mndede标签
dede标签 时间:2021-02-28 阅读:(
)
GeneralizedDedekindSumsArisingfromEisensteinSeriesTristieStucker&AmyVennosAdvisor:Dr.
MatthewYoungDepartmentofMathematics,TexasA&MUniversityNSFDMS–1757872July16,2018MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
Givenγ∈SL2(Z),theMobiustransformationassociatedtoγisthecomplexmapdenedbyz→az+bcz+d,wherez∈H={x+iy|x,y∈R,y>0}.
MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
Givenγ∈SL2(Z),theMobiustransformationassociatedtoγisthecomplexmapdenedbyz→az+bcz+d,wherez∈H={x+iy|x,y∈R,y>0}.
Wewriteγz=az+bcz+d.
AutomorphicFormsAfunctionf:H→CisanautomorphicformifAutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)AutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)2.
fsatisesacertaindierentialequation(complexanalytic,harmonicfunctions,AutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)2.
fsatisesacertaindierentialequation(complexanalytic,harmonicfunctions,3.
fexhibitssomeboundarybehavior.
(polynomialgrowth,boundednessasfunctionapproachesi∞EisensteinSeriesFork≥4andkeven,theweight-kEisensteinSeriesisEk(z)=12gcd(c,d)=11(cz+d)k.
EisensteinSeriesFork≥4andkeven,theweight-kEisensteinSeriesisEk(z)=12gcd(c,d)=11(cz+d)k.
Forallγ=abcd∈SL2(Z),Ek(γz)=(cz+d)kEk(z).
DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈ZDirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=1DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=13.
χ(mn)=χ(m)χ(n)m,n∈ZDirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=13.
χ(mn)=χ(m)χ(n)m,n∈ZExample:Jacobi/LegendreSymbolsEisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
EisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
Eχ1,χ2(γz,s)=ψ(γ)Eχ1,χ2(z,s),whereψ(γ)=χ1(d)χ2(d),forallγ=abcd∈Γ0(q1q2).
EisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
Eχ1,χ2(γz,s)=ψ(γ)Eχ1,χ2(z,s),whereψ(γ)=χ1(d)χ2(d),forallγ=abcd∈Γ0(q1q2).
Γ0(N)=abcd∈SL2(Z)c≡0(modN)PeriodicityofEχ1,χ2LetT=1101∈Γ0(q1q2).
ThenTz=1z+10z+1=z+1,soEχ1,χ2(z+1,s)=(0z+1)kχ1(1)χ2(1)Eχ1,χ2(z,s)=Eχ1,χ2(z,s).
PeriodicityofEχ1,χ2LetT=1101∈Γ0(q1q2).
ThenTz=1z+10z+1=z+1,soEχ1,χ2(z+1,s)=(0z+1)kχ1(1)χ2(1)Eχ1,χ2(z,s)=Eχ1,χ2(z,s).
Thus,Eχ1,χ2isperiodic.
FourierExpansionfortheCompletedEisensteinSeriesDenethecompletedEisensteinseriesasEχ1,χ2(z,s):=(q2/π)sikτ(χ2)Γ(s+k2)L(2s,χ1χ2)Eχ1,χ2(z,s)FourierExpansionfortheCompletedEisensteinSeriesDenethecompletedEisensteinseriesasEχ1,χ2(z,s):=(q2/π)sikτ(χ2)Γ(s+k2)L(2s,χ1χ2)Eχ1,χ2(z,s)TheFourierexpansionforthecompletedEisensteinseriesisEχ1,χ2(z,s)=eχ1,χ2(y,s)+n=0λχ1,χ2(n,s)|n|e2πinx·Γ(s+k2)Γ(s+k2sgn(n))Wk2sgn(n),s12(4π|n|y).
EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)logηaz+bcz+d=logη(z)+πia+d12c+s(d,c)+12log(i(cz+d))Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)logηaz+bcz+d=logη(z)+πia+d12c+s(d,c)+12log(i(cz+d))s(h,k)=k1r=1rkhrkhrk12EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)Wehavebeeninvestigatingthefunctionfχ1,χ2.
