electrodegmail邮箱申请

gmail邮箱申请  时间:2021-02-22  阅读:()
1MagneticPropertiesofNanocrystalline-SiCGopaMishra1,SankarMohapatra1,SasmitaPrusty1,ManojKumarSharma2,RatnamalaChatterjee2,SKSingh1andDKMishra1,*1AdvancedMaterialsTechnologyDepartment,InstituteofMineralsandMaterialsTechnology(CSIR),Bhubaneswar751013,Orissa,India2DepartmentofPhysics,IndianInstitueofTechnologyDelhi,NewDelhi110016,IndiaE.
mail:dilipiuac@gmail.
comAbstract:Four-hourball-milled-SiCproductsynthesizedbythethermalplasmatechniqueshowsroomtemperatureferromagnetism.
Thesemi-λsignatureofthefield-cooledmagnetization(FCM)andzerofield-cooledmagnetization(ZFCM)curvessuggestthepossiblesignatureofaglassyferromagnetismstateinthesample.
Theprominentfallinthemagnetizationvalueataround50KobservedinZFCMcurverevealstheexistenceofasharptransitionfromaferromagneticstatetoaglassyferromagneticstate.
ThepresenceofglassyferromagnetismatlowtemperatureisconfirmedfromtheM~Hcurverecordedat5K.
Keywords:Carbides;ThermalPlasma;Semiconductors;GlassyferromagnetismIntroduction:WidebandgapII-VIandIII-Vsemiconductorshaveattractedalotofattentionoftheresearcherstoproduceasystemlikedilutemagneticsemiconductor(DMS)fortheapplicationinthefieldofoptoelectronics,spintronicsandmagnetoelectronics[1-5].
ButtheintriguingphenomenonofferromagnetisminDMShasremainedunsolvedsofar.
Recentreportonferromagnetismincarbonandcarbonbasedcompoundshasopeneda2newavenueforthesearchofnewdilutedmagneticsemiconductors(DMSs)[6-12].
Developingamagneticsystemwithcarbonhasitsownadvantagesasitislightweight,stable,simpletoprocess,andlessexpensivetoproduce.
Investigationsperformedonvariousformsofcarbonandtheircompositeswithsemiconductorspointtowardsthefactthatitispossibletoproduceferromagneticcarbonsystems.
SomorefocushasbeenindicatedtowardstheIV-IVsemiconductorslikeSiliconcarbidematerials[6,7,13-17].
Recentlysiliconcarbideisunderinvestigationasanenablingmaterialforavarietyofnewsemiconductordevicesintheareaofspintronics[6,7,13,14].
Theseincludehigh-power,highvoltageswitchingapplications,hightemperatureelectronicsandhighpowermicrowaveapplicationsinthe1-10GHzregime.
Itisalsousedassubstratefordepositingseveralsemiconductormaterialslikegalliumnitride.
SiCistheonlycompoundsemiconductorwhichcanbethermallyoxidizedtoformahighqualitynativeoxide(SiO2).
ThismakesitpossibletofabricateMOSFET,insulatedgatebipolartransistorsandMOS-controlledthyristorinSiC[18].
Siliconcarbideexhibitsahighthermalconductivity,highresistancetowardsoxidation,highmechanicalstrength,lowspecificweight,andit'schemicallyinertnessmakeitacatalystsupportmaterial[19].
Duetothewidebandgapenergy,theleakagecurrentinSiCismanyorderslowerthaninsiliconandtheintrinsictemperatureiswellover800°C,whichmakesitanelectronicefficientmaterialforsemiconductorapplications[18].
Eventhoughitofferssubstantialadvantagesoversilicon,SiCisstillimmatureassemiconductormaterialsbecauseitexistsinmanypolytypicformsandalsothepresenceofminutemetallicimpuritieschangeitscrystalstructureandcreatelatticedefects.
Theselatticedefectsand3presenceofmagneticimpuritiesmaybeoneofthereasonsforobservingferromagnetisminthismaterial.
Inthismanuscript,-SiCproducthasbeensynthesizedbythermalplasmatechniqueandfurtherballmilledforthereductionofparticlesizes.
Roomtemperatureferromagnetismin-SiCandtheglassyferromagnetismatlowtemperaturehasbeendiscussed.
