states雅虎免费邮箱

雅虎免费邮箱  时间:2021-02-24  阅读:()
PERFORMANCEASSESSMENTOFMAKURDIBURNTBRICKSOlawuyi,B.
J.
1;Olusola,K.
O.
2;Ogunbode,E.
B.
1andKyengeS.
S.
1Email:babatundeolawuyi@yahoo.
comDepartmentofBuilding,FederalUniversityofTechnology,Minna,NigerState,Nigeria.
1DepartmentofBuilding,ObafemiAwolowoUniversity,Ile-Ife,Nigeria.
2ABSTRACTThisworkinvolvedonsiteobservationoftheproductionprocess;determinationofphysicalpropertiesandchemicalcompositionofthesoilsampleusedforproductionofMakurdiburntbricks(MBB).
Atotalof22brickspecimens,oftheMBBwasexaminedinthelaboratoryforcompressivestrength,waterabsorptionandabrasionresistance.
TheresultsrevealthesoilsampleasatruelateritehavingaSilica-Sesquioxideratioof1.
01,Silicacontentof42.
95andclaycontentof27.
38andtotalclay+siltcontentof30.
78.
TheAtterberg'slimittestgavetheliquidlimitas36.
79;plasticlimit,26.
11andplasticindex,10.
68.
Compressivestrengthwas3.
46N/mm2and11.
75N/mm2forSamplesAandBrespectively;AveragewaterabsorptionforSampleB(16.
49%)wasdoublethatofSampleA(8.
58%)whiletheAbrasionresistanceabilityofSampleB(33.
67%)wasfourtimesbetterthanSampleA(9.
32%).
KEYWORDS:BurntBricks,PerformanceAssessment,CompressiveStrength,AbrasionResistance,WaterAbsorption.
INTRODUCTIONAvisittoMakurdi,theBenueStateCapitalofNigeriain2009forthe39thAnnualGeneralMeeting/ConferenceofNigerianInstituteofBuilding(NIOB)tagged"FoodBasket2009"generatedaresearchinterestontheMakurdilocallymadeburntbricks(MBB).
SomethingofinterestistherampantuseandacceptabilityoftheMBB;itisreallyadisplayoftheresidentsattemptatmeetingtheneedforshelterusingmaterialsthattheenvironmentcanaffordinlinewiththepostulationsofFitchandBranch(1960).
AdegokeandAjayi(2003)positedthatagoodmaterialforshelterprovisionmustallowparticipationfromthecommunityandtherebyimprovingtheeconomyofthatcommunity.
Thisiswhattheycalledappropriatetechnology.
Suchmaterialsmustbereadilyavailable,appropriate(economically(i.
e.
affordable)andphysically)totheenvironmentaldemands,thermallyefficientandsociallyacceptable(Olusola,2005).
MakurdiBurntBrickscanbesaidtofallspecificallytothecategoryofmaterialsfittingintothescenariodescribedbytheresearchersquotedabove.
ThebrickswerenotonlybeingadoptedformodernbuildingstructuresasshowninPlates1&2,theyareusedforincinerators,drainageworks,waterloggedsitesandfreestandingwallsoffencewithlittleornotreatmentasshowninPlates3&4.
TheuseoftheMBBwasnotednottobelimitedtoprivateresidentialhouses,publicandcorporatebuildingstructureswerenotleftout.
AgoodexampleisthewalloffenceofJ.
S.
TarkaFoundationCivicCentreinMakurdi.
Plate1:AmodernstructurebuiltfromMBB.
Plate2:AmodernstructurebeingconstructedusingMBB.
Plate3:MBBusedtoconstructanopenIncinerator.
Plate4:MBBadoptedfortheperimeterwallofaWaterTankTower.
TheMBBweresaidtobecheap,soldaslowas#5/brickatnormalperiod,whilethehighestpricestandsat#8/brickduringthepeakperiodasagainsttheunitpriceof#100and#120for150mmand225mmsandcreteblocksrespectively,implyingmasonryunitmaterialcostof#235/m2to#376/m2usingMBBasagainst#1000/m2to#1200/m2forsandcreteblocks.
Henceasavinginmasonrymaterialcostofabout70%inwall.
Thisiscoupledwiththefactthatbrickwallsurfacesareoftenfinishedwithoutadditionalcement/sandrendering.
DespitethesenumerousadvantagesoftheMBBanditshighlevelofpublicacceptanceanduseinMakurdianditsenvironments,therearenoempiricaldataontheEngineeringpropertiesofthisimportantmasonryunitnoristherearesearchreportontheclassificationandsuitabilityofthesoilbeingusedforitsproduction.
ThispapertherebypresentsareportofthecriticalstudyoftheproductionprocessandperformanceassessmentoftheMBBwithaviewatdeterminingthesuitabilityofthesoiltypeused,adequacyoftechnologyadoptedforitsproduction,theperformanceassessmentoftheMBBatmeetingrequisitestandardsanditsdurabilityintheprevailingenvironment.
