waterstablehost

stablehost  时间:2021-01-03  阅读:()
SHORTCOMMUNICATIONSThreonineinCollagenTriple-helicalStructureNatthaJIRAVANICHANUN,1;2KazunoriMIZUNO,3HansPeterBA¨CHINGER,3andKenjiOKUYAMA1;y1DepartmentofMacromolecularScience,GraduateSchoolofScience,OsakaUniversity,Toyonaka560-0043,Japan2DepartmentofBiotechnologyandLifeScience,GraduateSchoolofEngineering,TokyoUniversityofAgricultureandTechnology,Koganei184-8588,Japan3DepartmentofBiochemistryandMolecularBiology,OregonHealth&ScienceUniversity,andShrinersHospitalforChildren,ResearchDepartment,Portland,Oregon97239,USA(ReceivedOctober4,2005;AcceptedDecember5,2005;PublishedApril15,2006)KEYWORDSThreonine/Collagen/Triple-helicalStructure/Host-guestPeptide/Side-chainConformation/HydrationPattern/[DOI10.
1295/polymj.
38.
400]Collagenisthemostabundantproteinsfoundintheextracellularmatrixofmulticellularanimals,andhasauniquetriple-helicalstructure,whichiscomposedofthethreepolypeptides.
Thethreechainsformaright-handedsupercoiledtriple-helix.
Eachpolypep-tidechainrequiresGlyateverythirdresidue,whichgenerates-Xaa-Yaa-Gly-repeatingsequence.
Theglycineresiduesineverythirdpositionarepackedinthecenterofthetriple-helix.
TheresiduesintheXaaandtheYaapositionsareexposedtothemolecu-larsurface.
HighcontentsofiminoacidsintheXaaandtheYaapositionsarerequiredtothestabilityofthestructure.
Collagenfamilyincludesmorethanthirtyproteinsinvertebrates.
1,2Similarcollagensandmuchmorediversecollagenproteinsarealsopresent-edthroughoutinvertebratesincludingafewgiantmoleculesfoundinthecuticlesofseveralwormspe-cies.
3,4Forexample,theRiftiapachyptilacuticlecol-lagenhasalowHypcontentbuttheThrcontentismuchhigherthanthosefoundinothercollagens.
5Themechanismofthestabilityofthecollagenhelixisstillunknown.
TheThrofthecollagenishighlygly-cosylated.
4Severalmodelpeptidesweresynthesizedtoanalyzeitsthermalstabilityandproperty.
5–9TheO-galactosylationofThrincreasesthethermalstability(thehelix-coiltransitiontemperature)ofAc-(Gly-Pro/4(R)Hyp-Thr)10-NH2peptides.
6TheCDexperimentsofAc-(Gly-4(R)Hyp-Yaa)10-NH2peptideswithvari-ousaminoacidsintheYaaposition(Thr,Ser,Val,Ala,andalloThr)suggestedthatthemethylgroup,hydroxylgroupandstereocongurationofThrareim-portantforthestability.
9ThemethylgroupofThrwashypothesizedtoshieldtheinter-chainhydrogenbondbetweentheamideofGlyandcarbonylofXaaresi-duesfromwatermoleculesbyenergy-minimizationmethod.
9Althoughseveralstudieshavechallengedtorationalizetheexperimentaldata,themechanismofthestabilityincuticlecollagenisstillambiguous.
InordertounderstandthestabilizationmechanismofThrintheYaaposition,weattemptedtocrystallizethepeptidesAc-(Gly-4(R)Hyp-Thr)10-NH2andH-(Gly-4(R)Hyp-Thr)10-OH.
Despitetheirabilitytoformatriple-helicalstructure,6wecouldnotsucceedintheformationofthesinglecrystalsofthesepeptidesyet.
Thehost-guestpeptidesystemisanalternativewaytogetsinglecrystalsofthepeptidewithinterest-ingsequence.
Therefore,4(R)Hyp-Thr-Glytripeptideunitwasinsertedintothestablehostpeptide(Pro-Pro-Gly)9.
10Thehost-guestpeptideH-(Pro-Pro-Gly)4-(4(R)Hyp-Thr-Gly)-(Pro-Pro-Gly)4-OH(OTG)con-tains4(R)Hyp-Thr-GlytripeptideunitthatisabundantintheRiftiapachyptilacuticlecollagen.
ThesinglecrystalanalysisoftheOTGpeptideprovidedtherstinsightintotheunique4(R)Hyp-Thr-Glytripeptideunitconformation.
Here,theThrconformationandtheobservedhydrationpatternsaroundThrresidueintriple-helicalstructurewererevealed.
EXPERIMENTALCrystallizationwasperformedbyhanging-dropdif-fusionmethodat4C.
Samplesolutionwaspreparedatconcentrated10mgmL1.
Reservoirsolutioncon-tained0.
1MHepesbuerpH7.
5and23%(w/v)PEG1000.
Dropmixturemadeupofsamplesolution2mlandreservoirsolution2ml.