Experimental:Silica-richricehuskwasusedastherawmaterialforsynthesisofSiCpowder.
Therawmaterialwasplasmatreatedinanindigenouslydevelopedpottypeopenplasmareactor.
Thedetailoftheplasmareactorisdescribedelsewhere[20].
Therawmaterialwastakeninthegraphitecrucibleandthecruciblewascoveredwithagraphiteplatehavingaholeatthecentreinordertopreventthematerialtobeblownoutofthecrucibleduetoplasmapressure.
Therateofflowoftheplasmagengas(argon)wasregulatedto1.
5lit.
/min.
Thearcwasstruckbymovingtheupperelectrodeupordown.
Afterplasmatreatmentforaperiodof20minutestime,powerwasswitchedoffbuttheargongaswasallowedtopassforanotherhalfanhourinordertopreventoxidationoftheproduct.
TheplasmasynthesizedproductobtainedfromplasmareactorisinlooselyagglomeratedformandisamixtureofSiCandminutepercentageofcarbonandsilica.
Thisproductwasgroundinanagatemortartobreaktheagglomerationandwasthenheatedinafurnaceat700°Cfor2hoursforcompleteremovalofcarbon.
TheparticlesizeofthecarbonfreeSiCandSiO2mixtureisaround14.
69micron.
Forfurtherreductionofparticlesize,theproductwasgroundinaRetschPM-100planetaryballmillwith3mmstainlesssteelballs.
Thegrindingwascarriedoutina500mlstainlesssteel4jarinethylalcoholmediumatafixedrpmof350forfourhours.
Thenthisgroundsamplewasthoroughlywashedwith1:1HCl,1:2HNO3and40%Hfforthecompleteremovalofsilicaandothermetalimpuritiespresentinthesample.
Particlesizeanalyzer(ModelNanotracU2058I)wasusedtodeterminetheparticledistributionandaverageparticlesizeofthe-SiCpowder.
ATransmissionelectronmicroscope(TEM)(ModelJEOL,JEM–2010UHR)wasusedtodeterminetheshapeandsizeofthe-SiCnanocrystals.
EnergydispersiveX-rayandX-rayfluorescencespectrawererecordedtodeterminetheimpuritiesotherthanSi,CandOpresentinthesample.
PhaseandstructuralanalysisofthesampleswerecarriedoutusingX-raydiffractometer(XRD)(Model:X'PertPROPANalytical))usingMoKsource.
Fouriertransforminfraredspectroscopic(Model:PerkinElmerspectrumGx)andmicro-Ramanstudieswerecarriedouttoobtainthebondingandstructuralinformation.
Diffusedreflectivespectroscopy(DRS)studyhasbeendonetoestimatethebandgapof-SiCbyUV-Visiblespectrophotometer.
Fielddependentmagnetizationat300Kand5K,temperaturedependentzero-fieldcooled(ZFC)andfieldcooled(FC)magnetizationmeasurementswerecarriedoutusingQuantumDesignSuperconductingInterferometerDevice(SQUID)magnetometer.
ResultsandDiscussions:Fig.
1showsthedistributionofparticlesizeoffourhoursballmilled-SiCproduct.
Itisobservedfromthefigurethat78%ofparticleshavetheparticlesizewithin250nmwhereas22%ofparticleshavethesizewithin300nmto450nm.
TheGaussiancurvedistributionfittedtotheparticlesizedistributioncurveshowstheaverageparticlesizetobearound225nm.
Theresultobtainedfromparticlesizedistributioniswell5supportedbytheresultobtainedfromTEManalysis.
Transmissionelectronmicroscopyimagesof-SiCparticlesareshowninFig.
2.
Theparticlesarenonuniforminshapeandsize.
Theaveragesizeoftheparticlesisintheorderof250nm.
Theenergydispersivex-rayanalysispictureshowninFig.
3predictsthatthenanoparticlesarecomposedofSiandC.
NotransitionalmetalimpuritypeakisfoundotherthanCuwhichisnothingbutthesignatureofcarboncoatedCugridusedforTEManalysis.
ThesmalloxygenpeakobservedinthespectrumisduetothecontaminationofhydroxylgroupduringthesamplepreparationforTEManalysis.