LITERATUREREVIEWBrickisdefinedintheEncartaEnglishDictionary(2009)asarectangularblockofclayorsimilarmaterial(i.
e.
laterite)thatisbakeduntilishardandisusedforbuildinghouses,wallsorotherpermanentstructures.
Usageofburntbricksdatesbacktothestoneage(i.
e.
2500BC)asrecordedintheBiblestoryof"TheTowerofBabel"inGenesischapter11verse3wherethepeopleweresaidto"makebricksandburnthemthoroughly.
"Theyhadbrickforstone,andtheyhadasphaltformortar(TheMaxwellLeadershipBible,2007–NKJV).
Inpre-modernChina,brick-makingwasthejobofalowlyandunskilledartisan,butakilnmasterwasrespectedasastepabovethelatter.
TheRomansmadeuseoffiredbricksandtheRomanlegionswhichoperatedmobilekilnsintroducedbrickstomanypartsoftheempire.
Romanbricksareoftenstampedwiththemarkofthelegionthatsuperviseditsproduction.
TheuseofbricksinSouthernandWesternGermanyforexample,canbetracedbacktotraditionsalreadydescribedbytheRomanArchitectVitruvius(Wikipedia,2011).
BrickorEarthforwallconstructioninNigeriaisofthelongprovenuse,earthbricksarestillmostlyusedfordwellings,whicharebuiltwithoutformalauthorizationsuchasobtainedintheruralhousingoruncontrolledlowincomehousingintheurbanareas.
Thesoilusedforbrickmakingisoftencalleddifferentnamessuchasearth,clayorlateritebuttheterm"laterite"accordingtoEncartaEnglishDictionary(2009)originatesfromtheLatinwordlatermeaningbrick.
Lateriteisdefinedasredtropicalsoil:areddishmixtureofclayeyironandaluminiumoxidesandhydroxidesformedbytheweatheringofbasaltunderhumid,tropicalconditions(Encarta,2009).
NumerousdefinitionshavebeengiventoLateritedependingontheprofessionalinclinationoftheauthors.
Whilesomearepurelymorphological,somearepurelyphysicalandsomeothersarepurelychemical.
Theterm"laterite",accordingtoHamilton(1995),wasfirstusedbyBuchananin1807todescribeaferruginous(highironcontent),vesicular(containsmallcavities),unstratifiedandporousmaterialwithyellowarcherscausedbyitshighironcontent,andoccurringabundantlyinMalabar,India.
Itwasusedforweatheringmaterialsfromwhichblocksarecut,thatafterdryingareusedasbuildingbricks.
Hencetheword"laterite"wasderivedfromtheLatinword"later"whichmeansbrickortile.
Lateritehasalsobeenrecognizedasthealterationorin-situweatheringproductsofvariousmaterialsincludingcrystallineigneousrocks,sedimentsdetritaldepositandvolcanicash.
ThedegreeofweatheringtowhichtheparentmaterialshavebeensubjectedinfluencesgreatlythephysicalandchemicalcompositionofLateritesoils(Olusola,2005).
ThefirsttoestablishthechemicalconceptofthedefinitionsofLateritewasprobablyMallet(1883)asquotedinOsunade(1984),Owoshagba(1991)andOlusola(2005).
Heestablishedtheferruginousandaluminiumnatureoflateriticsoils.
Fermor(1981)definedvariousformsoflateritesoilsonthebasisoftherelativecontentsoftheso-calledlateriteconstituents(Fe,Al,Ti,Mn)inrelationtoSilica.
Achemicaldefinitionbaseonthe(S-S)SilicaSesquioxidesratio(SiO2/Al2O3+Fe2O3)hadbeenproposed,theconclusionbeinganS-Sratio≤1.
33impliesatruelaterite;ans-sratiobetween1.
33and2.
0referstoalateriticsoil;andanS-Sratio≥2.
0indicatesanon-lateritictypicallyweatheredsoil.
Gidigasu(1976)gaveabroad-baseddefinitionofLateritewhichmaybemoreappropriateforengineeringapplications.
Hestatesthatthewordlateriteshouldbeusedtodescribe"allthereddishresidualandnon-residualtropicallyweatheredsoils,whichgeneticallyformachainofmaterialsrangingfromdecomposedrockthroughclaystosesquioxides(Al2O3+Fe2O3)richcrust,generallyknownascuirassorcarapace".
Cuirassstandsfortheupperlayeroflateriteaccumulationzoneandisparticularlyenrichedinironoxideminerals.
Carapaceontheotherhandstandsforthelowerpartoflateriteaccumulationzone.
Miller(1999)alsodescribeslateriteasheavilyleachedtropicalsubsoilwhichisnotfertileandcomprisesmainlyironandaluminiumoxidesandkaolinite-clays.