Rod-likecrystalsap-pearedinabout3weeks.
Asinglecrystalwasmeas-uredat100KonthebeamlineBL6AatthePhotonFactoryinTsukuba.
IntensitydatawasprocessedbyCrystalClear.
11CrystalbelongstomonoclinicspaceyTowhomcorrespondenceshouldbeaddressed(Tel:+81-66-850-5455,Fax:+81-66-850-5455,E-mail:okuyamak@chem.
sci.
osaka-u.
ac.
jp).
400PolymerJournal,Vol.
38,No.
4,pp.
400–403(2006)groupP21withunitcellparametersa26:0,b26:5,c80:2A,90:4.
ThestructureofOTGwasdeterminedbymolecularreplacementmethodusing(Pro-Pro-Gly)9peptide(PDBcode1ITT)12asasearchmodel.
PositionalrenementwasperformedbyX-PLOR13andstructurerenementwascarriedoutbySHELX-L.
14RESULTSANDDISCUSSIONThrresiduesareatthecentraltripeptideunitofthemolecule.
Todescribeside-chainconformationofThr,1dihedralangleisdenedbyN-C-C-O1orN-C-C-C2.
Thedierentconformationsoftheside-chainasafunctionof1valuesof60,180,and60arereferredtogauche,trans,andgauche,respectively.
Thus,Thrside-chaininOTGstructure,theO1takesgaucheconformation,whereastheC2takestransconformationtoamidegroup(Figure1).
BoththeO1andtheC2aredirectedtowardadja-centchains.
ThiskindofThrside-chainconformationisthesameastwooutofthreeThrinT3-785pep-tide.
15Theaveragemain-chaindihedralangles(=)ofThrinthisstudyare61and145,whicharecon-sistentwiththosevaluesintheYaapositionofcolla-gen-likepeptides.
10,16InT3-785structure,15water-mediatedhydrogenbondwasreportedbetweentheThrOHgroupandtheGlycarbonylinthesamechainviaonewatermolecule.
ForThr,notonlytheabovewater-mediatedpattern,butalsodiversewater-medi-atedpatternsareobservedintheOTGstructureinFigure2a.
Intherstcase,twowatermoleculesmakehydrogenbondswiththeOHgroupofThr114andthegauche+NOγ1transCγ2Figure1.
gauche/transconformationofThrintheOTGstructure.
Gly1AOGly2BOGly112OThr314O1γHyp3AOThr114NHyp4BOδδδThr114O1Hyp5COHyp4BOThr114OThr214O1γγHyp5COPro317OHyp6AO(a)(b)Figure2.
(a)CentralregionoftheOTGmoleculeshowsthreecasesofwater-mediatedhydrogenbondsatOHgroupofThr.
Case1:Thr114O1connectsthroughtwowatermoleculestoGly112Ointhesamechain.
Case2:Thr114O1connectsthroughtwowatermole-culestoThr114Nwithinthesameresidue.
Case3:Thr314O1connectsthroughtwowatermoleculestoThr114OofadjacentchainandThr214O1connectsthroughtwowatermoleculestoPro317Oofadjacentchain.
Intheresiduename,therstdigitcorrespondstoachainnumberandthenexttwodigitscorrespondtoaresiduenumber.
(b)HydrationpatternsinvolvingOHgroupof4(R)Hypandcarbonylgroupsin(Pro-4(R)Hyp-Gly)11structure.
16Threechainsinamoleculeareshownbydierentshedding;light-,middle-anddark-gray.
Spheresarewatermolecules.
Intra-chainandinter-chainwater-mediatednetworksareshowninbrokenandsolidlines,respectively.
ThreonineinCollagenTriple-helicalStructurePolym.
J.
,Vol.
38,No.
4,2006401carbonylgroupofGly112inthesamechain(brokenlines).
Inthesecondcase,twowatermoleculesinter-actbetweentheOHandtheamidegroupswithinthesameThr114residue(brokenlines).
Andthethirdcaseoccursattwopositions;oneistwowatermole-culesarelinkedbetweentheOHgroupofThr314andthecarbonylgroupofThr114ofneighboringchainandanotheristhesimilarpatternbetweentheOHgroupofThr214andthecarbonylgroupofPro317(solidlines).
Theaveragehydrogenbonddis-tanceinthesethreewater-mediatedpatternsis2.
95A.
Thehydrationpatterninthesecondcasecouldnotbefoundat4(R)Hypduetothelackofhydrogenattheamidegroup.
However,hydrationpatternsintherstandthethirdcases,whichareinter-andintra-chainhydrogenbondnetworks,aregenerallyobservedat4(R)HypintheYaapositioninthepeptidesincludingPro-4(R)Hyp-Glytripeptideunit.
16,17Theseinter-andintra-chainhydrationnetworksoccurrepeatedlyalongthetriple-helicalmolecule,forexample,in(Pro-4(R)Hyp-Gly)11structure16asshowninFigure2b.
