conven515hh

515hh com  时间:2021-03-03  阅读:()
REVIEWBioinspiredrecognitionelementsformycotoxinsensorsRiikkaPeltomaa1&ElenaBenito-Pea1&MaríaC.
Moreno-Bondi1Received:27July2017/Revised:5October2017/Accepted:10October2017/Publishedonline:10November2017#Springer-VerlagGmbHGermany2017AbstractMycotoxinsarelowmolecularweightmole-culesproducedassecondarymetabolitesbyfilamentousfungithatcanbefoundasnaturalcontaminantsinmanyfoodsandfeeds.
Thesetoxinshavebeenshowntohaveadverseeffectsonbothhumanandanimalhealth,andarethecauseofsignificanteconomiclossesworldwide.
Sensorsformycotoxinanalysishavetraditionallyappliedelementsofbiologicaloriginfortheselectiverecognitionpurposes.
However,sincethe1970stherehasbeenanexponentialgrowthintheuseofgeneticallyengineeredorsyntheticbiomimeticrecognitionelementsthatallowsomeofthelimitationsassociatedwiththeuseofnaturalreceptorsfortheanalysesofthesetoxinstobecircumvented.
Thisreviewprovidesanoverviewofrecentadvancesintheapplicationofbioinspiredrecognitionel-ements,includingrecombinantantibodies,peptides,aptamers,andmolecularlyimprintedpolymers,tothede-velopmentofsensorsformycotoxinsbasedondifferenttransductionelements.
KeywordsMycotoxin.
Recognitionelement.
Recombinantantibody.
Peptide.
Aptamer.
MolecularlyimprintedpolymerIntroductionMycotoxinsarelowmolecularweight(approximately700)naturalproductsproducedassecondarymetabolitesbyfila-mentousfungimainly,althoughnotexclusively,whentheyreachmaturity[1].
Unlikeprimarymetabolites,thesecom-poundsarebelievedtohavenofunctioninthelifecycleoftheproducercell[2].
Theycanbefoundasnaturalcontami-nantsinmanyvegetalfoodsorfeeds,includingnuts(almondsandwalnuts),cereals(rice,wheat,andmaize),oilseeds(soy-bean,peanuts),fruits,driedfruits,spices,beans,forage,wines,andgrapejuices,orinfoodsofanimalorigin,suchasmilk,eggs,andmeat[1,2].
Alternatively,exposuretothesetoxinscanbebyinhalationofdustcontainingmycotoxigenicfungalspores[1].
Regardlessofthewaytheycomeincontactwithhumansordomesticanimals,includingbirds,theymaycauseloweredperformance,sickness,orevendeathevenatverylowconcentrations[3,4].
Theirrangeofactionsincludescy-totoxic,nephrotoxic,hepatotoxic,teratogenic,mutagenic,car-cinogenic,immunosuppressive,andestrogeniceffects[1,2].
Inanycase,theireffectonhealthdependsonfactorssuchastheconcentrationinthecontaminatedfoodandtheexposuretime,thesynergisticeffectofothermycotoxins,andenviron-mentalfactorsassociatedespeciallywiththestoragecondi-tionsofthefoodstuff[1].
ThewordBmycotoxin,^acombinationoftheGreekwordforBfungus^mykesandtheLatinwordtoxicum,meaningBpoison^[5],wasestablishedin1962aftertheBturkeyXdisease^responsibleforthedeathofapproximately100,000turkeypoultsnearLondon,duetotheintakeoffeedinfestedwithsecondarymetabolitesfromAspergillusflavus(aflatoxins)[6].
Nowadays,approximately400compoundsarerecognizedasmycotoxins,althoughonlyabout30PublishedinthetopicalcollectioncelebratingABCs16thAnniversary.
*MaríaC.
Moreno-Bondimcmbondi@ucm.
es1DepartmentofAnalyticalChemistry,FacultyofChemistry,UniversidadComplutensedeMadrid,Av.
Complutenses/n,28040Madrid,SpainAnalBioanalChem(2018)410:747–771https://doi.
org/10.
1007/s00216-017-0701-3moleculesareconsideredasathreattohumanandanimalhealth[3].
Mycotoxinsmaycontaminatecropsbeforeorafterharvest.