Rajput(2006)statedthatbrickearthisderivedbythedisintegrationofigneousrocksandthatagoodbrickearthshouldbeeasilymouldedanddriedwithoutcrackingandwarping.
Discussingonthechemicalcomposition,hefurtherstatedthatitshouldhavethefollowings:1.
Alumina(Al2O3)orClay=20-30percentbyweight2.
Silica(SiO2)orsand=35-50percentbyweight3.
Silt=20-25percentbyweight.
Totalcontentofclayandsiltisrecommendedtopreferablybelessthan50percentbyweight.
Rajput(2006)furtherstatedthatbrickearthmusthaveproperproportionsofsand,siltandclay;behomogeneous;havesufficientplasticityandbefreefromlumpsoflimeandnodulesofkankar.
Thisconformstothepostulationsthatthematerialusedforbrickproductionfallsunderotherpreviousauthorsandresearchers'classificationofthesoilcalledlaterite.
Burningofbricksisoneofthepopularmethodsofstabilization;othersareintroductionofcementandotherpozzolanicmaterialsuchasRicehuskash,volcanicash,sugarcanebargashashandmanyothers.
Burningofbricksbeingpossiblythefirstmeansofstabilizationhastobethoroughanduniformfortheessenceofimpartinghardnessandstrengthtothebricksandincreasingthebricksdensitysoastoenhanceitswaterresistancetendenciestobeachieved.
ThisstudytherebyexaminesMBBwithaviewtodeterminingthephysicalpropertiesandchemicalcompositionofthesoilusedinmakingthebricks,investigatetheproductionprocessspecificallythemethodofburningandassessthecompressivestrengthanddurabilitypropertiesofthebricks.
MATERIALSANDMETHODSMaterialsCollectionThisstudyinvolvedobservationoftheproductionprocessoftheMBBatthelocalsiteinKm.
4,Gbokoroad,Makurdi.
Keenattentionwasgiventotheburningprocessofthebrickswhilesomequantityofthesoilsamplewerecollectedforlaboratoryanalysisforphysicalandchemicalpropertieswithsomesamplesofthefinishedbricksalsocollectedfordeterminationofcompressivestrength,abrasionandwaterabsorption.
LocalProductionofBurntBricksinMakurdiThestagesinvolvedinprocessingthelocalburntbricksasobservedinMakurdiareasfollows;Thesoilwasexcavatedfromaboringpitandstackedinheapsintheopenforraintowashoutthesolublesaltswhichmightlatercausewhitescumontheproduct.
Afterthesoilhadbeenthoroughlywashed,itwasstoredinopenstorageareauntilwhentheyarereadyforuse.
Beforeputtingittouse,waterwasthenaddedtothesoiltoformapaste.
Thelateritepastewasthenpouredintoamouldof270mmx110mmx80mmandthebrickswerethenmoulded.
Thefreshlyproducedbrickswerestoredintheopenairinrows.
Theywerecoveredtemporarilywithdriedgrasstoensureprotectionagainstadverseweathercondition.
Thisensuresthatthereisconstantdrying.
Thisdependscompletelyontheweatherconditionsandcantakeasfrom4–6weeksofproperordesireddryingbeforeburning.
Thebrickswereonlyreadyforburningatthecompletionofproperdrying.
Theproperlydriedbrickswerestackedwithaprovisionforfiringorheatingtodevelophardnessatthebottom.
ThestakedbrickswerecoveredwithathicklayerofsoilpastetoreducethelossofheatduringfiringasshowninPlate5.
Thefirewasstarted,heatdevelopedandthenafterfewdaysoffiringthefuelwascutoffentirelyandtheburntbrickswereallowedtocooldownnaturally.
Thefuelmostlyusedinfiringiswood.
Whenthebricksarewellburnt,acherry-redhuedevelopsandthisconditionisheldforabout6hours.
Sufficientfuelmustbeavailablewhentheburningstartsastheentirebatchofbricksmightbelostifthefireswereallowedtodiedownduringtheoperation.
Firingwithwoodtooktwotofivedays.
ThebrickswereadjudgedtohavebeenthoroughlyburntwhenapartoftheheapstartsfallingwithoutthebricksbreakingasseeninPlate6.
Burntbricksampleswereexaminedbybreakingoffapartofthebricktoseehowtheinnersurfaceis;bricksnotwellburntgaveaninnercolourofashasinPlate7whilewellburntbrickgaveauniformyellowishbrowncoloursameastheexternalsurface.
Plate5:StakedbrickssetforfiringPlate6:StakedbricksafterfiringPlate7:InnerashcolourofbricknowellburntPlate8:StackedburntbricksaroundfiringchannelPlate9:Crushedburntbrick(SampleA)Plate10:Crushedburntbrick(SampleB)Duringthefiring,thebricksshrinkasmuchas10%.
Astheyweretakenoutofthestakedbatchafterfiring,theyweresorttodifferentgradeswiththemaincriteriabeingstrength,irregulardimensionsandsometimescracks.