ButXRFanalysispredictsthepresenceofmagneticimpurities(Fe,CoandNi)contentupto140ppmproductwithnon-magneticimpuritieslikeAl,Baetc.
ThespecificsurfaceareaoftheballmilledpowdersmeasuredbyBednortz-Edward-Tellertechniqueis12m2g-1.
Thex-raydiffractionpatternisshowninFig.
4.
Themajorreflectionpeaksof-SiCat(111),(200),(220),(311),(222)and(400)arefoundintheXRDpatternandmatchedwiththeJCPDSdata(#02-1050)havingspacegroup43Fm.
Apartfrom-SiC,smallshoulderpeakof-SiCisfoundatthe2valueof17.
31degree.
WithinthelimitationofXRD,thesmaller%ofmetallicimpuritiespresentinthesamplecannotbedetected.
ThecrystallitesizecalculatedusingScherer'sformulat=0.
89λ/1/2Cosisaround97nm.
Latticeparameterof-SiCproduct,a=4.
312calculatedusingtheformulad=a/(h2+k2+l2)1/2whichiswellmatchedwiththetheoreticalandexperimentalvalueofa=4.
349[21].
Fig.
5showstheFTIRspectrumoffourhourballmilled-SiCproduct.
Thesharpreflectancepeakat800.
73cm-1correspondstothevibrationalmodeofSiC.
Apartfromthis,peaksataround400to600cm-1areattributedtotheSi-O-Sistretchingmodesof6vibration.
1072.
4cm-1peakisattributedtotheSi-Omodeand2350.
72cm-1peakcorrespondtotheC-Cmodeofvibration.
1488.
7cm-1peakiscorrespondingtothehydroxylgroup(OH)whichisduetocontaminationduringhandlingofthesampleforexperimentinopenatmosphere.
TheXRDandFTIRspectraclearlypredictthatthefourhourballmilledproductisin-SiCform.
Fig.
6showstheRamanspectrumoffourhourballmilled-SiCproduct.
ItisreportedthatSiCgivesRamanscatteringfromatransverseoptic(TO)phononatapproximately790cm-1andalongitudinalopticphonon(LO)at973cm-1[3].
Inourspectrum,twoprominentpeaksareobservedat783and982cm-1representedastransverseoptics(TO)andlongitudinaloptics(LO)peaksrespectively.
TheTOandLOpeakpositionsoftheSiCcrystallitesindicatethatthepredominantSiCpolytypeis-SiC[6,22].
TheDRSstudyhasbeenundertakentoevaluatethebandgapof-SiCandisshowninFig.
7.
Itisverywellknownthat-SiCisanindirectbandgapsemiconductor.
ThebandgapcalculatedusingtheTaucsplot[23](i.
e.
hvs(h)1/2)isaround2.
17eVwhichiswellmatchedtothebandgapof2.
19eVreportedinliterature[24,25].
Presenceofminutepercentageofmetalimpuritiesdoesnotplayanyroleinvaryingbandgapof-SiC.
TheM~HcurveatroomtemperatureshowninFig.
8for-SiCproductisferromagneticinnature.
Saturationmagnetizationof0.
004emu/ghasbeenobservedwitharemnantmagnetization1.
1x10-3emu/gandcoercivityof106Oe.
ThehysteresisloopisshownintheinsetofFig.
8.
TheoriginofFMorderinsuchIV-IVsemiconductorslike-SiCislessstudied.
Alsoitisverydifficulttogetthe-SiCinitscompletepureform.
Sotheexactmechanismforexhibitingferromagnetisminthesematerialsisnotclear.
The7saturationmagnetizationarisingfrommagneticimpuritiesareestimatedtobeintheorderof0.
00254emu/g.
Ourexperimentallyobservedvalueis1.
5timesgreaterthanthevalueofsaturationmagneticmomentarisingfrommagneticimpurities.
Hence,itconfirmsthatthemagnetismcominginthismaterialisnotfromthemagneticimpurities.
Thepossiblereasonfortheobservationofferromagnetismmaybetheformationoflatticedefectsinducedduringthesynthesisprocesses.