Asanexample,deoxynivalenol(DON)andT-2toxin,twotoxinsproducedbyFusariumspecies,appearbeforehar-vest,ochratoxins(fromAspergillusandPenicillium)occurafterharvest,andaflatoxins(fromAspergillus)canbepro-ducedatanystageoftheproductionchain,frombeforehar-vesttostorage[7].
Themycotoxinsthatshowthehighestoccurrencerateandtheseveresteffectsonhumanandanimalhealthincludeaflatoxins,fumonisins,ochratoxins,3-nitropropionicacid,trichothecenes,ergotalkaloids,citrinin(CIT),andzearalenone(ZEN)(Table1)[9].
Additionally,thepresenceoftoxinprecursors,metabolites,degradationproducts,ortheso-calledmaskedmycotoxinsisalsoapoten-tialthreattoconsumersafety.
Thepresenceofthesecom-poundsmayincreasethetoxicityoffoodcommoditieswithanapparentlylowconcentrationoftheparentaltoxin.
Moreover,theirdetectionisinmanycasesstillinitsinfancy.
Suchmetabolitesandmaskedmycotoxinshavebeenreportedatleastfortrichothecenes,fumonisins,ochratoxinA(OTA),andZEN[10].
Mycotoxin-producingmoldsareextremelycommon,andtheygrowunderawiderangeofconditions,whichoftenmakesmycotoxincontaminationinevitable[3].
Asthepresenceofthesetoxinsinfoodandanimalfeedscanhaveseverehealtheffectsaswellasimportanteco-nomicconsequences,severalnationalandinternationalauthorities,includingtheEuropeanCommission,havesetmaximumresiduelimitsforthemostcommonandmosttoxicmycotoxins(Table2)[11–15].
Thelimitsdifferdependingonthetoxinandthefoodstuffinques-tion;thestrictestregulationshavebeensetforaflatoxinsandtheprocessedfoodproductsforinfants.
Inadditiontothetoxinregulationsforfoodstuff,EuropeanCommissionregulationsincludealsothepresenceofmycotoxinsinanimalfeed[16,17].
Tomeettheregulationsandtoensurefoodsafety,novelanalyticalmethodsareneededtodetectandquan-tifythesetoxicmoleculesattraceconcentrations.
Conventionally,mycotoxinsaredetectedbychromatog-raphy,immunoassays,orsensors.
Whilechromatograph-icmethods,mostlyhigh-performanceliquidchromatog-raphycoupledwithdiodearray,fluorescence,ormassspectrometrydetection,offerhighsensitivityandaccu-racy,theyhavesomelimitationsrelatedtotheirhighcostandlonganalysistimeandtherequirementofhighlyskilledpersonnelandtedioussamplecleanup[18–21].
Inthissense,immunoassayscanbeconsideredasanalternativefortherapiddeterminationofthesenaturaltoxins,withtheadvantagethattheyareusuallylowcostwhilemaintainingtherequiredsensitivityandspecificity.
Moreover,sensorsformycotoxindetectioncanofferreal-timereadoutandperformtheentirepro-cessautomatically[22,23].
Table1Mostabundantandtoxicmycotoxins,theirmostimportantproducers,andtheirmostimportanteffects[2,3,8]MycotoxinFungispeciesStructureEffectsCommonditiesaffectedAflatoxins(AF)AFB1,AFB2AFG1,AFG2AFM1AspergillusflavusAspergillusparasiticusAcutelytoxic,carcinogenic,immunosuppressive,mutagenic,genotoxic,teratogenicNuts,cereals,maize,riceCitrinin(CIT)PenicilliumcitrinumPenicilliumcamembertiAspergillusterreusAspergillusniveusCytotoxicandnephrotoxicWheat,oats,rye,corn,barley,riceDeoxynivalenol(DON)FusariumgraminearumFusariumculmorumPotentinhibitorofeukaryoticproteinsynthesiscausesnausea,vomiting,anddiarrheaGrainssuchaswheat,barley,oats,rye,maize,rice,sorghumFumonisinsFB1FB2FusariumverticillioidesFusariumproliferatumHepatotoxicandcarcinogenic,interfereswithsphingolipidmetabolismMaizeandsorghumOchratoxinOTAAspergillusochraceusAspergilluscarbonariusPenicilliumverrucosumCarcinogen,nephrotoxic,teratogenic,immunosuppressive,potentteratogenGrainssuchascorn,barley,oats,rye,andwheat,coffeebeansPatulinPenicilliumpatulumPenicilliumexpansumAspergillussppGenotoxic,immunotoxic,neurotoxic,teratogenicApples,pears,cherries,andotherfruitsT-2toxinFusariumsporotrichioidesFusariumpoaeCytotoxic,immunosuppressive,potentinhibitorsofeukaryoticproteinsynthesisWheat,barley,oats,maizeZearalenone(ZEN)FusariumgraminearumEstrogenicCerealcropssuchaswheat,maize,barley,andsorghum748PeltomaaR.
etal.