Twoclassificationsofgoodbricksalwaysresultfromthisprocess;wellburntbricksusuallyadoptedfornormalbuildingconstruction(SampleA-thosebricknotindirectcontactwithfiresource)andtheoverburntreferredtoasiron-bricks-commonlyusedfordrainagesandwaterloggedareas(SampleB-thosebrickindirectcontactwithfiresource).
Plates9and10presentsSampleAhavinguniformyellowishbrowncolourandSampleBindarkgrey/blackshiningcharcoal-likecolour.
AtotalofThirty(30)bricks–Fifteen(15)foreachSamplespecimenswerecollectedfromNo4Gbokoroad,MakurdiandtakentoF.
U.
T,Minnaforassessmentinthelaboratory.
InstrumentationThechemicalanalysisofLateritesamplewascarriedoutattheSagamuWorksDepartmentofLafargeCement(WestAfricanPortlandCementCompany-WAPCO)viaanX-rayFluorescentAnalysisusingaTotalCementAnalysermodelARL9900XP.
Thephysicalpropertiestestonthesoilsample;compressivestrengthandwaterabsorptionontheMBBwerecarriedoutintheDepartmentofBuildinglaboratory,FUT,MinnaandAbrasiontestontheMBBwascarriedoutattheCivilEngineeringLaboratoryofFederalPolytechnic,BidausingtheLosAngelesAbrasionTestingMachine.
FurthermoreallmassmeasurementsweretakenonweighingbalancesavailableinthevariousLaboratoriesoftheFederalUniversityofTechnology(FUT),MinnaandFederalPolytechnic,Bida.
ExperimentalProcedureDeterminationofChemicalCompositionofLateriteSampleTheLateritesamplewaspreparedinF.
U.
T,MinnaandthentakentoWAPCO,SagamuWorksforanalysis.
About150goftheLateritesamplewaspackagedinsmallnylonbagandsenttotheChemicalLaboratoryofWAPCO.
ThedeterminationofthechemicalcompositionatWAPCOinaccordancetoASTMC311–2008involveddrying,grinding,pressingandanalysing.
Thematerialsweredriedinanovenat100±10oCforabouttwohoursuntilaconstantweight(±0.
01g)wasobtainedafterwhichthesamplewasplacedinadesiccatortocoolforabout30minutesbeforegrindingcommences.
Inordertoaidgrindingandtopreventstickingofthesampletodish,0.
8gofstearicacidwasweighedintosampledishbeforeadding20.
0gofthematerial(VAsample)intoit.
Grindingwasdoneonagyro-millgrindingmachine(ModelHSM100H,SerialNumberMA11566-5-1,2004),whichstopsautomaticallyaftergrindingforapre-settimeof3minutes.
Thesamplewasthenreadyforpressing.
Thegroundsampleplus1.
0gofstearicacidtoensureadequatebinding,wasusedtofillthepelletcuptothebrim.
Thepelletcupwasthencentrallyplacedinanautomatichydraulicoperatedpress(ModelTP40/2D),pressedat20tonsloadand30secondsholdtime.
Oncompletionofpressing,thepressedpelletwascarefullyremovedfromthecylindricalpressingdieandtransferredintotheX-rayanalysersampleholderreadyforanalysis.
TheanalysiswascarriedoutusingX-RayFluorescentAnalysercalledTotalCementAnalyser(ModelARL9900XP),isconnecteddirectlytoacomputersystem.
Thepressedpelletwasloadedinthesampleportoftheanalyserandtheassemblyleftforaboutthreeminutesafterwhichthevaluesofelementsconcentrationweredisplayedonthemonitor.
Thiswassaveddirectlyonthesystemandtheprintedoutastheresultoftheanalysis.
PhysicalPropertiesofLateriteSampleThephysicalpropertiestestscarriedoutontheLateritesoilsampleincludedsieveanalysistodeterminetheparticlesizedistribution;Atterberglimitstests(i.
e.
liquidandplasticlimits)todeterminetheplasticindexofthesoilsample.
Alsodeterminedwerethespecificgravityandthemoisturecontentofthesoilsample.
ThetestswerecarriedoutinaccordancewiththerequisitecurrentBritishstandards(i.
e.
BSEN933–1:1997andBSEN12620–1:2002forsamplegrading;BSEN1377–2:1990forAtterberglimits;BSEN1097–6:2000andBSEN1097–5:1999formoisturecontents).
PerformanceAssessmentoftheMBBThemajortestscarriedoutontheMBBarethecompressivestrength,abrasionandthewaterabsorption.
Atotaloftwentytwo(22)numbersoftheburntbrickswereusedforthesetestsinaccordancewiththeappropriateBritishStandards.
