mndede标签
dede标签 时间:2021-02-28 阅读:(
)
GeneralizedDedekindSumsArisingfromEisensteinSeriesTristieStucker&AmyVennosAdvisor:Dr.
MatthewYoungDepartmentofMathematics,TexasA&MUniversityNSFDMS–1757872July16,2018MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
Givenγ∈SL2(Z),theMobiustransformationassociatedtoγisthecomplexmapdenedbyz→az+bcz+d,wherez∈H={x+iy|x,y∈R,y>0}.
MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
Givenγ∈SL2(Z),theMobiustransformationassociatedtoγisthecomplexmapdenedbyz→az+bcz+d,wherez∈H={x+iy|x,y∈R,y>0}.
Wewriteγz=az+bcz+d.
AutomorphicFormsAfunctionf:H→CisanautomorphicformifAutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)AutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)2.
fsatisesacertaindierentialequation(complexanalytic,harmonicfunctions,AutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)2.
fsatisesacertaindierentialequation(complexanalytic,harmonicfunctions,3.
fexhibitssomeboundarybehavior.
(polynomialgrowth,boundednessasfunctionapproachesi∞EisensteinSeriesFork≥4andkeven,theweight-kEisensteinSeriesisEk(z)=12gcd(c,d)=11(cz+d)k.
EisensteinSeriesFork≥4andkeven,theweight-kEisensteinSeriesisEk(z)=12gcd(c,d)=11(cz+d)k.
Forallγ=abcd∈SL2(Z),Ek(γz)=(cz+d)kEk(z).
DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈ZDirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=1DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=13.
χ(mn)=χ(m)χ(n)m,n∈ZDirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=13.
χ(mn)=χ(m)χ(n)m,n∈ZExample:Jacobi/LegendreSymbolsEisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
EisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
Eχ1,χ2(γz,s)=ψ(γ)Eχ1,χ2(z,s),whereψ(γ)=χ1(d)χ2(d),forallγ=abcd∈Γ0(q1q2).
EisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
Eχ1,χ2(γz,s)=ψ(γ)Eχ1,χ2(z,s),whereψ(γ)=χ1(d)χ2(d),forallγ=abcd∈Γ0(q1q2).
Γ0(N)=abcd∈SL2(Z)c≡0(modN)PeriodicityofEχ1,χ2LetT=1101∈Γ0(q1q2).
ThenTz=1z+10z+1=z+1,soEχ1,χ2(z+1,s)=(0z+1)kχ1(1)χ2(1)Eχ1,χ2(z,s)=Eχ1,χ2(z,s).
PeriodicityofEχ1,χ2LetT=1101∈Γ0(q1q2).
ThenTz=1z+10z+1=z+1,soEχ1,χ2(z+1,s)=(0z+1)kχ1(1)χ2(1)Eχ1,χ2(z,s)=Eχ1,χ2(z,s).
Thus,Eχ1,χ2isperiodic.
FourierExpansionfortheCompletedEisensteinSeriesDenethecompletedEisensteinseriesasEχ1,χ2(z,s):=(q2/π)sikτ(χ2)Γ(s+k2)L(2s,χ1χ2)Eχ1,χ2(z,s)FourierExpansionfortheCompletedEisensteinSeriesDenethecompletedEisensteinseriesasEχ1,χ2(z,s):=(q2/π)sikτ(χ2)Γ(s+k2)L(2s,χ1χ2)Eχ1,χ2(z,s)TheFourierexpansionforthecompletedEisensteinseriesisEχ1,χ2(z,s)=eχ1,χ2(y,s)+n=0λχ1,χ2(n,s)|n|e2πinx·Γ(s+k2)Γ(s+k2sgn(n))Wk2sgn(n),s12(4π|n|y).
EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)logηaz+bcz+d=logη(z)+πia+d12c+s(d,c)+12log(i(cz+d))Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)logηaz+bcz+d=logη(z)+πia+d12c+s(d,c)+12log(i(cz+d))s(h,k)=k1r=1rkhrkhrk12EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)Wehavebeeninvestigatingthefunctionfχ1,χ2.