Themostcrucialelementofallimmunoassaysandsensorsistherecognitionelement,whichmakespossiblethespecificdetectionofthetargetanalyte,andthequalityoftherecogni-tionelementoftendefinesthespecificityandsensitivityoftheanalysis[24,25].
Especiallyinthecaseofcompetitiveassays,whichisusuallytheformatselectedtodetectlowmolecularweighttargets,suchasmycotoxins,theimportanceoftherecognitionelementiseminentasthesensitivityofcompeti-tiveassaysishighlydependentontheaffinityoftherecogni-tionelement[26].
Todevelopasensitiveandspecificmethod,therecognitionelementmustbeabletodetecttheanalyteevenatlowconcentrationsandtodistinguishthetargetfromothersimilarmolecules,suchasothertoxinsthatcanbepresentinthesamesample[27].
Otherfactorsaffectingtheselectionoftherecognitionelementincludecost,availability,andcompat-ibility,aswellasstabilityandshelflife.
Antibodiesarethegoldstandardrecognitionelementsinbiosensorsandassays,andtheyhaveproventheirsuperiorityovertheyearsintermsofspecificityandsensitivity.
Forthedetectionofmycotoxins,thefirstpolyclonalantibodiesweredescribedmorethan40yearsago[28]andtheyweresooncomplementedbymonoclonalantibodies[29,30].
Duringthelastfewdecades,numerousapplicationsbesidesthetradition-alELISAhavebeendescribed,andexcellentsensitivitieshavebeenreportedrecently,forexample,withmagneticbeadsforimprovedseparation[31–33],ornoveldetectionschemes,in-cludingnewlabel-basedapproaches[34–36]andlabel-freeapproaches[37–40].
Manypolyclonalandmonoclonalanti-bodiesaswellasELISA-basedtestkitsarecommerciallyavailable,andantibodiesindisputablycontinuetheirreignastherecognitionelementofchoice[41,42].
Nevertheless,de-spitetheirwideuse,antibodieshavesomelimitationsmostlyrelatedtohighcostandlowstability,forexample,tohightemperaturesorstringentconditions.
Owingtotheirlargeandcomplexstructure,antibodiesareabletospecificallybindtheirtargetantigenbut,atthesametime,thecomplexstructureissusceptibletodenaturation,degradation,oraggregation.
Moreover,productionofmonoclonalantibodiesbyhybrid-omatechnologyisusuallytime-consumingandinherentlyde-pendentonanimalimmunization[26,41].
Smallanalytes,suchasmycotoxins,areoftendifficulttargetsforantibodydevelopmentastheyaretoosmalltoberecognizedbytheimmunesystem,andthusrequireconjugationtoacarriermol-ecule[26].
Inaddition,somecommercialantibodieshavebeendemonstratedtohavehighcross-reactivity,whichlimitstheirapplicationtorealsamples,whereseveraltoxinscanbepresentsimultaneously[43–45].
Novelrecognitionelementshavethepotentialtoovercomethelimitationsrelatedtomonoclonalandpolyclonalantibod-ies.
Notonlycanthesensitivityandspecificitybeincreased,but,perhapsevenmoreimportantly,therobustness,simplici-ty,andpriceofthemethodcanbeaffected,makingitpossibletodevelopmethodssuitableforhigh-throughputscreeningorlow-resourcesettings.
Inthisreview,weintroducesomere-centadvancesinthedevelopmentofnovelbioinspiredrecog-nitionelements,includingrecombinantantibodies,peptides,aptamers,andmolecularlyimprintedpolymers(MIPs),forthedetectionofmycotoxins.
RecombinantantibodiesAntibodiesarewidelyusedforbiosensingbecauseoftheiruniquepropertiesandimmensevarietyofpossiblespecific-ities.
Naturally,antibodiesareproducedbytheimmunesys-teminB-celllymphocytestofunctionasantigenreceptorsforthecell.