ThecompressivestrengthinaccordancetoBSEN12390–3:2000involvedsubjectingatotaloftenbricks(fivenumbersforeachbrickspecimentype)tocrushingonanELEcompressionmachine(maximumcapacity2000KN,ModelNoJYS2000ACLASS1SerialNo.
16)whilethecrushingforcewasnotedandaverageofthecompressivestrengthcalculatedforfivespecimengivingthecompressivestrengthvalueofthebricksample.
Plates9and10presentsthetwosampletypesofbrickcrushed.
Abrasiontestandwaterabsorptionarebothdurabilitymeasurestodeterminetheabilityofthebricktoresistwearingawaybyerosionandotherenvironmentalconditions(i.
e.
abrasion)onehand;whilewaterabsorptionpropertiesontheotherhandisameasureofthesuitabilityofabrickforconstructionworks.
Rajput(2006)specifiesthatthewaterabsorptionofagoodbrickshouldnotexceed20%weightofthedrybrick.
ThewaterabsorptioninaccordancetoBS1881-122:1983wascarriedoutusingatotalofsixbricksamples(threeeachforeachsampletype).
Thespecimenbrickswerefirstweigheddry,andthenimmersedinwaterforaperiodofsixteenhours(16hrs)andweighedagain;thedifferenceinweightindicatedthewaterabsorbedbythebrick.
Theaverageofthreereplicatesforeachsampletypegavethewaterabsorptionvalueofthebrick.
ThecompressivestrengthandwaterabsorptiontestswerecarriedoutattheBuildingLaboratoryofFederalUniversityofTechnology,Minna.
TheabrasiontestinfollowingtheconceptspeltinBS1881–122:1983wascarriedforatotalofsixspecimenoftheMBBadoptingthreeeachforSamplesAandBrespectivelyinCivilEngineeringLaboratoryofFederalPolytechnic,BidausingtheLosAngelesAbrasionTestingMachineavailable.
Thetestinvolvedweighingthebricksamplebeforeinsertingthemachineandthensubjectedto500revolutionsandweighedagain.
Thedifferenceinweightcalculatedinpercentage(%)givesanindicationofthe%durabilityofthebricksamplewhiletheaverageofthreereplicatewasadoptedinthisstudyasthe%durability.
RESULTSANDDISCUSSIONConstituentsoftheSoilSampleTheresultofthechemicalanalysiscarriedoutontheLateritesampleasshowninTable1.
ItreflectsSilica–Sesquioxide(S-S)RatiotaggedSRintheTable,as1.
01implyingatruelaterite.
Table1:ResultofChemicalAnalysisofLateriteSampleElements%CompositionbyweightOthersValuesSiO242.
95Cl-0.
00Al2O327.
38L.
O.
IFe2O314.
95SUM83.
76CaO-0.
65LSF-0.
34MgO-0.
62SR1.
01K2O0.
32AR1.
83Na2O0.
23C3S-487.
34P2O50.
03C2S-481.
23TiO21.
14C3A16.
92Mn2O30.
16C4AF36.
45SO3-0.
14Al2O3+Fe2O342.
33TotalSiO2+Al2O3+Fe2O385.
28ThelateritesamplewasnotedtobelightbrownincolourandhaveahighquantityofSilica(SiO2=42.
95%),averageIronOxideandAluminiumcontent(Fe2O3=14.
95%andAl2O3=27.
38%)andcanbeclassifiedtobeAluminiumLateritebutnotbauxiteinlinewithTietz(1997)classificationsincetheAluminiumcontentishigherthantheIroncontent.
ThesoiltherebyconformstoRajput(2006)requirementforagoodbrickmakingearthonbasisoftheAlumina(Al2O3)orclayandSilica(SiO2)orsandcontent.
TheresultofLiquidandPlasticLimitareshowninTable2and3whileFig.
1showstheplotoftheLiquidLimitgottenviatheuseofMicrosoftExcel.
TABLE2:LiquidLimitofLateriteSampleUsedLIQUIDLIMITPenetration(mm)151719.
522.
524.
5CanNumberABCDEWeightofCan(g)24.
124.
324.
623.
925.
4WeightofCan+wetSoil(g)29.
629.
930.
130.
231.
7WeightofCan+drysoil(g)28.
528.
628.
828.
429.
5Weightofwetsoil(g)5.
55.
65.
56.
36.
3Weightofdrysoil(g)4.
44.
34.
24.
54.
1MoistureContent(%)25.
030.
231.
040.
053.
7TABLE3:PlasticLimitofLateriteSampleUsedPlasticLimitCanNumber2010WeightofCan(g)24.
924.
3WeightofCan+wetSoil(g)26.
225.
4WeightofCan+drysoil(g)25.
925.
2Weightofwetsoil(g)1.
31.
1Weightofdrysoil(g)1.
00.
9MoistureContent(%)30.
022.
2Average26.
11Usingtheequationofthelineofbestfitgivenasy=2.
725x–17.
71andR2=0.
882HenceLiquidLimit(L.
L.
i.
e.
