Creativedede标签

dede标签  时间:2021-02-28  阅读:()
AraciandzerAdvancesinDierenceEquations(2015)2015:272DOI10.
1186/s13662-015-0610-8RESEARCHOpenAccessExtendedq-Dedekind-typeDaehee-Changheesumsassociatedwithextendedq-EulerpolynomialsSerkanAraci1*andzenzer2*Correspondence:mtsrkn@hotmail.
com1DepartmentofEconomics,FacultyofEconomics,AdministrativeandSocialSciences,HasanKalyoncuUniversity,Gaziantep,27410,TurkeyFulllistofauthorinformationisavailableattheendofthearticleAbstractInthepresentpaper,weaimtospecifyap-adiccontinuousfunctionforanoddprimeinsideap-adicq-analogoftheextendedDedekind-typesumsofhigherorderaccordingtoextendedq-Eulerpolynomials(orweightedq-Eulerpolynomials)whichisderivedfromafermionicp-adicq-deformedintegralonZp.
MSC:11S80;11B68Keywords:Dedekindsums;q-Dedekind-typesums;p-adicq-integral;extendedq-Eulernumbersandpolynomials1IntroductionLetpbechosenasaxedoddprimenumber.
InthispaperZp,Qp,CandCpwill,respec-tively,denotetheringofp-adicrationalintegers,theeldofp-adicrationalnumbers,thecomplexnumbers,andthecompletionofanalgebraicclosureofQp.
LetvpbeanormalizedexponentialvaluationofCpby|p|p=p–vp(p)=p.
Whenonetalksofaq-extension,qisvariouslyconsideredasanindeterminate,acom-plexnumberq∈Corap-adicnumberq∈Cp.
Ifq∈C,weassumethat|q|<.
Ifq∈Cp,weassumethat|–q|p<(see,fordetails,[–]).
ThefollowingmeasureisdenedbyKim:foranypositiveintegernand≤aExtendedq-Eulerpolynomials(alsoknownasweightedq-Eulerpolynomials)arede-nedbyE(α)n,q(x)=Zp–qα(x+ξ)–qαndμq(ξ)()2015Araciandzer.
ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,pro-videdyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
AraciandzerAdvancesinDierenceEquations(2015)2015:272Page2of5forn∈Z+:={,,,,.
.
.
}.
Wenotethatlimq→E(α)n,q(x)=En(x),whereEn(x)arenthEulerpolynomials,whicharedenedbytherule∞n=En(x)tnn!
=etxet+,|t|<π(fordetails,see[]).
Inthecasex=in(),thenwehaveE(α)n,q():=E(α)n,q,whicharecalledextendedq-Eulernumbers(orweightedq-Eulernumbers).
Extendedq-Eulernumbersandpolynomialshavethefollowingexplicitformulas:E(α)n,q=+q(–qα)nnl=nl(–)l+qαl+,()E(α)n,q(x)=+q(–qα)nnl=nl(–)lqαlx+qαl+,()E(α)n,q(x)=nl=nlqαlxE(α)l,q–qαx–qαn–l.
()Moreover,ford∈Nwithd≡(mod),E(α)n,q(x)=+q+qd–qαd–qαnd–a=(–)aE(α)n,qx+ad;()see[].
Foranypositiveintegerh,kandm,Dedekind-typeDCsumsaregivenbyKimin[,],and[]asfollows:Sm(h,k)=k–M=(–)M–MkEmhMk,whereEm(x)aremthperiodicEulerfunctions.
Kim[]derivedsomeinterestingpropertiesforDedekind-typeDCsumsandconsid-eredap-adiccontinuousfunctionforanoddprimenumbertocontainap-adicq-analogofthehigherorderDedekind-typeDCsumskmSm+(h,k).
Simsek[]gaveaq-analogofDedekind-typesumsandderivedinterestingproperties.
Furthermore,Aracietal.
stud-iedDedekind-typesumsinaccordancewithmodiedq-Eulerpolynomialswithweightα[],modiedq-Genocchipolynomialswithweightα[],andweightedq-Genocchipolynomials[].
Recently,weightedq-BernoullinumbersandpolynomialswererstdenedbyKimin[].
Next,manymathematicians,byutilizingKim'spaper[],haveintroducedvariousgeneralizationofsomeknownspecialpolynomialssuchasBernoullipolynomials,Eulerpolynomials,Genocchipolynomials,andsoon,whicharecalledweightedq-Bernoulli,weightedq-Euler,andweightedq-Genocchipolynomialsin[,,–].
AraciandzerAdvancesinDierenceEquations(2015)2015:272Page3of5Bythesamemotivationoftheaboveknowledge,wegiveaweightedp-adicq-analogofthehigherorderDedekind-typeDCsumskmSm+(h,k)whicharederivedfromafermionicp-adicq-deformedintegralonZp.
2Extendedq-Dedekind-typesumsassociatedwithextendedq-EulerpolynomialsLetwbetheTeichmüllercharacter(modp).
Forx∈Zp:=Zp/pZp,setx:q=w–(x)–qx–q.
LetaandNbepositiveintegerswith(p,a)=andp|N.
WenowconsiderC(α)qs,a,N:qN=w–(a)a:qαs∞j=sjqαaj–qαN–qαajE(α)j,qN.
Inparticular,ifm+≡(modp–),thenC(α)qm,a,N:qN=–qαa–qαmmj=mjqαajE(α)j,qN–qαN–qαaj=–qαN–qαmZp–qαN(ξ+aN)–qαNmdμqN(ξ).
Thus,C(α)q(m,a,N:qN)isacontinuousp-adicextensionof–qαN–qαmE(α)m,qNaN.
Let[·]betheGausssymbolandlet{x}=x–[x].
Thus,wearenowreadytointroducetheq-analogofthehigherorderDedekind-typeDCsumsJ(α)m,q(h,k:ql)bytheruleJ(α)m,qh,k:ql=k–M=(–)M––qαM–qαkZp–qα(lξ+l{hMk})–qαlmdμql(ξ).
