信道带宽信道带宽和数据传输速率的关系是什么?

信道带宽  时间:2021-08-25  阅读:()

什么叫信道带宽

信道带宽通俗的说就是系统所能使用的射频带宽 百度百科上的解释,摘下来你看看 信道带宽 模拟信道: 模拟信道的带宽 W=f2-f1 其中f1是信道能够通过的最低频率,f2是信道能够通过的最高频率,两者都是由信道的物理特性决定的。

当组成信道的电路制成了,信道的带宽就决定了。

为了是信号的传输的失真小些,信道要有足够的带宽。

数字信道: 数字信道是一种离散信道,它只能传送离散值的数字信号,信道的带宽决定了信道中能不失真的传输脉序列的最高速率。

一个数字脉冲称为一个码元,我们用码元速率表示单位时间内信号波形的变换次数,即单位时间内通过信道传输的码元个数。

若信号码元宽度为T秒,则码元速率B=1/T。

码元速率的单位叫波特(Baud),所以码元速率也叫波特率。

早在1924年,贝尔实验室的研究员亨利·尼奎斯特就推导出了有限带宽无噪声信道的极限波特率,称为尼奎斯特定理。

若信道带宽为W,则尼奎斯特定理指出最大码元速率为 B=2W(Baud)尼奎斯特定理指定的信道容量也叫尼奎斯特极限,这是由信道的物理特性决定的。

超过尼奎斯特极限传送脉冲信号是不可能的,所以要进一步提高波特率必须改善信道带宽。

码元携带的信息量由码元取的离散值个数决定。

若码元取两个离散值,则一个码元携带1比特(bit)信息。

若码元可取四种离散值,则一个码元携带2比特信息。

总之一个码元携带的信息量n(bit)与码元的种类数N有如下关系:n=log2N 单位时间内在信道上传送的信息量(比特数)称为数据速率。

在一定的波特率下提高速率的途径是用一个码元表示更多的比特数。

如果把两比特编码为一个码元,则数据速率可成倍提高。

我们有公式: R=B log2N=2W log2N(b/s) 其中R表示数据速率,单位是每秒比特,简写为bps或b/s 数据速率和波特率是两个不同的概念。

仅当码元取两个离散值时两者才相等。

对于普通电话线路,带宽为3000HZ,最高波特率为6000Baud。

而最高数据速率可随编码方式的不同而取不同的值。

这些都是在无噪声的理想情况下的极限值。

实际信道会受到各种噪声的干扰,因而远远达不到按尼奎斯特定理计算出的数据传送速率。

香农(shannon)的研究表明,有噪声的极限数据速率可由下面的公式计算: C =W log2(1+s/n) 这个公式叫做香农定理,其中W为信道带宽,S为信号的平均功率,N为噪声的平均功率,s/n叫做信噪比。

由于在实际使用中S与N的比值太大,故常取其分贝数(db)。

分贝与信噪比的关系为 : db=10log10s/n 例如当s/n为1000,信噪比为30db。

这个公式与信号取的离散值无关,也就是说无论用什么方式调制,只要给定了信噪比,则单位时间内最大的信息传输量就确定了。

例如信道带宽为3000HZ,信噪比为30db,则最大数据速率为 C=3000log(1+1000)≈3000×9.97≈30000b/s 这是极限值,只有理论上的意义。

实际上在3000HZ带宽的电话线上数据速率能达到9600b/s就很不错了。

综上所述,我们有两种带宽的概念,在模拟信道,带宽按照公式W=f2-f1 计算,例如CATV电缆的带宽为600HZ或1000HZ;数字信道的带宽为信道能够达到的最大数据速率,例如以太网的带宽为10MB/S或100MB/S,两者可通过香农定理互相转换。

什么是信道相关带宽和信道相关时间

简单来说就是一段带宽范围和一段时间范围。

以下这个解释很详细,供参考! 相干时间就是信道保持恒定的最大时间差范围,相干带宽类似,就是信道保持恒定的最大频率差范围。

从分集的角度来理解这个概念比较形象:时间分集要求两次发射的时间要大于信道的相干时间,即如果发射时间小于信道的相干时间,则两次发射的信号会经历相同的衰落,分集抗衰落的作用就不存在了,相干带宽可以从频率分集来理解。

定义相干带宽一般是用来划分平坦衰落信道和频率选择性衰落信道的量化参数。

如果信道的最大多径时延扩展为Tm,那么信道的相干带宽Bc=1/Tm;若发射信号的射频带宽B<Bc,那么认为接收信号经历的是平坦衰落,此时接收信号的包络起伏变化,但是一般不存在码间串扰,其信号模型为r(t)=h(t)s(t)+n(t),其中h(t)一般为瑞利分布的随机变量;若发射信号的射频带宽B>Bc,那么认为接收信号经历的是频率选择性衰落,此时除了接收信号的包络起伏变化,一般还存在码间串扰,其信号模型为r(t)=h(t-tao0)s(t-tao0)+h(t-tao1)s(t-tao1)+...+n(t),其中tao0、tao1、...等为可分辨多径的时延,每个h(t-tao)一般为瑞利分布的随机变量。

定义相干时间一般是用来划分时间非选择性衰落信道和时间选择性衰落信道,或叫慢衰落信道和快衰落信道的量化参数。

如果信道的最大多普勒频移为fm,那么信道的相干时间Tc=0.423/fm。

若发射信号的符号周期T<Tc,那么认为接收信号经历的是慢衰落,即h(t)在若干个符号间隔内保持不变;若发射信号的符号周期T>Tc,那么认为接收信号经历的是快衰落,即h(t)的变化速度快与符号速率,此时如果对信道进行比较精确的估计或是均衡都是十分困难的。

信道带宽的测定方法?