MoistureContentat20mmpenetration)=36.
79.
Table3presentthePlasticLimit=26.
11,whilethePlasticIndex=L.
L–P.
L=10.
68,allthisshowsthelateritesamplehasAtterberglimitsconformingtotherangeasspecifiedbythefindingsofAbidoye(1977).
Fig.
1:LiquidLimitofLateriteSampleUsedTable4presentresultofthesieveanalysisoftheLateritesample.
Table4:ResultsforSieveAnalysisonSoilSampleSieveSizesWeightofsieve(g)Weightofsieve+sampleretained(g)Weightofsampleretained(g)%retained%PassingCumulative%retained5.
00mm478.
6507.
228.
605.
725.
7294.
283.
35mm468.
9499.
730.
806.
1611.
8888.
122.
00mm423.
4493.
069.
6013.
9225.
8074.
201.
18mm387.
9481.
093.
1018.
6244.
4255.
58850μm356.
3415.
659.
3011.
8656.
2843.
72600μm468.
6531.
562.
9012.
5868.
8631.
14425μm436.
2476.
039.
807.
9676.
8223.
18300μm314.
2351.
637.
407.
4884.
3015.
70150μm421.
1459.
638.
507.
7092.
008.
0075μm405.
3428.
323.
004.
6096.
603.
40PAN272.
2289.
317.
003.
40100.
000.
00Total500SummaryofthegradingcurvesgivesD60=1.
22,D30=0.
59,D10=0.
20andhenceCoefficientofUniformity(Cu)=D60/D10=1.
22/0.
20=6.
16;Coefficientofcovalence(Cc)=D302/D60xD10=0.
592/1.
22x0.
20=1.
52.
Thisinfersthelateritesampleiswellgraded.
AcloselookatTable4revealstheproportionofthesoilsamplepassing75msieverepresentingsiltparticlesinthesoilsampleis3.
4%(sameas%retainedinthepan).
Thisaddedtotheproportionofy=2.
7251x-17.
712R=0.
88240.
010.
020.
030.
040.
050.
060.
00102030MoistureContent(%)Penetration(mm)MoistureContent(%)Alumina(Al2O3)alsoknownasclayinthesoilsample(=27.
38%)givesatotalof30.
78%<50%byweightindicatingthesoilsamplefitswellintoRajput(2006)specificationsforagoodbrickmakingearth.
TheSpecificGravityofthesoilwasfoundtobe2.
54,theaveragenaturalmoisturecontentwas16.
54andtheFinenessModulusvalueof2.
79,indicatingamediumfinegrading.
CompressiveStrengthofMBBTheresultofthecompressivestrengthtestcarriedoutontheMBBisaspresentedinTable5revealingaveragecompressivestrengthvaluesof3.
46N/mm2forSampleAand11.
74N/mm2forSampleB.
SampleBwasnotedtobeverystrongandharderthanSampleA.
ImplyingthecompressivestrengthofMakurdilocallymanufacturedburntbricksfallwithinthelimitsandrangesstipulatedforbuildingconstructionbytheNIS87:2004.
Thestandardstipulatesacompressivestrengthvalueof2.
8N/mm2forbrickstobeusedforloadbearingwallsand2.
0N/mm2fornon-loadbearingwalls.
Thus,theMBBadequatelymeetthepurposeofconstructionofbuildings.
SampleBcanbeadjudgedtofalltoclassificationofengineeringbricksonbasisofitscompressivestrengthvalue.
Table5:ResultsforCompressiveStrengthTestofMBBSampleNoWeight(Kg)Crushingload(N)Area(mm)CompressiveStrength(N/mm2)AverageCompressive(N/mm2)A13.
811070029703.
60A23.
831040029703.
50A33.
751020029703.
433.
46A43.
68950029703.
20A53.
701060029703.
57B14.
2734155297011.
50B24.
2131200297010.
51B34.
1635640297012.
0011.
74B43.
9737700297012.
69B54.
2335700297012.
02WaterAbsorptionCharacteristicsoftheMBBTable6presentstheresultofthewaterabsorptiontestcarriedoutonMBB.
Itrevealsanaveragevalueof8.
58%forSampleAand16.
49%forSampleBbothfallingwithinthelimitof20%byweightspecifiedbyRajput(2006)forbuildingbricks.
ItwashowevernotedthatSampleBabsorbedtwicethequantityofwaterabsorbedbySampleA;thiscanbeasaresultoftheover-heating.
Thesampleshoweverdonotdissolvenormeltinwater.
Table6:ResultofWaterAbsorptionTestSampleNoInitialWt.
ofSpecimenFinalWeightofSpecimen%WaterAbsorptionAv.
%WaterAbsorptionw1(g)w2(g)=(W2-W1)100W1A13480.
03810.
69.
50A23275.
23545.
48.
258.
58A33145.
033967.
98B13250.
03753.
815.
50B23300.
03852.