ThevastrecognitionvarietyreliesonthevariationsintroducedduringthetranscriptionprocessoftheBcellsbycombinatorialassemblyofthegenefragments,andfurther,byadditionalmutationsaftertheprimaryrecognition[46].
ForTable2RegulationsandrecommendationsformycotoxinsbytheEuropeanCommission[11–15]MycotoxinMaximumlimit(μg/kg)FoodstuffsRegulationAlfatoxinsAflatoxinB1SumofaflatoxinsB1,B2,G1andG2AflatoxinM10.
10–12.
04.
0–15.
00.
025–0.
050Nuts,driedfruit,cerealsandcerealproducts,maize,spicesMilkECNo.
1881/2006ECNo.
165/2010Deoxynivalenol200–1750Unprocessedcerealsandmaize,pasta,bread,cereal-basedinfantfoodECNo.
1881/2006ECNo.
1126/2007FumonisinsSumofFumonisinsB1andB2200–4000Unprocessedmaizeandmaize-basedfoodsECNo.
1881/2006ECNo.
1126/2007OchratoxinA0.
50–10.
0Cerealsandcerealproducts,driedvinefruit,coffee,spices,wineandgrapejuiceECNo.
1881/2006ECNo.
105/2010Patulin10.
0–50Fruitjuices,appleproducts,cereal-basedinfantfoodECNo.
1881/2006T-2andHT-2toxinsSumofT-2andHT-2toxins15–1000UnprocessedcerealsandcerealproductsECNo.
165/2013Zearalenone20–350Cereals,maize,cereal-andmaize-basedproduct,breadECNo.
1881/2006ECNo.
1126/2007Bioinspiredrecognitionelementsformycotoxinsensors749decades,polyclonalandmonoclonalantibodieshavebeenthecornerstoneofmostmycotoxindetectionmethods,butgrad-uallytheyhavebeencomplementedbyotherantibodyfor-mats.
TheconventionalIgGantibody(approximately150kDa)consistsoftwoidenticalheavypolypeptidechains(50kDa)andtwoidenticallightpolypeptidechains(25kDa)thatarelinkedtoeachotherbydisulfidebonds(Fig.
1a).
Thelightandtheheavychainsbothhaveonevariabledomain(VLandVH,respectively),andadditionallythelightchainhasasingleconstantdomain,whereastheheavychaincontainsthreeorfourconstantdomains.
Thetwoantigen-bindingfragments(Fabs)areresponsibleforbindingtothetarget,whereasthehighlyconservedFcregion(fragmentcrystallizable)interactswitheffectormoleculesandcells[46,48].
Themostrelevantregion,fromtheanalyticalpointofview,istheantigen-bindingsite,orparatope,whichisrathersmallcomparedwithsizeofthetotalantibody.
Theconceptofreducingthesizeoftheantibodywhileconservingtheantigen-bindingpropertieshaslongbeenknown,andenzymaticdigestionhastradition-allybeenusedtogenerateantibodyfragments[25,46].
Morerecently,advancementsinrecombinantDNAtechnol-ogyandproteinengineeringhavemadeitpossibletomodifytheantibodystructureanddeveloprecombinantantibodiesthatpossessseveraladvantageouscharacteristics,suchassmallersizeandeasyproduction,whilepreservingthetargetspecificityoftheintactantibody[49].
ThebestknownantibodyfragmentsaretheFabfragment(55kDa)andtheevensmallerscFv(sin-glechainfragmentvariable;25kDa),whichconsistsonlyoftheVHandVLdomains,whicharejoinedbyasyntheticpoly-peptidelinker(Fig.
1a)[49].
Thesmallsizeofrecombinantantibodyfragmentshasseveraladvantages,includingthede-creaseofnonspecificbindingoftencausedbytheFcregionoftheintactIgG,andthepossibilitytoimmobilizetheantibodiesathigherdensity.
Furthermore,novelrecombinantantibodiescantheoreticallybeselectedwithinacoupleofweeks,whichcanbeconsideredamajoradvantagecomparedwiththedevel-opmentofpolyclonalandmonoclonalantibodies,whereim-munizationsinevitablytakeseveralmonths[26,27].
Antibodyfragments,unlikefull-lengthantibodies,canbepropagatedinbacteria,suchasEscherichiacoli,whichsignificantlylowersthecostofproductionasnospecializedcellculturefacilitiesforhybridomacelllinesareneeded[50].