TransformationPropertiesoffχ1,χ2(z)Deneφχ1,χ2(γ,z):=fχ1,χ2(γz)ψ(γ)fχ1,χ2(z).
TransformationPropertiesoffχ1,χ2(z)Deneφχ1,χ2(γ,z):=fχ1,χ2(γz)ψ(γ)fχ1,χ2(z).
MainGoal.
Findanitesumformulaforφχ1,χ2.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Proof.
SinceEχ1,χ2(γz,1)=ψ(γ)Eχ1,χ2(z,1)andEχ1,χ2(z,1)=fχ1,χ2(z)+χ2(1)fχ1,χ2(z),φχ1,χ2(γ,z)=χ2(1)φχ1,χ2(γ,z).
Sinceφχ1,χ2isaholomorphicfunctionandφχ1,χ2isanantiholomorphicfunction,φχ1,χ2mustbeconstant.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Proof.
SinceEχ1,χ2(γz,1)=ψ(γ)Eχ1,χ2(z,1)andEχ1,χ2(z,1)=fχ1,χ2(z)+χ2(1)fχ1,χ2(z),φχ1,χ2(γ,z)=χ2(1)φχ1,χ2(γ,z).
Sinceφχ1,χ2isaholomorphicfunctionandφχ1,χ2isanantiholomorphicfunction,φχ1,χ2mustbeconstant.
Fromnowon,wewillwriteφχ1,χ2(γ)insteadofφχ1,χ2(γ,z).
Propertiesofφχ1,χ2Lemma2.
Letγ1,γ2∈Γ0(q1q2).
Thenφχ1,χ2(γ1γ2)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
Propertiesofφχ1,χ2Lemma2.
Letγ1,γ2∈Γ0(q1q2).
Thenφχ1,χ2(γ1γ2)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
Proof.
Sinceψismultiplicative,φχ1,χ2(γ1γ2)=fχ1,χ2(γ1γ2z)ψ(γ1γ2)fχ1,χ2(z)=fχ1,χ2(γ1γ2z)ψ(γ1)ψ(γ2)fχ1,χ2(z)=fχ1,χ2(γ1γ2z)ψ(γ1)fχ1,χ2(γ2z)+ψ(γ1)fχ1,χ2(γ2z)ψ(γ1)ψ(γ2)fχ1,χ2(z)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
MainTheoremTheorem.
Letγ=abcd∈Γ0(q1q2).
Thenφχ1,χ2(γ)=πiχ2(1)τ(χ1)j(modc)n(modq1)χ2(j)χ1(n)B1jcB1nq1ajc,whereB1(z)=zz12,z/∈Z0,otherwise,andτ(χ)=q1n=0χ(n)e2πinq,forχmoduloq.
CarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2uCarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2ulimu→0+fχ1,χ2dc+ic2u=0.
CarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2ulimu→0+fχ1,χ2dc+ic2u=0.
Thus,φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iu.
CarnivalFunhouseProofofMainTheoremfχ1,χ2(z)=∞k=1∞l=1χ1(l)χ2(k)le2πiklz.
CarnivalFunhouseProofofMainTheoremfχ1,χ2(z)=∞k=1∞l=1χ1(l)χ2(k)le2πiklz.
Simplifyingfχ1,χ2andevaluatinglimu→0+fχ1,χ2ac+iu,wegetφχ1,χ2(γ)=χ2(1)∞l=1χ1(l)lj(modc)χ2(j)B1jce2πialjc.
CarnivalFunhouseProofofMainTheoremFromthetransformationpropertiesofEχ1,χ2,wehaveφχ1,χ2(γ)=12(φχ1,χ2(γ)χ2(1)φχ1,χ2(γ)).