116.
7316.
49B33275.
03839.
617.
24AbrasionResistanceoftheMBBTheresultofAbrasionresistancetestaspresentedinTable7revealsaverage%Durabilityvaluesof9.
32and33.
67forSamplesAandBrespectively.
ImplyingSampleBisaboutfourtimesasdurableagainstweareffectandabrasiveattackasSampleA.
ThisconfirmsthechoiceoftheresidentsatadoptingSampleBforconstructionworksinareaswheretherecouldbetendenciesforerosioneffectonthewallsbyrainandothersourcesofcontactofthebrickwallsurfaceswithwaterwhileSampleAislimitedtoonlywallconstructioninbuildings.
Table7:ResultsofAbrasionResistanceTestofMBBSampleInitialWt.
ofSpecimenWt.
after500Revolutions%DurabilityAv.
Durabilityw1(g)w3(g)D=100–(w1-w3)100w1A13250.
0334.
510.
29A23300.
0260.
37.
899.
32A33275.
0320.
59.
79B13480.
01369.
839.
36B23275.
21123.
234.
2933.
67B33145.
0860.
127.
35CONCLUSIONANDRECOMMENDATIONTheresultaffirmsthatsoilsampleusedforproductionofMakurdilocalburntbrickisatruelateritehavingaSilica–Sesquioxideratioof1.
01,Silicacontentof42.
95andclaycontentof27.
38andtotalclay+siltcontentof30.
78andistherebysuitablefortheproductionofburntbricks.
Thetwobricksampleshasaveragecompressivestrengthvalues(SampleA,3.
46N/mm2andSampleB,11.
75N/mm2)meetingNIS87:2004stipulationof2.
8N/mm2forbrickstobeusedforloadbearingwallsand2.
0N/mm2fornon-loadbearingwalls.
SampleBcanevenbeadoptedforuseasengineeringbrickonbasisofcompressivestrength.
ThetwoSampletypeswerefoundadequateforbuildingconstructiononbasisofwaterabsorptionandabrasionresistanceproperties.
ThegeneralacceptabilityoftheMBBinMakurdicanbelinkedtotheobservedusageofthebricksforpublicbuildingsbytheStateGovernmentandothercorporateorganizationsintheState.
GovernmentatthethreetiersinNigeriashouldemulatethispracticeasnoticedinMakurdi,BenueStateandencouragethepatronageofalternativebuildingmaterialsemanatingfromvariousresearchworksinourUniversitiesandotherInstitutionsoflearninginNigeria.
FurtherstudiesonMBBtargetedatdevelopingimprovedlocalkilnforbetterandproperburningofthebricksishighlynecessary,whileexcavationoflateriticsoilforlocalbrickmakingshouldbecontrolledbytheLocalAuthoritiestoaverterosionandenvironmentaldegradationduetoindiscriminateexcavations.
REFERENCESAbidoye,A.
S.
(1977).
"GeotechnicalClassificationofLateriteSoilinSomePartsofIle-Ife",UnpublishedM.
Sc.
Thesis,DepartmentofGeology,ObafemiAwolowoUniversity,Ile-Ife.
Adegoke,C.
O.
andAjayi,J.
A.
(2003);"ManufacturingandIndustrialCapacityBuildinginNigeria:ImperativeofAppropriateTechnology",ProceedingsofNationalEngineeringConferenceonTheEngineerintheNigerianSociety,NSE,8th–12thDec.
,Ibadan,Pp.
67–71.
AmericanSocietyforTestingandMaterials(2007);StandardTestMethodsforSamplingandTestingFlyAshorNaturalPozzolanforUseasaMineralAdmixtureinPortlandCementConcrete,ASTMC311.
BritishStandardInstitution(1983);TestingConcrete-MethodofDeterminationofWaterAbsorption,BS1881:Part122,London,BritishStandardInstitution(BSI).
BritishStandardInstitution(1990);SoilsforCivilEngineeringPurposes–ClassificationTests,BS1377:Part2,London,BritishStandardInstitution(BSI).
BritishStandardInstitution(1997);TestforGeometricalPropertiesofAggregates–DeterminationofParticleSizeDistribution(SievingMethod),BSEN933:Part1,London,BSI.
BritishStandardInstitution(1999);TestforMechanicalandPhysicalPropertiesofAggregatesDeterminationofWaterContentbyDryinginaVentilatedOven,BSEN1097:Part5,London,BritishStandardInstitution.
BritishStandardInstitution(2000);TestforMechanicalandPhysicalPropertiesofAggregates–DeterminationofParticleDensityandWaterAbsorption,BSEN1097:Part6,London,BSI,BritishStandardInstitution(2002);TestingofHardenedConcrete-CompressiveStrengthTestSpecimens,BSEN12390:Part3,London,BSI.
BritishStandardInstitution(2002);AggregatesforConcretes,BSEN12620:Part1,London,BSI.