TransformationPropertiesoffχ1,χ2(z)Deneφχ1,χ2(γ,z):=fχ1,χ2(γz)ψ(γ)fχ1,χ2(z).
TransformationPropertiesoffχ1,χ2(z)Deneφχ1,χ2(γ,z):=fχ1,χ2(γz)ψ(γ)fχ1,χ2(z).
MainGoal.
Findanitesumformulaforφχ1,χ2.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Proof.
SinceEχ1,χ2(γz,1)=ψ(γ)Eχ1,χ2(z,1)andEχ1,χ2(z,1)=fχ1,χ2(z)+χ2(1)fχ1,χ2(z),φχ1,χ2(γ,z)=χ2(1)φχ1,χ2(γ,z).
Sinceφχ1,χ2isaholomorphicfunctionandφχ1,χ2isanantiholomorphicfunction,φχ1,χ2mustbeconstant.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Proof.
SinceEχ1,χ2(γz,1)=ψ(γ)Eχ1,χ2(z,1)andEχ1,χ2(z,1)=fχ1,χ2(z)+χ2(1)fχ1,χ2(z),φχ1,χ2(γ,z)=χ2(1)φχ1,χ2(γ,z).
Sinceφχ1,χ2isaholomorphicfunctionandφχ1,χ2isanantiholomorphicfunction,φχ1,χ2mustbeconstant.
Fromnowon,wewillwriteφχ1,χ2(γ)insteadofφχ1,χ2(γ,z).
Propertiesofφχ1,χ2Lemma2.
Letγ1,γ2∈Γ0(q1q2).
Thenφχ1,χ2(γ1γ2)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
Propertiesofφχ1,χ2Lemma2.
Letγ1,γ2∈Γ0(q1q2).
Thenφχ1,χ2(γ1γ2)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
Proof.
Sinceψismultiplicative,φχ1,χ2(γ1γ2)=fχ1,χ2(γ1γ2z)ψ(γ1γ2)fχ1,χ2(z)=fχ1,χ2(γ1γ2z)ψ(γ1)ψ(γ2)fχ1,χ2(z)=fχ1,χ2(γ1γ2z)ψ(γ1)fχ1,χ2(γ2z)+ψ(γ1)fχ1,χ2(γ2z)ψ(γ1)ψ(γ2)fχ1,χ2(z)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
MainTheoremTheorem.
Letγ=abcd∈Γ0(q1q2).
Thenφχ1,χ2(γ)=πiχ2(1)τ(χ1)j(modc)n(modq1)χ2(j)χ1(n)B1jcB1nq1ajc,whereB1(z)=zz12,z/∈Z0,otherwise,andτ(χ)=q1n=0χ(n)e2πinq,forχmoduloq.
CarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2uCarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2ulimu→0+fχ1,χ2dc+ic2u=0.
CarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2ulimu→0+fχ1,χ2dc+ic2u=0.
Thus,φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iu.
CarnivalFunhouseProofofMainTheoremfχ1,χ2(z)=∞k=1∞l=1χ1(l)χ2(k)le2πiklz.
CarnivalFunhouseProofofMainTheoremfχ1,χ2(z)=∞k=1∞l=1χ1(l)χ2(k)le2πiklz.
Simplifyingfχ1,χ2andevaluatinglimu→0+fχ1,χ2ac+iu,wegetφχ1,χ2(γ)=χ2(1)∞l=1χ1(l)lj(modc)χ2(j)B1jce2πialjc.
CarnivalFunhouseProofofMainTheoremFromthetransformationpropertiesofEχ1,χ2,wehaveφχ1,χ2(γ)=12(φχ1,χ2(γ)χ2(1)φχ1,χ2(γ)).