Ifm+≡(modp–),–qαk–qαm+k–M=(–)M––qαM–qαkZp–qαk(ξ+hMk)–qαkmdμqk(ξ)=k–M=(–)M––qαM–qα–qαk–qαmZp–qαk(ξ+hMk)–qαkmdμqk(ξ),wherep|k,(hM,p)=foreachM.
By(),weeasilystatethefollowing:–qαk–qαm+J(α)m,qh,k:qk=k–M=–qαM–qα–qαk–qαm(–)M–AraciandzerAdvancesinDierenceEquations(2015)2015:272Page4of5*Zp–qαk(ξ+hMk)–qαkmdμqk(ξ)=k–M=(–)M––qαM–qαC(α)qm,(hM)k:qk,()where(hM)kdenotestheintegerxsuchthat≤xItisnotdiculttoindicatethefollowing:Zp–qα(x+ξ)–qαkdμq(ξ)=–qαm–qαk+q+qmm–i=(–)iZp–qαm(ξ+x+im)–qαmkdμqm(ξ).
()Onaccountof()and(),weeasilyseethat–qαN–qαmZp–qαN(ξ+aN)–qαNmdμqN(ξ)=+qN+qNpp–i=(–)i–qαNp–qαmZp–qαpN(ξ+a+iNpN)–qαpNmdμqpN(ξ).
()Becauseof(),(),and(),wedevelopthep-adicintegrationasfollows:C(α)qs,a,N:qN=+qN+qNp≤i≤p–a+iN=(modp)(–)iC(α)qs,(a+iN)pN,pN:qpN.
So,C(α)qm,a,N:qN=–qαN–qαmZp–qαN(ξ+aN)–qαNmdμqN(ξ)––qαNp–qαmZp–qαpN(ξ+a+iNpN)–qαpNmdμqpN(ξ),where(p–a)Ndenotestheintegerxwith≤xTherefore,wehavek–M=(–)M––qαM–qαC(α)qm,hM,k:qk=–qαk–qαm+J(α)m,qh,k:qk––qαk–qαm+*–qαkp–qαkJ(α)m,qp–h,k:qpk,wherepkandphmforeachM.
Thus,wegivethefollowingdenition,whichseemsinterestingforfurtherstudyingthetheoryofDedekindsums.
AraciandzerAdvancesinDierenceEquations(2015)2015:272Page5of5DenitionLeth,kbepositiveintegerwith(h,k)=,pk.
Fors∈Zp,wedeneap-adicDedekind-typeDCsumsasfollows:J(α)p,qs:h,k:qk=k–M=(–)M––qαM–qαC(α)qm,hM,k:qk.
Asaresultoftheabovedenition,westatethefollowingtheorem.
Theorem.
Form+≡(modp–)and(p–a)Ndenotestheintegerxwith≤xInthespecialcaseα=,ourapplicationsintheoryofDedekindsumsresembleKim'sresultsin[].
Theseresultsseemtobeinterestingforfurtherstudiesasin[,]and[].
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsAllauthorscontributedequallytothiswork.
Allauthorsreadandapprovedtherevisedmanuscript.
Authordetails1DepartmentofEconomics,FacultyofEconomics,AdministrativeandSocialSciences,HasanKalyoncuUniversity,Gaziantep,27410,Turkey.
2DepartmentofMathematics,FacultyofScienceandArts,KrklareliUniversity,Krklareli,39000,Turkey.
AcknowledgementsTheauthorsthankthereviewersfortheirhelpfulcommentsandsuggestions,whichhaveimprovedthequalityofthepaper.
Received:22June2015Accepted:15August2015References1.
Araci,S,Acikgoz,M,Park,KH:Anoteontheq-analogueofKim'sp-adicloggamma-typefunctionsassociatedwithq-extensionofGenocchiandEulernumberswithweightα.
Bull.
KoreanMath.
Soc.
50(2),583-588(2013)2.
Araci,S,Erdal,D,Seo,JJ:Astudyonthefermionicp-adicq-integralrepresentationonZpassociatedwithweightedq-Bernsteinandq-Genocchipolynomials.
Abstr.
Appl.
Anal.
2011,ArticleID649248(2011)3.
Araci,S,Acikgoz,M,Seo,JJ:Explicitformulasinvolvingq-Eulernumbersandpolynomials.
Abstr.
Appl.
Anal.
2012,ArticleID298531(2012).
doi:10.
1155/2012/2985314.
Araci,S,Acikgoz,M,Esi,A:Anoteontheq-Dedekind-typeDaehee-Changheesumswithweightαarisingfrommodiedq-Genocchipolynomialswithweightα.
J.
AssamAcad.
Math.
5,47-54(2012)5.
Kim,T:Anoteonp-adicq-Dedekindsums.
C.
R.
Acad.
BulgareSci.
54,37-42(2001)6.
Kim,T:Noteonq-Dedekind-typesumsrelatedtoq-Eulerpolynomials.
Glasg.
Math.
J.
54,121-125(2012)7.
Kim,T:NoteonDedekindtypeDCsums.
Adv.
Stud.
Contemp.
Math.
18,249-260(2009)8.
Kim,T:Themodiedq-Eulernumbersandpolynomials.
Adv.
Stud.
Contemp.
Math.
16,161-170(2008)9.
Kim,T:q-Volkenbornintegration.
Russ.
J.
Math.
Phys.
9,288-299(2002)10.
Kim,T:Onaq-analogueofthep-adicloggammafunctionsandrelatedintegrals.
J.
NumberTheory76,320-329(1999)11.
Kim,T:Ontheweightedq-Bernoullinumbersandpolynomials.
Adv.
Stud.
Contemp.
Math.
21(2),207-215(2011)12.
Rim,SH,Jeong,J:Anoteonthemodiedq-Eulernumbersandpolynomialswithweightα.
Int.
Math.
Forum6(65),3245-3250(2011)13.
Ryoo,CS:Anoteontheweightedq-Eulernumbersandpolynomials.
Adv.
Stud.
Contemp.
Math.
21,47-54(2011)14.
Seo,JJ,Araci,S,Acikgoz,M:q-Dedekind-typeDaehee-Changheesumswithweightαassociatedwithmodiedq-Eulerpolynomialswithweightα.
J.
ChungcheongMath.
Soc.
27(1),1-8(2014)15.
Simsek,Y:q-Dedekindtypesumsrelatedtoq-zetafunctionandbasicL-series.
J.
Math.
Anal.
Appl.
318,333-351(2006)16.
Sen,E,Acikgoz,M,Araci,S:Anoteonthemodiedq-Dedekindsums.
NotesNumberTheoryDiscreteMath.
19(3),60-65(2013)