不管模拟还是数字信号,都是经过调制传输的 测试方法是,用一台从0到100thz的扫频仪通过光缆或者电缆,在规定的长度之后检测传输过来的信号频率,如双绞线大于几十兆赫的都损耗掉了,其它通信电缆同理 每种电缆有一个最佳传输频率,然后在这个频率上下就衰减了,衰减到0.7的前后带宽就是电缆的传输带宽。

路由器信道设置几最佳,还有就是频宽设置20m还是40m

无线的穿透能力是和用的频率有关,即2.4G的能力强过5G,和频宽是20M还是40M没有关系。

但40M其实是用到了双天线,20M是单天线,所以在同样发射功率下,40M的辐射量是多一倍的,当然这些都是在安全标准内的,而且比打手机小很多。

说明: 1、对于在家使用的无线路由器,建议将信道设成1或11,这样可以最大限度的避免和别家的路由器发生信号重叠。

因为大多数人并不会修改这个设置而保持默认的6信道; 2、当然802.11b/g网络标准中只提供了三个不互相重叠的信道,这些可使用的非重叠的信道数量有点偏少,但对于一般的家庭或SOHO一族无线网络来说,已经足够了。

如果你的办公区域需要多于三个以上的无线网络,建议使用支持802.11a标准的无线设备。

信道带宽和数据传输速率的关系是什么?

数据传输速率 = 信道带宽 X 信道利用率; 信道利用率 = 传输时延 / (传播时延 + 传输时延),也就是在整个数据发送周期中,传输数据占用了多大比例。

这里注意区分“传输”和“传播”两个词,通俗的讲,“传输”就是指“把数据放到链路上”,“传播”就是指“数据在链路上进行传播”。

2021年国内/国外便宜VPS主机/云服务器商家推荐整理

2021年各大云服务商竞争尤为激烈,因为云服务商家的竞争我们可以选择更加便宜的VPS或云服务器,这样成本更低,选择空间更大。但是,如果我们是建站用途或者是稳定项目的,不要太过于追求便宜VPS或便宜云服务器,更需要追求稳定和服务。不同的商家有不同的特点,而且任何商家和线路不可能一直稳定,我们需要做的就是定期观察和数据定期备份。下面,请跟云服务器网(yuntue.com)小编来看一下2021年国内/国...

RackNerd :美国大硬盘服务器促销/洛杉矶multacom数据中心/双路e5-2640v2/64G内存/256G SSD+160T SAS/$389/月

大硬盘服务器、存储服务器、Chia矿机。RackNerd,2019年末成立的商家,主要提供各类KVM VPS主机、独立服务器和站群服务器等。当前RackNerd正在促销旗下几款美国大硬盘服务器,位于洛杉矶multacom数据中心,亚洲优化线路,非常适合存储、数据备份等应用场景,双路e5-2640v2,64G内存,56G SSD系统盘,160T SAS数据盘,流量是每月200T,1Gbps带宽,配5...

Sharktech鲨鱼服务器商提供洛杉矶独立服务器促销 不限流量月99美元

Sharktech(鲨鱼服务器商)我们还是比较懂的,有提供独立服务器和高防服务器,而且性价比都还算是不错,而且我们看到有一些主机商的服务器也是走这个商家渠道分销的。这不看到鲨鱼服务器商家洛杉矶独立服务器纷纷促销,不限制流量的独立服务器起步99美元,这个还未曾有过。第一、鲨鱼机房服务器方案洛杉矶机房,默认1Gbps带宽,不限流量,自带5个IPv4,免费60Gbps / 48Mpps DDoS防御。C...

信道带宽为你推荐
营业成本包括利润表中的“营业成本”项目包括。安卓开发环境搭建如何搭建安卓开发环境文件保护文件被写保护,怎么解除/测量师测量师考什么java教程pdfJava操作pdf表格数据微看为什么我的抖音上传视频了,没有极快极慢这种的设置,只有下一步这种了?别说卸载了再下一个我试了没用最好的电脑操作系统什么版本的电脑系统好用反恐精英维护到几点反恐精英几点维护完物联网公司排名2019中国物联网企业100强有哪些?云电视是什么意思云电视怎么用机顶盒看数字电视
网站空间价格 郑州虚拟主机 域名管理 justhost 韩国空间 59.99美元 ixwebhosting windows2003iso 商务主机 国外在线代理 100x100头像 炎黄盛世 hkg 网页提速 百度云加速 丽萨 cxz wordpress中文主题 xuni 免备案cdn加速 更多