Thetechnologyhasthepotentialtobypasstheimmunesystemandproduceantibodieswithouttheneedtoimmunizeanimals.
Generationofantibod-iesbyinvitrodisplaytechnologieshasseveraladvantagesoverthenaturallyderivedantibodies,suchasthecontrolovertheselectionconditionsandthegreathigh-throughputpotential,includingparallelization,automation,andminiaturization[43].
Moreover,antibodyengineeringusingdifferentinvitrostrategies,includingchainshufflingandsite-directedmutagen-esis,permitsfurthermanipulationormodificationofvariousantibodypropertiestoachievegreateraffinityorstability,elim-inateunwantedcross-reactivities,oraddtagsforpurificationorimmobilization[26,48].
RecombinantantibodiescanbederivedfrommonoclonalantibodiesbydirectcloningofthegenefragmentsfromthehybridomacelllinesandtheirexpressioninE.
coli.
Forex-ample,recombinantFabfragmentagainstDON[51]andscFvsagainstaflatoxinB1(AFB1)[52],DON[53],andfumonisinB1(FB1)[54]werederiveddirectlyfrommonoclo-nalantibodies.
However,isolationoffunctionalrecombinantantibodiesdirectlyfromhybridomacelllinescanbedifficult,andthefragmentsoftenhaveloweraffinitythantheparentalmonoclonalantibody[55,56].
Forexample,theanti-FB1scFvproducedbyMinetal.
[54],althoughspecifictowardFB1,hadabout12timesloweraffinitythanthemonoclonalantibody.
Alternatively,recombinantantibodiescanbeselectedfromrecombinantantibodylibraries,inessencemimickingthenat-uralinvivoprocessofantibodyproduction.
TheprocessFig.
1aTheconventionalantibody(IgG),theheavychainantibody(hcAb),andthemostcommonrecombinantantibodyfragments(scFv,Fab,VHH).
bGeneralschemeofthephagedisplaybiopanningprocedure.
CHconstantheavydomain,CLconstantlightdomain,VHvariableheavydomain,VLvariablelightdomain.
(Adaptedfrom[47])750PeltomaaR.
etal.
includes(1)thegenerationofgenotypicdiversity,usuallybyconstructionofantibodylibrariesthatconsistofmillionsorbillionsofdifferentantibodyvariants,(2)thedisplaymethod,whichcreatesaphysicallinkbetweentheexpressedproteinvariantandthegenecodingforit,(3)theapplicationofselec-tivepressuretoscreentheantibodylibrariesfortarget-specificbinders,and(4)amplificationoftheselectedvariants[57].
Byfarthemostusedandmostwidespreadtechniqueforscreen-ingantibodylibrariesisphagedisplay[58],whichisbasedonbacterialviruses,bacteriophages,whichcaninfectbacteriaandusethebacterialcellfortheirownreplication.
Phagescanbeeasilygeneticallyengineeredtodisplayforeignpep-tidesorproteinsoutsidethevirionasafusionproteinwithoneofthecoatproteins.
Peptidesandsmallantibodyfragmentshavebeendisplayedonphagestocreatephagelibrariesconsistingofmillionsofdifferentphageclonesthatdisplaythepeptideorantibodyfragmentoutsidethevirionwhileretainingthegeneticmaterialinsidethecapsule.
Thisphysicallinkageallowseasyselectionofthetarget-specificbindersinaninvitroscreeningprocesscalledBbiopanning^(Fig.
1b).
Intheiterativepanningprocedure,aphage-displayedlibraryisintroducedtoatargetcoatedsurface,and,aftertheunboundphageshavebenewashedaway,thetarget-bindingphagesareelutedandamplifiedinE.
colitosubjectthemtosubsequentroundsofselection.
Usuallyafterthreeorfourroundsofselec-tion,individualtarget-specificclonescanbeselectedandchar-acterized[59].
Alternatively,thescreeningoftheantibodyreper-toirecanbebasedonyeastdisplay[60],orcell-freesystems,suchasribosomedisplay[61].
Althoughnotaspopularasthephagedisplaytechnology,thesemethodsoffersomeadvantages,suchasthecapabilityofyeastcellstoexpresscomplexproteinsthatrequireposttranslationalmodifications,orthepossibilitytocreatelargerlibrarieswithuseofcell-freemethodsthatarenotrestrictedbythebacterialtransformationefficiency[62].
