSsystem,includingWEST,isthatofEntityResolution.
InasettingofEntityResolutionproblem,adatasetcontainsinformationaboutobjectsandtheirinteractions.
Theobjectsarereferredtovia(textual)descrip-tions/references,whichmightnotbeuniqueidentiersoftheobjects,leadingtoambiguity.
ThetaskofEntityResolutionalgorithmsistoidentifyallofthereferencesthatco-refer,i.
e.
,refertothesamereal-worldentity.
InWePSthewebpagesreturnedbyasearchenginecanbeviewedasreferences.
Theoveralltaskcanbeviewedasthatofndingthewebpagesthatrefertothesamenamesake.
WehavedevelopedthreedifferentEntityResolutionalgo-rithmsthatcanbeemployedbyWEST:1)GraphERapproachextractstheSocialNetwork(peo-ple,organizations,locations)offthewebpagesalongwithhyperlinkandemailinformation.
ItrepresentstheresultingEntity-Relationshipnetworkasagraph.
TheapproachthenanalyzesthisgraphandthewebpageThisresearchwassupportedbyNSFAwards0331707and0331690,andDHSAwardEMW-2007-FP-02535.
textualsimilaritytodeterminewhichwebpagesco-refer[4],[5].
GraphERwillbecoveredinSectionIII-A.
2)EnsembleERapproachcombinesresultsofmultiple"base"ERsystemstoproducetheoverallclustering.
Duringthetrainingphase,EnsembleERapproachem-ployssupervisedlearningtostudyhowwellthebaseERsystemsperformintermsoftheirqualityundervarietyofconditions/contextsbytrainingameta-levelclassier.
Itthenusesthisclassierduringtheactualqueryprocessingtocomputeitsnalclustering[3].
EnsembleERwillbecoveredinSectionIII-B.
3)WebERapproach,unliketheabovetwo(andmanyother)approaches,doesnotlimititsprocessingtoanalyzingtherelevantwebpagesonly.
Instead,itleveragesapowerfulexternaldatasourcetogainitsadvantage.
Specically,likeGraphERitrstextractssocialnetworkofftheweb-pages.
ButthenitqueriestheWebtocollectadditionalinformationonthevariouscomponentsofthisnetwork[6].
WebERwillbecoveredinSectionIII-C.
Eachofthesethreealgorithmshasbeendemonstratedtooutperformthecurrentstateofthearttechniquesonavarietyofdatasets[3]–[6].
Thecomparisonincludes18approachesthathavebeenpartofWePSTaskcompetitiononalargedatasetwhichisnowconsideredtobeadefactostandardfortestingWePSsolutions[1].
WESTprovidesmultipleinterfacestosearch.
TheinputandoutputinterfacesofWESTareillustratedinFigures1and2respectively.
Naturally,WESTsupportsthestandardWePSinterfacewheretheuserprovidesapersonnameasthequery.
Italsosupportsadditionalfunctionality,wheretheusercanspecifycontextqueriestohelplocatethenamesakeofinterestquicker.
Thecontextcanbespeciedintheformoflocation,people,and/ororganizationsassociatedwiththenamesakeofinterest.
NoticethatthecontexthereisnotusedasadditionalkeywordstoquerytheWeb,butisusedtoidentifytherightnamesaketheuserislookingfor.
Thismeansthatthewebpagesintheclusterdoesnothavetoeachcontainthecontextkeywords,andsomeofthemmightevencontainnoneoftheseadditionalcontextkeywords.
BesidestheUIforsearchingforasingleindividual,WESToffersaGroupSearchinterfacetosupporttheGroupIdenti-cationquerycapabilities.
InaGroupIdenticationtask,theinputismultiplenamesofpeoplethatareknowntoberelatedinsomeway.
Forinstance,aquerymightbe"MichaelJordan"Fig.
1.
InputInterfaceofWEST.
Fig.
2.
OutputInterfaceofWEST.
and"MagicJohnson",implyingthatthemeantnamesakesarebasketballplayers.
Theobjectiveistoretrievethewebpagesofthemeantnamesakesonly.
Whilethedemonstrationwillillustrateboththesinglepersonsearchandgroupsearchcapabilities,thesubsequentdiscussionwillfocusonasinglepersonsearch.
Thealgorith-micdetailsoftheGroupSearchcanbefoundin[4].
Therestofthispaperisorganizedasfollows.
SectionIIpresentsthestepsoftheoverallWESTapproach.
ThenSectionIIIcoversthethreeEntityResolutionalgorithms.
Finally,SectionIVdescribesthefunctionalityofWESTthatwillbedisplayedduringthedemo.