Theyarethedominantfeatureintherepetitivepat-ternsof4(R)HypinpeptideshavingPro-4(R)Hyp-Glyrepeatingsequence.
16,17Thus,thisresultindicatesthattheOHgroupofThrintheYaapositionpartici-patesinwater-mediatedinter-andintra-chainhydro-genbondsinthesimilarwaytotheOHgroupof4(R)Hyp.
Moreover,thepositionoftheOHgroupofThrislocatedclosetothatof4(R)HypwhenThrintheOTGstructureissuperimposedoverthe4(R)Hypinthe(Pro-4(R)Hyp-Gly)11structure(Figure3).
Thedistancebetweenbothhydroxyloxygenatomsisabout1A.
ThecloselocationoftheOHgroupsofThrto4(R)Hypcouldcontributetothesimilarforma-tionofwater-mediatedhydrogenbonds.
Therefore,theOTGstructuredemonstratesthatThrcouldactlike4(R)HypatOHgroupside-chaintomakesimilarwater-mediatednetworks.
ThethermalstabilityofAc-(Gly-4(R)Hyp-Yaa)10-NH2peptidescontainingtheThrishigherthanthosecontainingtheSer,alloThr,AlaandVal,9whichsuggeststheimportanceoftheside-chainconformationinthetriple-helicalstructure.
SofaronlytheT3-78515peptidehasareportedstructureofThrinatriple-helicalstructure.
TheX-raydeterminationoftheOTGpeptideprovidesinsightintodetailedstructureoffrequentlyobservedresiduesinRiftiapachytilacuticlecollagen.
Althoughthestabi-lizationmechanismoftheOTGpeptideisnotclearlyunderstood,thenestructureoftheOTGpeptidepro-videsvaluableinformationofThrconformationin-cludingdiversityofwater-mediatedhydrogenbondsaroundThrinthetriple-helicalstructure.
Interestingly,theobservedhydrationpatternsofThraresimilartothoseof4(R)Hypandmoreover,OHgroupside-chaincharacteristicofThrand4(R)Hypissimilaraswell.
REFERENCES1.
J.
MyllyharjuandK.
I.
Kivirikko,TrendsGenet.
,20,33(2004).
2.
C.
M.
KieltyandM.
E.
Grant,'Connectivetissueanditsheritabledisorders.
MolecularGeneticsinMedicalAs-pects,'2nded.
,WileyLiss,NewYork,2002,pp159–221.
3.
R.
Har-ElandM.
L.
Tanzer,FASEBJ.
,7,1115(1993).
4.
F.
Gaill,K.
Mann,H.
Wiedemann,J.
Engel,andR.
Timpl,J.
Mol.
Biol.
,246,284(1995).
5.
K.
Mann,D.
E.
Mechling,H.
P.
Ba¨chinger,C.
Eckerskorn,F.
Gaill,andR.
Timpl,J.
Mol.
Biol.
,261,255(1996).
6.
J.
G.
BannandH.
P.
Ba¨chinger,J.
Biol.
Chem.
,275,24466(2000).
7.
J.
G.
Bann,D.
H.
Peyton,andH.
P.
Ba¨chinger,FEBSLett.
,473,237(2000).
8.
J.
G.
Bann,H.
P.
Ba¨chinger,andD.
H.
Peyton,Biochemis-try,42,4042(2003).
9.
K.
Mizuno,T.
Hayashi,andH.
P.
Ba¨chinger,J.
Biol.
Chem.
,278,32373(2003).
10.
C.
Hongo,K.
Noguchi,K.
Okuyama,Y.
Tanaka,andN.
Nishino,J.
Biochem.
,138,135(2005).
11.
CrystalClear(Rigaku)MolecularStructureCorporation,TheWoodlands,Texas,USA,1999.
12.
C.
Hongo,V.
Nagarajan,K.
Noguchi,S.
Kamitori,K.
Okuyama,Y.
Tanaka,andN.
Nishino,Polym.
J.
,33,812(2001).
13.
A.
T.
Brunger,'X-PLORVersion3.
1SystemforX-rayCrystallographyandNMR,'YaleUniversityPress,NewHaven:CT,1992.
1Figure3.
SuperimpositionofThrintheOTGpeptide(dark-gray)onthe(Pro-4(R)Hyp-Gly)11triple-helix(light-gray).
16ThedistancebetweenOHgroupsofThrand4(R)HypintheYpositionoftwopeptidesisabout1Aandbothpeptidesshowthesimilarhydrationpattern.
Gly-4(R)Hyp-ThrintheOTGandGly-Pro-4(R)Hypinthe(Pro-4(R)Hyp-Gly)11areshowninballandstickdiagram.
N.
JIRAVANICHANUNetal.
402Polym.
J.
,Vol.
38,No.
4,200614.
G.
M.
SheldricandT.
R.
Schneidern,MethodsEnzymol.
,277,319(1997).
15.
R.
Z.
Kramer,J.
Bella,P.
Mayville,B.
Brodsky,andH.
M.
Berman,Nat.
Struct.
Biol.
,6,454(1999).
16.
K.
Okuyama,C.
Hongo,R.
Fukushima,G.
Wu,H.
Narita,K.
Noguchi,Y.
Tanaka,andN.
Nishino,Biopolymers,76,367(2004).
17.
J.
Bella,B.
Brodsky,andH.
M.
Berman,Structure,3,893(1995).
4(R)Hyp:4(R)-hydroxyprolineO:4(R)-hydroxyprolineGal:galactoseT3-785peptide:(Pro-Hyp-Gly)3-Ile-Thr-Gly-Ala-Arg-Gly-Leu-Ala-Gly-Pro-Hyp-Gly-(Pro-Hyp-Gly)3ThreonineinCollagenTriple-helicalStructurePolym.
J.
,Vol.
38,No.
4,2006403