Duetopresenceofmagneticandnonmagneticimpuritiesandthecontaminationofoxygen,sp3configurationofSiCisconvertedtoamixtureofsp3/sp2hybridizationtoinduceferromagneticorderinginthismaterial[6,7,26,27].
Infact,thepresenceofimpuritiesinSiCmayintroducelargescaledefectsintothelattice,suchasvacanciesandinterstitials.
ThesurfacecontaminationofoxygeninSiCisalsoascribedtoafactorofcreatinglatticedefects.
SuchdefectsatlowtemperaturebecomesisolatedfromeachotherandcreateshortrangeFMordering,thusreducingthemagnetizationvalue.
Furtherinvestigationisrequiredtoestablishtheoriginofferromagnetism.
TheM~Hcurverecordedatlowtemperature(i.
e.
5K)isshowninFig.
9.
Aclearhysteresisloopisobservedwitharemnantmagnetizationof3.
9x10-3emu/gandcoercivityof290Oerespectively.
Theremnantmagnetizationvalueis3.
5timesgreaterthanthevalueobtainedat300K.
Themagnetizationvalueincreasessteeplywiththeincreaseofmagneticfieldupto10000Oe.
Thereisnoobservationofsaturationmagnetizationfromthecurvewithinthelimitedappliedfieldof10000Oe.
ThetemperaturedependentZFCmagnetization(ZFCM)andFCmagnetization(FCM)measurementswerecarriedoutatamagneticfieldof100Oewithinatemperaturerangeof300K-5KandisshowninFig.
10.
AsshowninthispicturetheZFCandFC8startsbranchingfromeachotheratorabove300K.
ThedifferencebetweenFCMandZFCMincreasessignificantlywiththedecreaseoftemperatureandexhibitsapromptcuspespeciallyinZFCMcurveat50K.
Itisverymuchinterestingtonotethattheobservedthermo-magneticirreversibilityandsemi-λnatureoftheFCMandZFCMcurvessuggestthepossibilityofspinglasssignatureinthesample[6].
Atthesametimeferromagnetismisobservedatlowtemperaturei.
e.
at5K(showninFig.
9).
Thecombiningfeatureofspinglassandferromagneticbehaviorexhibitsaglassyferromagneticbehavior.
MostoftheglassyFMbehaviorisexhibitedduetothecompetitionbetweenlongrangeferromagneticorderingandshortrangeantiferromagneticinteractionandthusreducingthemagnetizationvalueatlowtemperature.
Conclusion:Inconclusion,itisconfirmedfromtheXRDandFTIRstudiesthattheproductobtainedfromplasmareactorisin-SiCformhavinglatticeparameterof4.
31,whichisincloseagreementwiththelatticeparameterofbulk-SiC.
Roomtemperatureferromagnetismandglassyferromagneticbehavioratlowtemperaturehasbeenpredicted.
Observedthermo-magneticirreversibilityandsemiλ-shapenatureoftheFCMandZFCMcurvesatvaryingtemperaturesuggestthepossibilityofglassyferromagneticstateinthesample.
Acknowledgement:AuthorsaregratefultoDirector,IMMT(CSIR),Bhubaneswarforprovidingresearchsupport.
AuthorsarethankfultoDSTforprovidingSQUIDfacilitytoIIT-DelhiunderprojectRP01993.
9References:[1].
H.
Ohno,Science281,951(1998).
[2].
K.
Ando,Science312,1883(2006).
[3].
H.
Ohno,F.
Matsukura,andY.
Ohno,Jpn.
Soc.
Appl.
Phys.
Int.
5,4(2002).
[4].
S.
Wolf,D.
D.
Awschalom,R.
A.
Buhrman,J.
M.
Daughton,S.
vonMolnar,M.
L.
Roukes,A.
Y.
Chtchelkanova,andD.
M.
Treger,Science294,1488(2001).
[5].
H.
Ohno,D.
Chiba,F.
Matsukura,T.
Omiya,E.
Abe,T.
Dietl,Y.
Ohno,andK.
Ohtani,Nature408,944(2000).
[6].
B.
Song,H.
Bao,H.
Li,M.
Lei,T.
Peng,J.
Jian,J.
Liu,W.
Wang,W.
WangandX.
Chen,J.
Am.
Chem.
Soc.
131,1376(2009).
[7].
B.
Song,J.