II.
OVERALLALGORITHMThestepsoftheoverallWESTapproach,inthecontextofamiddlewarearchitecture,areillustratedinFigure3.
Theyinclude:1)UserInput.
TheuserissuesaqueryviatheWESTinputinterface.
2)Top-KRetrieval.
Thesystem(middleware)sendsaqueryconsistingofapersonnametoasearchengine,suchasGoogle,andretrievesthetop-Kreturnedwebpages.
ThisisastandardstepperformedbymostofthecurrentWePSsystems.
Top-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingTop-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingFig.
3.
OverviewoftheWESTProcessingSteps.
3)Pre-processing.
Thesetop-Kwebpagesarethenprepro-cessed.
Themaintwopre-processingstepsare:a)TF/IDF.
Pre-processingstepsforcomputingTF/IDFarecarriedout.
Theyinclude:stemming,stopwordremoval,nounphraseidentication,in-vertedindexcomputations,etc.
b)Extraction.
NamedEntities,includingpeople,lo-cations,organizationsareextractedusingathirdpartynamedentityextractionsoftware.
Hyperlinksandemailsaddressedareextractedaswell.
Someauxiliarydatastructuresarebuiltonthisdata.
4)Clustering.
OneofthethreeEntityResolutionalgo-rithmsisappliedtothedatatoclusterthewebpages.
ThealgorithmswillbeexplainedinSectionIII.
5)Post-processing.
Thepost-processingstepsinclude:a)ClusterSketchesarecomputed.
b)ClusterRankiscomputedbasedon(a)thecontextkeywords,ifpresentand(b)theoriginalsearchengine'sorderingofthewebpages.
c)WebpageRankiscomputedtodeterminetherela-tiveorderingofwebpagesinsideeachcluster.
6)Visualization.
Theresultingclustersarepresentedtotheuser,whichcanbeinteractivelyexplored.
WenextdiscussthekeycomponentofanyWePSsystem:theEntityResolutionalgorithms.
III.
ENTITYRESOLUTIONALGORITHMSThissectionpresentsanoverviewofthethreeentityreso-lutionalgorithmsusedbytheWESTsystemforclusteringthewebpages.
A.
GraphERTodeterminewhethertworeferencesuandvco-refertraditionalapproachesatthecoreanalyzesimilarityoffeaturesofuandvaccordingtosomefeature-basedsimilarityfunctionf(u,v).
TheGraphERapproachhasbeendevelopedbasedontheobservationthatmanydatasetsarerelationalinnature.
Theycontainnotonlyobjectsandtheirfeaturesbutalsoinformationaboutrelationshipsinwhichtheyparticipate.
InstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionInstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionFig.
4.
AGeneralFrameworkforCombiningMultipleSystems.
GraphERutilizestheinformationstoredintheserelationshipstoimprovethedisambiguationquality.
TheapproachviewsthedatasetbeinganalyzedasanEntity-RelationshipGraphofnodes(entities)interconnectedviarelationships(edges).
FortheWePSdomain,thenodesarethenamedentities,hyperlinks,andemailsextractedoffthewebpagesduringthepre-processingaswellasthewebpagesthemselves.
Therelationshipsareco-occurrencerelationships,andthosethatarederivedfromhyperlinkanddecompositions.
Thegraphcreationprocedureisdiscussedindetailin[4].
TheentityrelationshipsgraphinthiscaseisacombinationoftheSocialNetworkextractedfromthewebpagesaswellasthehyperlinkgraph.
Todecidewhethertworeferencesuandvco-refer,GraphERanalyzeshowstronglyuandvareconnectedinthisgraphaccordingtoaconnectionstrengthmeasurec(u,v).
Tocomputec(u,v),thealgorithmdiscoversthesetPLuvofallL-shortsimpleu-vpaths.
1Thevalueofc(u,v)iscomputedasthesumoftheconnectionsstrengthcontributedfromeachpathpinPLuv:c(u,v)=p∈PLuvc(p).
Asupervisedlearningprocedure,formulatedasalinearpro-grammingoptimizationtask,isusedtolearnc(p)functionfromdata[4],[5].
Thesimilarityfunctions(u,v)isthendenedasacombinationofc(u,v)andf(u,v).
Theoutputofthisfunctionisusedbyacorrelationclusteringalgorithmtogeneratethenalclustersofwebpages.
B.
EnsembleEREnsembleERapproachismotivatedbytheobservationthatoftenthereisnosingleentityresolution(ER)techniquealwaysperformthebest.
Rather,differentERsolutionsperformbetterindifferentcontexts.