Wesimplifythismoresymmetricversionofφχ1,χ2togetφχ1,χ2(γ)=πiχ2(1)τ(χ1)j(modc)n(modq1)χ2(j)χ1(n)B1jcB1nq1ajc.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
Withmoretime,wewouldliketocalculateareciprocitytheoremforourgeneralizedDedekindsum.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
Withmoretime,wewouldliketocalculateareciprocitytheoremforourgeneralizedDedekindsum.
12hks(h,k)+12khs(k,h)=h2+k23hk+1References1.
T.
M.
Apostol,ModularFunctionsandDirichletSeriesinNumberTheory,Springer-VerlagNewYork,Inc.
,1976.
2.
B.
Berndt,CharacterTransformationFormulaeSimilartoThosefortheDedekindEta-Function,Proc.
Sym.
PureMath.
,No.
24,Amer.
Math.
Soc,Providence,(1973),9–30.
3.
M.
C.
Dagl,M.
Can,OnReciprocityFormulasforApostol'sDedekindSumsandtheirAnalogues,J.
IntegerSeq.
17(5)(2014),Article14.
5.
4,105–1244.
L.
Goldstein,DedekindSumsforaFuchsianGroup,I.
NagayaMath.
J.
50(1973),21–47.
5.
C.
Nagasaka,OnGeneralizedDedekindSumsAttachedtoDirichletCharacters,JournalofNumberTheory19(1984),no.
3,374–383.
6.
M.
Young,ExplicitCalculationswithEisensteinSeries.
arXiv:1710.
03624,(2017),1–37.
RFCHOST,这个服务商我们可能有一些朋友知道的。不要看官网是英文就以为是老外服务商,实际上这个服务商公司在上海。我们实际上看到的很多商家,有的是繁体,有的是英文,实际上很多都是我们国人朋友做的,有的甚至还做好几个品牌域名,实际上都是一个公司。对于RFCHOST商家还是第一次分享他们家的信息,公司成立大约2015年左右。目前RFCHOST洛杉矶机房VPS正进行优惠促销,采用CN2优化线路,电信双...
DMIT.io是成立于2018年的一家国外主机商,提供VPS主机和独立服务器租用,数据中心包括中国香港、美国洛杉矶和日本等,其中日本VPS是新上的节点,基于KVM架构,国际线路,1Gbps带宽,同时提供月付循环8折优惠码,或者年付一次性5折优惠码,优惠后最低每月8.72美元或者首年65.4美元起,支持使用PayPal或者支付宝等付款方式。下面列出部分日本VPS主机配置信息,价格以月付为例。CPU:...
WHloud Date(鲸云数据),原做大数据和软件开发的团队,现在转变成云计算服务,面对海内外用户提供中国大陆,韩国,日本,香港等多个地方节点服务。24*7小时的在线支持,较为全面的虚拟化构架以及全方面的技术支持!官方网站:https://www.whloud.com/WHloud Date 韩国BGP云主机少量补货随时可以开通,随时可以用,两小时内提交退款,可在工作日期间全额原路返回!支持pa...
dede标签为你推荐
易pc笔记本电脑好?还是易PC笔记本电脑好?雅虎社区雅虎资讯在哪里提交办公协同软件求一款国内知名的OA办公软件,谁知道有哪些呢?腾讯文章腾讯新闻的精选微信里面收藏的文章在哪里直播加速怎么让已拍摄好的视频加速开机滚动条电脑开机启动滚动条时间长怎么办?神雕侠侣礼包大全神雕侠侣手游华山论剑礼包有什么 怎么领取创维云电视功能创维健康云电视有什么功能?怎么升级ios6苹果6怎么升级最新系统系统分析员一个优秀的系统分析师应该具备哪些方面的知识和素质?
cybermonday 密码泄露 华为云主机 java空间 韩国网名大全 架设服务器 炎黄盛世 河南m值兑换 流量计费 便宜空间 新加坡空间 工信部网站备案查询 日本代理ip 七十九刀 register.com 塔式服务器 godaddy域名 容 租主机 主机响 更多