K.
Jian,H.
Li,M.
Lei,H.
Q.
Bao,X.
L.
ChenandG.
Wang,Phys.
B403,2897(2008).
[8].
A.
V.
Rode,E.
G.
Gamaly,A.
G.
Christy,J.
G.
FitzGerald,S.
T.
Hyde,R.
G.
Elliman,B.
Luther-Davies,A.
I.
Veinger,J.
AndroulakisandJ.
Giapintzakis,Phys.
Rev.
B70,054407(2004).
[9].
S.
Talapatra,P.
G.
Ganesan,T.
Kim,R.
Vajtai,M.
Huang,M.
Shima,G.
Ramanath,D.
Srivastava,S.
C.
DeeviandP.
M.
Ajayan,Phys.
Rev.
Lett.
95,097201(2005).
[10].
P.
Esquinazi,D.
Spemann,R.
Hohne,A.
Setzer,K.
H.
HanandT.
Butz,Phys.
Rev.
Lett.
91,227201(2003).
[11].
H.
Pan,J.
B.
Yi,L.
Shen,R.
Q.
Wu,J.
H.
Yang,J.
Y.
Lin,Y.
P.
Feng,J.
Ding,L.
H.
Van,andJ.
H.
Yin,Phys.
Rev.
Lett.
99,127201(2007).
[12].
B.
J.
Nagare,SajeevChackoandD.
G.
Kanhere,J.
Phys.
Chem.
A114,2689(2010).
[13].
F.
Stromberg,W.
Keune,X.
Chen,S.
Bedanta,H.
ReutherandA.
Mucklich,J.
Phys.
:Condens.
Matter18,9881(2006).
10[14].
M.
S.
MiaoandWalterR.
L.
Lambrecht,Phys.
Rev.
B74,235218(2006).
[15].
G.
Zhang,G.
Wei,K.
Zheng,L.
Li,D.
Xu,D.
Wang,Y.
XueandW.
Su,J.
Nanosci.
Nanotechnol.
10,1951(2010).
[16].
C.
Ziebert,J.
Ye,S.
Ulrich,A.
P.
PrskaloandS.
Schmauder,J.
Nanosci.
Nanotechnol.
10,1120(2010).
[17].
J.
Chen,R.
WuandY.
Pan,J.
Nanosci.
Nanotechnol.
10,6550(2010).
[18].
B.
J.
Baliga,IEEEElectronDeviceLett.
10,455(1989).
[19].
M.
J.
LedouxandC.
Pham-Huu,CATTECH5(4),226(2001).
[20].
M.
Ray,D.
R.
Sahu,D.
K.
Mishra,S.
K.
SinghandB.
K.
Roul,JournalofMaterials:DesignandApplications(Part-L),241,11(2007).
[21].
N.
W.
Thibault,Am.
Mineralogist29,327(1944).
[22].
D.
W.
Feldman,J.
Parker,W.
ChoykeandL.
Patrick,Phys.
Rev.
173(1968)787.
[23].
J.
Tauc,R.
GrigoroviciandA.
Vancu,Phys.
Stat.
Sol.
15,627(1966).
[24].
F.
H.
Ruddell,B.
M.
ArmstrongandH.
S.
Gamble,J.
Phys.
IVFrance02,C2-823(1993).
[25].
L.
Wenchang,ZhangKaiimingandXieXide,J.
Phys:Condens.
Matter5,891(1993).
[26].
T.
L.
Makarova,instudiesofHigh–Temperaturesuperconductivity,NOVASciencePublishers,Inc.
NewYork,(2003)p.
107.
[27].
T.
L.
Makarova,Semiconductors38,615(2004).
11FigureCaptions:Fig.
1:SchematicfigureofParticlesizedistributionof4hoursballmilled-SiCproduct.
Fig.
2:Transmissionelectronmicroscopepictureof4hoursballmilled-SiCproduct.
Fig.
3:EnergydispersiveX-rayanalysisspectrumof4hoursballmilled-SiCproductFig.
4:XRDpatternof4hoursballmilled-SiCproduct.
Fig.
5:FTIRspectrumof4hoursballmilled-SiCproduct.
Fig.
6:Ramanspectrumof4hoursballmilled-SiCproduct.