EnsembleERisastacking-likeframeworkthatcombinestheclusteringresultsofmultiplebase-levelERsystemssothatthenalclusteringqualityissuperiortothatofanysinglebaseERsystem.
Thekeyideaistotransformtheoutputofbase-levelERsystems,togetherwithcontext,intoameta-levelfeatureset.
Asupervisedlearningapproachisutilizedtotrainaclassieronthemeta-leveldata.
Thealgorithmthenappliesthemeta-levelclassiertothedatasetbeingprocessedtocreatethenalclusteringresults.
Figure4showsageneralframeworkofcombiningmultiplesystems.
SimilartoGraphERapproach,EnsembleERalsoutilizesagraphrepresentationofthedataset.
Thegraphhoweveris1ApathisL-shortifitslengthdoesnotexceedL.
Apathissimpleifitdoesnotcontainduplicatenodes.
different.
Thenodesarethetop-Kwebpages.
Edge(u,v)betweentwowebpagesuandviscreatedonlyifacertainnumberofthebase-levelERsystemsdecidethatuandvshouldbeinthesamecluster.
Edge(u,v)representsapossibilitythatuandvmightco-refer.
WithrespecttothegraphthattaskofEnsembleERcanbeviewedasdecidingforeachedgewhetheruandvshouldbeputinonecluster.
LetS1,S2,Snbethenbase-levelERsystems.
Foreachedgeei=(u,v),eachSjoutputitsdecisiondij∈{0,1}.
Here,ifuandvareplacedinthesameclusterbySjthendij=1otherwisedij=0.
Then,foreachedgeeiwecandeneadecisionfeaturevectorasdi={di1,di2,din}.
Foredgeeiitslocalcontextisalsoencodedasamulti-dimensionalcontextfeaturevectorfi={fi1,fi2,fim}.
OneoftheinterestingaspectsofEnsembleERsolutionisthatitcreatescontextfeaturesinapredictiveway,basedonrstestimatingsomeunknownparametersofthedatabeingprocessed.
Forinstance,letK1,K2,KnbethenumberofclustersthatsystemsS1,S2,Snoutput.
OneofthefeaturesusedbyEnsembleERiscomputedbyapplyingaregressiontothisdatatoestimatethenumberofnamesakesK,wherethetruenumberofnamesakesK+isunknownbeforehandtothealgorithm.
EnsembleERthenconvertsthedifferencebetweenKandKjintoafeature,basedontheintuitionthattheclosertheKjtoK,themorecondencecanbeplacedintheanswerofsystemSj.
ThegoalofEnsembleERreducestondingamappingdi*fi→ai.
Here,ai={0,1}isthepredictionofthecombinedalgorithmforedgeei=(u,v),whereai=1iftheoverallalgorithmbelievesuandvbelongtothesamecluster,andai=0otherwise.
ThedetailsoftheEnsemblealgorithmcanbefoundin[3].
C.
WebERWebERapproachisconsiderablydifferentfrommostoftheotherWePSsolutions.
UnlikemanyotherWePSsystems,WebERdoesnotlimititsprocessingtoanalyzingonlytheinformationstoredinthetop-Kreturnedwebpages.
RatheritemploystheWebasanexternaldatasourcetogetadditionalinformation,whichultimatelyleadstohigherqualityresults.
WebERisprimarilyintendedtobeaserver-sidesolution.
Thatis,itscodeisexecutedatasearchengine(server)side.
Becauseofthat,mostofthepre-processingcanbeaccomplishedinbulkbeforequeryprocessingstarts,includingextractionandTF/IDFcomputations.
ThequeriestothesearchenginearecarriedoutinternallywithoutgoingviatheInternetthusmakingtheirprocessingmuchfaster.
LetD={d1,d2,dK}bethesetofthetop-Kreturnedwebpages.
WebERrstmergessomeofthewebpagesintoinitialclustersusingNamedEntity(NE)clusteringwithaconservativethresholds.
Thedocument-documentsimilarityiscomputedusingTF/IDFapproachwithcosinesimilarity.
Onlyafewwebpagesthathaveoverwhelmingevidencethattheyrepresentthesamepeoplearemergedduringthisprocess.
LetPiandOibethesetofpeopleandorganizationsextractedfromwebpagedi.
ForeachpairwebpagesdianddjthatALL-IN-ONEUBC-ASUC3MWITDFKI2JHU1-13TITPIUA-ZSASWAT-IVAUGONE-IN-ONEUNNFICOSHEFUVAPSNUSIRST-BPCU-COMSEMWEST00.
10.
20.
30.
40.
50.