EncartaEnglishDictionary(2009);Website:www.
microsoftencarta.
com.
Fermor,L.
L.
(1981);"WhatisLaterite"GeologyMagazine,Vol.
5,No.
8,Pp.
453–462.
Fitch,J.
M.
,andBranch,D.
P.
(1960);"PrimitiveArchitectureandClimate",ScientificAmerican,Vol.
203,Pp.
134-144.
Gidigasu,M.
D.
(1976);LateriticSoilEngineering,ElsevierScientificPublishingCompany,NewYork,Pp.
238.
Hamilton,E.
(1995);"Laterite–theWholeStory"EverythingyouwanttoknowaboutLaterite,www.
thekrib.
com/plants/fertilizer/laterama.
htmlaccessedon15/03/2008.
Miller,R.
S.
(1999);"LateriteandClay",EverythingYouWanttoKnowaboutLaterite,www.
thekrib.
com/plants/fertilizer/laterama.
htmlaccessedon15/03/2008.
Olusola,K.
O.
(2005);"FactorsAffectingCompressiveStrengthandElasticPropertiesofLaterizedConcrete",UnpublishedPh.
D.
Thesis,DepartmentofBuilding,ObafemiAwolowoUniversity,Ile-Ife.
Osunade,J.
A.
(1984);"FactorsAffectingCreepofLaterizedConcrete",UnpublishedM.
Sc.
Thesis,DepartmentofAgriculturalEngineering,UniversityofIfe,Ile-Ife.
Owoshagba,S.
O.
(1991);"CreepandShrinkageofLaterizedConcreteShortColumnsunderLongTimeSustainedLoading",UnpublishedM.
Sc.
Thesis,DepartmentofCivilEngineering,UNILAG,Akoka,Lagos.
Rajput,R.
K.
(2006);EngineeringMaterials,S.
Chand&CompanyLimited,NewDelhi,India.
Maxwell,J.
C.
(2007);TheHolyBible–NKJV,theMaxwellLeadershipBible.
Wikipedia(2011);Wikipedia:theFreeEncyclopaedia–BurntBricks,http//en.
wikipedia.
org.
(accessed,13thApril.
)

gcorelabs远东khabarovsk伯力Cloud云服务器测评,告诉你gcorelabs云服务器怎么样

说明一下:gcorelabs的俄罗斯远东机房“伯力”既有“Virtual servers”也有“CLOUD SERVICES”,前者是VPS,后者是云服务器,不是一回事;由于平日大家习惯把VPS和云服务器当做一回事儿,所以这里要特别说明一下。本次测评的是gcorelabs的cloud,也就是云服务器。 官方网站:https://gcorelabs.com 支持:数字加密货币、信用卡、PayPal...

10gbiz首月半价月付2.36美元,香港/洛杉矶VPS、硅谷独立服务器/站群服务器

收到10gbiz发来的7月份优惠方案,中国香港、美国洛杉矶机房VPS主机4折优惠码,优惠后洛杉矶VPS月付2.36美元起,香港VPS月付2.75美元起。这是一家2020年成立的主机商,提供的产品包括独立服务器租用和VPS主机等,数据中心在美国洛杉矶、圣何塞和中国香港。商家VPS主机基于KVM架构,支持使用PayPal或者支付宝付款。洛杉矶VPS架构CPU内存硬盘带宽系统价格单核512MB10GB1...

HostDare($33.79/年)CKVM和QKVM套餐 可选CN2 GIA线路

关于HostDare服务商在之前的文章中有介绍过几次,算是比较老牌的服务商,但是商家背景财力不是特别雄厚,算是比较小众的个人服务商。目前主流提供CKVM和QKVM套餐。前者是电信CN2 GIA,不过库存储备也不是很足,这不九月份发布新的补货库存活动,有提供九折优惠CN2 GIA,以及六五折优惠QKVM普通线路方案。这次活动截止到9月30日,不清楚商家这次库存补货多少。比如 QKVM基础的五个方案都...

雅虎免费邮箱为你推荐
百度k站百度K站是什么原因呢?绵阳电信绵阳电信宽带套餐资费推荐淘宝收费淘宝卖东西收多少手续费真正免费的网络电话谁有真正免费的网络电话??什么是电子邮件 什么是电子邮件伪静态什么是伪静态伪静态有何作用arm开发板新手入门应如何选择 ARM 开发板?显卡温度多少正常电脑显卡温度多少正常?网店推广网站怎么免费推广淘宝店铺?网易公开课怎么下载如何将网易公开课下载到电脑上?
郑州虚拟主机 域名出售 cn域名备案 debian6 轻量 南通服务器 空间首页登陆 百度云加速 dnspod 阿里云邮箱登陆地址 lamp的音标 主机返佣 学生服务器 supercache 1美元 阿里云邮箱个人版 云销售系统 中国电信宽带测速 带宽测速 游戏服务器 更多