Wesimplifythismoresymmetricversionofφχ1,χ2togetφχ1,χ2(γ)=πiχ2(1)τ(χ1)j(modc)n(modq1)χ2(j)χ1(n)B1jcB1nq1ajc.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
Withmoretime,wewouldliketocalculateareciprocitytheoremforourgeneralizedDedekindsum.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
Withmoretime,wewouldliketocalculateareciprocitytheoremforourgeneralizedDedekindsum.
12hks(h,k)+12khs(k,h)=h2+k23hk+1References1.
T.
M.
Apostol,ModularFunctionsandDirichletSeriesinNumberTheory,Springer-VerlagNewYork,Inc.
,1976.
2.
B.
Berndt,CharacterTransformationFormulaeSimilartoThosefortheDedekindEta-Function,Proc.
Sym.
PureMath.
,No.
24,Amer.
Math.
Soc,Providence,(1973),9–30.
3.
M.
C.
Dagl,M.
Can,OnReciprocityFormulasforApostol'sDedekindSumsandtheirAnalogues,J.
IntegerSeq.
17(5)(2014),Article14.
5.
4,105–1244.
L.
Goldstein,DedekindSumsforaFuchsianGroup,I.
NagayaMath.
J.
50(1973),21–47.
5.
C.
Nagasaka,OnGeneralizedDedekindSumsAttachedtoDirichletCharacters,JournalofNumberTheory19(1984),no.
3,374–383.
6.
M.
Young,ExplicitCalculationswithEisensteinSeries.
arXiv:1710.
03624,(2017),1–37.
青果网络怎么样?青果网络隶属于泉州市青果网络科技有限公司,青果网络商家成立于2015年4月1日,拥有工信部颁发的全网IDC/ISP/IP-VPN资质,是国内为数不多具有IDC/ISP双资质的综合型云计算服务商。青果网络是APNIC和CNNIC地址分配联盟成员,泉州市互联网协会会员单位,信誉非常有保障。目前,青果网络商家正式开启了618云特惠活动,针对国内外机房都有相应的优惠。点击进入:青果网络官方...
老鹰主机HawkHost是个人比较喜欢的海外主机商,如果没有记错的话,大约2012年左右的时候算是比较早提供支付宝付款的主机商。当然这个主机商成立时间更早一些的,由于早期提供支付宝付款后,所以受众用户比较青睐,要知道我们早期购买海外主机是比较麻烦的,信用卡和PAYPAL还没有普及,大家可能只有银联和支付宝,很多人选择海外主机还需要代购。虽然如今很多人建站少了,而且大部分人都用云服务器。但是老鹰主机...
LOCVPS怎么样?LOCVPS是一家成立于2011年的稳定老牌国人商家,目前提供中国香港、韩国、美国、日本、新加坡、德国、荷兰等区域VPS服务器,所有机房Ping延迟低,国内速度优秀,非常适合建站和远程办公,所有机房Ping延迟低,国内速度优秀,非常适合做站。XEN架构产品的特点是小带宽无限流量、不超售!KVM架构是目前比较流行的虚拟化技术,大带宽,生态发展比较全面!所有大家可以根据自己业务需求...
dede标签为你推荐
赛我网赛我网(cyworld)怎么进不去?回收站在哪回收站在系统的哪文件夹无线路由器限速设置无线路由器限速怎么设置!免费开通黄钻能免费开通黄钻吗??伪静态什么是伪静态照片转手绘怎么把图片P成手绘手机区号手机号码前怎样填写正确的国内区号?今日热点怎么删除怎么删除手机百度实时热点办公协同软件oa办公系统软件有哪些ejb开发什么是EJB?
免费域名空间申请 域名备案收费吗 优key godaddy续费优惠码 天猫双十一秒杀 seovip 微信收钱 hostloc cdn加速原理 流量计费 可外链相册 世界测速 域名和空间 免费全能主机 根服务器 阿里云官方网站 web应用服务器 智能dns解析 湖南idc 镇江高防 更多