60.
70.
80.
9SystemsFpFig.
5.
TheExperimentresultsonWePSdataset.
arenotyetputinthesameclustertheapproachformsandissuesqueriestotheWebtocollecttheco-occurrencestatistics,whichinthiscaseisthenumberofthepagesreturnedforagivenquery.
WebERusestwomaintypesofqueries:NANDCiANDCjCiANDCjHereNisthenameofthepersonbeingqueriedbytheuser,andCiandCjarethecontextofpagesdianddj.
ContextCicanbeeither(a)anORcombinationofpeoplefromPi,or(b)anORcombinationoforganizationsfromOi.
ThesameholdsforCiresultingineightqueriesfordianddjpair.
Theseco-occurrencecountsareindicativeofhowoftentheelementsofthetwosocialnetworksco-occuronthewebandthushowstronglytheyarerelated.
Thesecountsarethentransformedintofeatures,whicharethenusedtocomputethesimilaritybetweenwebpagesdianddj.
OneofthekeycontributionsofthisworkisanewSkyline-basedclassierfordecidingwhichdianddjwebpagesshouldbemergedbasedonthecorrespondingfeaturevector.
Itisaspecializedclassierthatwehavedesignedspecicallyfortheclusteringproblemathand.
Skyline-basedclassiergainsitsadvantageduetoavarietyoffunctionalitiesbuiltintoit,including:Ittakesintoaccountdominancethatispresentinthefeaturesspace.
Italsonetunesitselftothequalitymeasurebeingused.
Ittakesintoaccounttransitivityofmerges:thatis,ac-countsforthefactthattwolargeclusterscanbemergedbyasinglemergedecision,and,thus,onedirectmergedecisioncanleadtomultipleindirectones.
Thesepropertiesallowittoeasilyoutperformotherclassi-cationmethods(whicharegeneric),suchasDTCorSVM.
Theapproachisdiscussedindetailin[6].
IV.
DEMONSTRATIONTheERalgorithmsusedbyWESTareknowntoproducehighlycompetitiveresults.
Figure5presentsthecomparisonresultsoftheWESTwith18otherWePSsolutionsthathavebeenpartoftheWePSTaskchallenge[1].
ThequalityofclusteringisevaluatedintermsofFpmeasure(harmonicmeanofPurityandInversePurity[1]).
ForthegroupidenticationwehavecomparedWESTwiththestateoftheartapproachpublishedin[2].
TheaverageF-measureonthisdatasetachievedbyWESTis92%whichisnearly12%improvementovertheresultreportedin[2].
TheWESTsystemwillbedemonstratedthroughtwoap-plicationsbuiltoverthebasesystem.
SinglePersonSearch(illustratedinFigure1):whereinausercanenterapersonnameandcontextintheformofpeople,locations,and/ororganizationsassociatedwiththepersonbeingqueried.
Theresultswillbeasetofclusters.
Eachclusterwillhaveasetofkeywordsattachedtoindicatethemainaspectofthecorrespondingnamesake.
Theclusterswillbepresentedinarankedorderbasedontheoriginalranksofthewebpagesintheclustersandthecontextkeywords.
Figure2showssampleresultingclustersforthequery"AndrewMcCallum".
TherstreturnedgroupcorrespondstoAndrewMcCallumtheUMassCSprofessor,thesecondtothepresidentoftheAustralianCouncilofSocialServices,thethirdtoaCanadianmusician,etc.
Theuserwillbeabletoclickontheclustersandexploretheirclustersinteractively.
Thewebpagesinaclusterwillbepresentedinarankedorderaswell.
GroupSearch:Anotherinterfacewillbeusedtodemon-stratetheGroupIdenticationsearchcapabilitiesofWEST.
Ingroupqueryinterface,theusercaninputseveralpersonnames.
Theresultwillbethewebpagesthatarerelatedtothemeantnamesakes.
Theseapplicationswillbedemonstratedbothintheonlineandofinemodes.
Intheonlinemode,thequeryinputbytheuserwillbetranslatedintoacorresponding(setof)queriesoverInternetsearchengines(specicallyoverGoogle).
WESTallowstheusertospecifythenumberofwebpagestoretrievefromthesearchengine,whichwillbedisambiguatedintocorrespondingclusters.
Intheonlinemode,WESTusesonlyGraphERandEnsembleERapproachessinceWebERisaserver-sideapproachandisnotamenableforrealizationasamiddleware.
Thedemonstrationwillallowobserverstododiversesearches(perhaps,oftheirownnames)andperceiveboththequalityaswellasefciencyofWEST.