Fig.
7:Diffusedreflectivespectrumof4hoursballmilled-SiCproduct.
Fig.
8:Roomtemperaturehysteresiscurveof4hoursballmilled-SiCproduct.
Fig.
9:Hysteresiscurveof4hoursballmilled-SiCproductatlowtemperature(5K).
Fig.
10:Temperaturedependentzerofieldcooledandfieldcooledmagnetizationcurveof4hoursballmilled-SiCproduct.
12Fig.
1:SchematicfigureofParticlesizedistributionof4hoursballmilled-SiCproduct.
13Fig.
2:Transmissionelectronmicroscopepictureof4hoursballmilled-SiCproduct.
14Fig.
3:EnergydispersiveX-rayanalysisspectrumof4hoursballmilled-SiCproduct.
15Fig.
4:XRDpatternof4hoursballmilled-SiCproduct.
16Fig.
5:FTIRspectrumof4hoursballmilled-SiCproduct.
17Fig.
6:Ramanspectrumof4hoursballmilled-SiCproduct.
18Fig.
7:Diffusedreflectivespectrumof4hoursballmilled-SiCproduct.
19Fig.
8:Roomtemperaturehysteresiscurveof4hoursballmilled-SiCproduct.
20Fig.
9:Hysteresiscurveof4hoursballmilled-SiCproductatlowtemperature(5K).
21Fig.
10:Temperaturedependentzerofieldcooledandfieldcooledmagnetizationcurveof4hoursballmilled-SiCproduct.

弘速云20.8元/月 ,香港云服务器 2核 1g 10M

弘速云元旦活动本公司所销售的弹性云服务器、虚拟专用服务器(VPS)、虚拟主机等涉及网站接入服务的云产品由具备相关资质的第三方合作服务商提供官方网站:https://www.hosuyun.com公司名:弘速科技有限公司香港沙田直营机房采用CTGNET高速回国线路弹性款8折起优惠码:hosu1-1 测试ip:69.165.77.50​地区CPU内存硬盘带宽价格购买地址香港沙田2-8核1-16G20-...

ReliableSite:美国服务器租用,洛杉矶/纽约/迈阿密等机房;E3-1240V6/64GB/1TSSD,$95/月

reliablesite怎么样?reliablesite是一家于2006年成立的老牌美国主机商,主要提供独服,数据中心有迈阿密、纽约、洛杉矶等,均免费提供20Gbps DDoS防护,150TB月流量,1Gbps带宽。月付19美金可升级为10Gbps带宽。洛杉矶/纽约/迈阿密等机房,E3-1240V6/64GB内存/1TB SSD硬盘/DDOS/150TB流量/1Gbps带宽/DDOS,$95/月,...

VoLLcloud7折月付$3,香港CMI云服务器原生IP解锁,香港VoLLcloud

vollcloud怎么样?vollcloud LLC创立于2020年,是一家以互联网基础业务服务为主的 技术型企业,运营全球数据中心业务。VoLLcloud LLC针对新老用户推出全场年付产品7折促销优惠,共30个,机会难得,所有产品支持3日内无条件退款,同时提供产品免费体验。目前所有产品中,“镇店之宝”产品性价比高,适用大部分用户基础应用,卖的也是最好,同时,在这里感谢新老用户的支持和信任,我们...

gmail邮箱申请为你推荐
公章制作在WOLD里怎样制作公章照片转手绘照片转手绘用什么APP网站联盟网站联盟的运作流程数码资源网安卓有没有可以离线刷题的软件?苹果5怎么越狱苹果5怎么越狱如何建立一个网站如何建立一个网站?硬盘人电脑对人有多大辐射?免费免费建站电脑上有真正免费的网站吗??网站优化方案网站建设及优化的方案怎么上传音乐怎样可以上传本地音乐到网上?
美国虚拟主机推荐 免费注册网站域名 域名交易网 gomezpeer 60g硬盘 火车票抢票攻略 debian7 vip购优汇 域名转接 双11秒杀 国外视频网站有哪些 xuni 江苏徐州移动 阿里dns 阿里云邮箱个人版 美国主机侦探 ping值 挂马检测工具 电脑显示屏不亮但是主机已开机 主机箱 更多