妮妮云(100元/月)阿里云香港BGP专线 2核 4G

妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款,超过2天不退款 物...

无忧云:洛阳/大连BGP云服务器38.4元/月,雅安物理机服务器315元/月起,香港荃湾CN2限时5折优惠

无忧云怎么样?无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点,目前商家开启了夏日清凉补贴活动,商家的机器还是非常...

易探云(QQ音乐绿钻)北京/深圳云服务器8核8G10M带宽低至1332.07元/年起

易探云怎么样?易探云香港云服务器比较有优势,他家香港BGP+CN2口碑不错,速度也很稳定。尤其是今年他们动作很大,推出的香港云服务器有4个可用区价格低至18元起,试用过一个月的用户基本会续费,如果年付的话还可以享受8.5折或秒杀价格。今天,云服务器网(yuntue.com)小编推荐一下易探云国内云服务器优惠活动,北京和深圳这二个机房的云服务器2核2G5M带宽低至330.66元/年,还有高配云服务器...

dede标签为你推荐
明星论坛谁能介绍几个关于明星的好看图片网站啊.?易pc华硕易PC怎么样?性价比到底怎么样?google竞价排名哪些搜索引擎没有竞价排名?搜搜?谷歌?博客外链怎么用博客发外链?51自学网站网上自学网站有哪些?最好是免费的,我想学习网页设计打开网页出现错误网页上有错误怎么解决?万网核心代理哪里可以注册免费代理?快速美白好方法有什么变白的好方法1433端口怎么去看1433端口照片转手绘照片转手绘用什么APP
php主机空间 网站备案域名查询 域名服务dns的主要功能为 sugarhosts duniu pw域名 512m 光棍节日志 ubuntu更新源 灵动鬼影 个人空间申请 adroit 台湾谷歌 香港新世界中心 国外视频网站有哪些 最漂亮的qq空间 我的世界服务器ip 阿里云手机官网 asp空间 沈阳idc 更多