RepriseHosting:$27.97/月-L5640,16G内存,1TB硬盘,10TB月流量,西雅图机房

RepriseHosting是成立于2012年的国外主机商,提供独立服务器租用和VPS主机等产品,数据中心在美国西雅图和拉斯维加斯机房。商家提供的独立服务器以较低的价格为主,目前针对西雅图机房部分独立服务器提供的优惠仍然有效,除了价格折扣外,还免费升级内存和带宽,商家支持使用支付宝或者PayPal、信用卡等付款方式。配置一 $27.97/月CPU:Intel Xeon L5640内存:16GB(原...

Pacificrack:新增三款超级秒杀套餐/洛杉矶QN机房/1Gbps月流量1TB/年付仅7美刀

PacificRack最近促销上瘾了,活动频繁,接二连三的追加便宜VPS秒杀,PacificRack在 7月中下旬已经推出了五款秒杀VPS套餐,现在商家又新增了三款更便宜的特价套餐,年付低至7.2美元,这已经是本月第三波促销,带宽都是1Gbps。PacificRack 7月秒杀VPS整个系列都是PR-M,也就是魔方的后台管理。2G内存起步的支持Windows 7、10、Server 2003\20...

LOCVPS:美国XEN架构VPS七折,全场八折,日本/新加坡XEN架构月付29.6元起

LOCVPS发来了针对XEN架构VPS的促销方案,其中美国洛杉矶机房7折,其余日本/新加坡/中国香港等机房全部8折,优惠后日本/新加坡机房XEN VPS月付仅29.6元起。这是成立较久的一家国人VPS服务商,目前提供美国洛杉矶(MC/C3)、和中国香港(邦联、沙田电信、大埔)、日本(东京、大阪)、新加坡、德国和荷兰等机房VPS主机,基于XEN或者KVM虚拟架构,均选择国内访问线路不错的机房,适合建...

stablehost为你推荐
网站空间租赁网站空间租用费多少域名空间什么是空间 什么是域名免费云主机免费网络云主机怎么申请虚拟主机推荐谁可以给推荐下好用的虚拟主机网站域名网站域名是什么域名服务商最好的域名服务商是哪一家网站空间域名关于网站的域名和空间?台湾主机电脑主板那些牌子是台湾的?那些牌子是国产的?香港虚拟空间香港虚拟空间哪家好?虚拟空间免费试用那位给我介绍个可以试用三天的虚拟空间。
个人域名注册 xenvps linuxapache虚拟主机 stablehost 新加坡服务器 wdcp 权嘉云 网站cdn加速 hinet 免费活动 稳定免费空间 电信主机 免费mysql数据库 免费的域名 测试网速命令 杭州电信 register.com apache启动失败 香港打折信息 木马检测 更多