Intheofinemode,WESTwillusepreconstructed"canned"exampleswherewehavealreadycrawledthewebtoretrievethesearchresultsandconstructedthecorrespondingclusters.
Intheofinemode,inadditiontoillustratingtheGraphERandEnsembleERapproaches,wewillalsodemonstratethedisambiguationpoweroftheWebERapproach.
REFERENCES[1]J.
Artiles,J.
Gonzalo,andS.
Sekine.
Thesemeval-2007wepsevaluation:Establishingabenchmarkforthewebpeoplesearchtask.
InSemEval,2007.
[2]R.
BekkermanandA.
McCallum.
Disambiguatingwebappearancesofpeopleinasocialnetwork.
InWWW,2005.
[3]Z.
Chen,D.
V.
Kalashnikov,andS.
Mehrotra.
Combiningentityresolutiontechniqueswithapplicationtowebpeoplesearch.
InUndersubmission.
[4]D.
V.
Kalashnikov,Z.
Chen,S.
Mehrotra,andR.
Nuray.
Webpeoplesearchviaconnectionanalysis.
IEEETKDE,2008.
toappear.
[5]D.
V.
Kalashnikov,S.
Mehrotra,S.
Chen,R.
Nuray,andN.
Ashish.
Disambiguationalgorithmforpeoplesearchontheweb.
InICDE,2007.
[6]D.
V.
Kalashnikov,R.
Nuray-Turan,andS.
Mehrotra.
Towardsbreakingthequalitycurse.
Aweb-queryingapproachtoWebPeopleSearch.
InProc.
ofAnnualInternationalACMSIGIRConference,Singapore,July20–242008.

BGP.TO日本和新加坡服务器进行促销,日本服务器6.5折

BGP.TO目前针对日本和新加坡服务器进行促销,其中日本东京服务器6.5折,而新加坡服务器7.5折起。这是一家专门的独立服务器租售网站,提供包括中国香港、日本、新加坡和洛杉矶的服务器租用业务,基本上都是自有硬件、IP资源等,国内优化直连线路,机器自动化部署上架,并提供产品的基本管理功能(自助开关机重启重装等)。新加坡服务器 $93.75/月CPU:E3-1230v3内存:16GB硬盘:480GB ...

香港物理服务器 E5-2660v2 16G 500GSSD 增送20G防御 688/月 华纳云

#年终感恩活动#华纳云海外物理机688元/月,续费同价,50M CN2 GIA/100M国际大带宽可选,超800G 防御,不限流华纳云成立于2015年,隶属于香港联合通讯国际有限公司。拥有香港政府颁发的商业登记证明,作为APNIC 和 ARIN 会员单位,现有香港、美国等多个地区数据中心资源,百G丰富带宽接入,坚持为海内外用户提供自研顶级硬件防火墙服务,支持T B级超大防护带宽,单IP防护最大可达...

CloudServer:$4/月KVM-2GB/50GB/5TB/三个数据中心

CloudServer是一家新的VPS主机商,成立了差不多9个月吧,提供基于KVM架构的VPS主机,支持Linux或者Windows操作系统,数据中心在美国纽约、洛杉矶和芝加哥机房,都是ColoCrossing的机器。目前商家在LEB提供了几款特价套餐,最低月付4美元(或者$23.88/年),购买更高级别套餐还能三个月费用使用6个月,等于前半年五折了。下面列出几款特别套餐配置信息。CPU:1cor...

west为你推荐
登陆qq空间首页使用您的原来关闭了空间的QQ号码登录空间首页http://qzone.qq.com,在进入QQ空间个人中心体验版后,点击左上角“立即开通QQ空间”,根据系统提示,输入您相关的资料后为什么还是没有开通输入法哪个好用输入法那个软件好华为p40和mate30哪个好荣耀30pro和华为p40对比。,哪个更值得入手?二手车网站哪个好二手车交易网哪个好?牡丹江教育云空间登录云空间怎么登入51个人空间登录51个人空间怎么申请???qq空间登录不了为什么我的QQ登陆不了QQ空间辽宁联通网上营业厅的联通营业厅怎么走google广告申请谷歌广告怎么申请?willyunlee求几近完美演员表,几近完美女主角几近完美男主角是谁?
手机网站空间 大庆服务器租用 域名备案号查询 域名商 vultr美国与日本 搬瓦工官网 外国空间 shopex空间 java虚拟主机 e蜗牛 美国十次啦服务器 域名评估 空间登陆首页 服务器防火墙 开心online shuangcheng windowsserver2012r2 htaccess 服务器是什么意思 电信测速器在线测网速 更多