RecombinantantibodylibrariescanbeconstructedfromnaturalsourcesbyisolationoftheBcellsofanimals,mostoftenmice,immunizedwiththetargetantigen,anduseofthecorrespondinggenestoconstructtheantibodylibrary[63].
Suchimmunizedlibrariesarealreadybiasedtowardthetarget,andtheyoften,althoughnotnecessarily,resultinhigh-affinitybinders.
However,theprocessislongandinherentlydepen-dentonanimalimmunizationindividuallyforeachtarget.
Phage-displayedscFvlibrarieshavebeenconstructedfromimmunizedmiceagainstFB1[64],OTA[65],andZEN[66].
Surfaceplasmonresonance(SPR)analysisrevealedexcellentaffinitiesinthenanomolarrangefortheanti-OTAandanti-ZENantibodyfragments,demonstratingtheadvantageofusingimmunizedlibraries.
Inadifferentapproach,so-calledpositivephage-displayedlibrarieshavebeenconstructedbyrandomrecombinationoftheVHandVLgenefragmentsfromhybridomacelllinesthatsecreteaspecificmonoclonalanti-body(Fig.
2a).
SuchlibrarieshavebeenreportedatleastagainstAFB1[56]andFB1[55],bothofwhichresultedinanscFvwithincreasedaffinitycomparedwiththeparentalmonoclonalantibody.
Alternatively,thelibraryconstructioncanbedonecomplete-lyinvitro,resultinginnonimmunized(nave)[68],synthetic[69],orsemisyntheticantibodylibrariesthatcontainhighersequentialdiversityandcanbedesignedforscreeningofanti-bodiesagainstawiderangeoftargets,ordesignedtakingintoaccountspecificprerequisitessoastofindantibodies,forex-ample,againsthaptens[70].
Theuseofsyntheticlibrarieshasseveraladvantages,suchasthepossibilitytoselectantibodiesagainstsmallordifficulttargetsthatcanbenonimmunogenicorhighlytoxic,butthelibrarydiversityhastobehighenoughtofindbinderswithhighaffinity.
Constructionofsuchlibrariesistechnicallydifficultandlimitedbytheefficiencyofthebacte-rialtransformation[59].
Formycotoxinsonlyafewexamplesofrecombinantantibodiesoriginatingfromnaveorsyntheticlibrarieshavebeenreported.
Anti-FB1scFvselectedfromanavelibraryshowedaffinityofonlyKD=4.
08*10–7M[71],whereasanti-AFB1screenedfromasynthetichumanscFvlibrary(TomlinsonJ)showedexcellentKDof1.
2*10–12M[72].
Someexamplesofimmunoassaysbasedonrecom-binantantibodiesarepresentedinTable3.
Heavychainantibodies,naturallyproducedbycamelidsandsharks,areaninterestingsubclassofantibodiesthatarecompletelydevoidofthelightchains(Fig.
1a)[76].
Thus,becauseofthelackoftheVLdomains,theantigenisrecog-nizedbyasingledomainandtheparatopeiscomposedofthreehypervariableloops(insteadofsixinIgG)[48].
Theuseofthesinglevariabledomainofheavychain(VHH)anti-bodieshasgainedalotofinterestthankstotheirspecificcharacteristicandtheextraordinarystructurethatmakesthemmoresuitableforsomeapplications.
TheVHHantibodyfrag-ments,alsoknownasBnanobodies^orBsingledomainantibodies,^arethesmallestavailableantigen-bindingfrag-ments,withasizeofonly15kDa,andtheyarerobustandverystableinavarietyofconditions,includinghightemperaturesanddenaturingconditionsthankstothehydrophilicresiduesubstitutionsinaspecificregion[48,77].
Heavychainanti-bodiesareusedinclinicalandtherapeuticapplicationsbutarealsoaninterestingoptionforinvitrodiagnostics.
Heavychainantibodies(VHH),ornanobodies,areusuallyselectedbyconstructionofaphage-displayedlibraryafterimmunizationofanalpacawiththehaptenconjugate.
Althoughnanobodieshavemanyidealcharacteristicsforbio-sensorapplications,suchashighstabilityandeasyproduc-tion,onlyafewexamplesofsuccessfulapplicationformyco-toxinshavebeenreported(Table3).
ThemostwidelyusednanobodywasdevelopedbyLiuetal.
[67]forthedetectionofOTAusinganalpaca-derivedVHHlibrary.
ThenanobodyNb28showedexcellentperformanceinphagedisplay-mediatedimmuno-polymerasechainreaction,withadetectionlimitof3.
7pg/L(Fig.
2b),whichisthelowestdetectionlimitreportedforOTAdetection,althoughthehighsensitivityisBioinspiredrecognitionelementsformycotoxinsensors751probablymostlyattributedtothepolymerasechainreactionbaseddetectionratherthantherecognitionelementperse.
Anexcellentexampleofthepossibilitiesofferedbyproteinengi-neeringwasdescribedlaterwhenthesamenanobodywasexpressedasafusionwithalkalinephosphataseandusedindirectcompetitivefluorescenceenzymeimmunoassaywithadetectionlimitof0.
04ng/mL[75],andinnanobody-basedELISAwithadetectionlimitof0.
16ng/mL[78].
Thenanobody-basedELISAhadaslightlyhigherdetectionlimitbutthesolublenanobodyhadgreaterstabilityanditcouldretaintheantigen-bindingactivityevenafterexposuretotem-peraturesashighas95°C.
Similarresultsregardingnanobodystabilityandtolerancetohightemperaturesandorganicsol-ventswerereportedforanAFB1-specificnanobodyselectedalsofromanalpaca-derivedVHHlibrary.
Thiscompetitivenanobody-basedELISAexhibitedahalf-maximalinhibitoryconcentration(IC50)of0.
754ng/mL,andbecauseofthehightolerancetomethanol,sampleextractscouldbedirectlyana-lyzedwithoutdilution[74].
Recently,theOTA-specificnanobodyNb28wasusedforthedevelopmentofamembrane-baseddotELISAthatallowednoninstrumentalvi-sualscreeningofOTAat5μg/kg,andresultscouldbeobtain-edwithin20min[79].
Althoughnanobodiesarewidelypraisedandthefewex-amplesdescribedhereenlightenthemanyadvantagesofnanobodies,thediscoveryofhapten-bindingnanobodiesisdifficult[80].
Ithasalsobeenpointedoutthatnanobodiesarenotidealbindersforsmallmoleculesbecausetheypossessalimitednumberofconformationalstructuressuitableforhaptenrecognition[81].
Morenanobodiesformycotoxinde-tectionhavebeenreportedtobeusedasepitopemimics(discussedinBEpitopemimics^)ratherthanasprimaryanti-bodies,whichmightbeamoreappropriateapplicationforthisspecialclassofantibodiesbecauseofthestructureoftheirFig.
2aConstructionofapositivephage-displayedlibraryfortheselec-tionofhigh-affinityscFvantibodiesforaflatoxinB1(AFB1)detection.
bSelectionofochratoxinA(OTA)-bindingVHHfromanimmunizedlibraryandtheuseofphage-displayedVHHinphageELISAwithphagedisplay-mediatedimmuno-polymerasechainreaction(PCR)-baseddetection.
BSAbovineserumalbumin,OVAovalbumin.
(aAdaptedfrom[56];badaptedfrom[67])752PeltomaaR.
etal.
Table3Recentexamplesofimmunoassaysbasedonrecombinantantibody(Ab)fragmentsTargettoxinRecombinantAbAbsourceAssayformatDetectionAbaffinity(KD)(M)AnalyticalcharacteristicsSampleReferenceAFB1scFvDerivedfrommAbImmobilizedAFB1–BSA,solublescFvSPR1.
16*107ND–[52]AFB1scFvSyntheticlibrary(1.
8*107),yeastdisplayImmobilizedAFB1–BSA,solublescFvSPR82.
7*10–8ND–[73]AFB1scFvTheTomlinsonlibrariesI+J(synthetichumanscFv;each1.
4*108)ImmobilizedAFB1–BSA,phage-displayedscFv,anti-phage-Ab–HRPAbsorbance9.
8*10–11IC50=0.
4ng/mL–[72]AFB1VHHImmunizedlibraryfromalpaca(2.
1*107)ImmobilizedAFB1–BSA,solubleVHH,anti-HA-tag-Ab–HRPAbsorbanceNDIC50=0.
754ng/mLLinearrange0.
117–5.
676ng/mLPeanut,rice,corn,feedstuff[74]DONFabDerivedfrommAbImmobilizedDON–HSA,biotinylatedFab,avidin–HRPAmperometryNDLOD=63ng/mLIC50=380ng/mLLinearrange100–4500ng/mLBreakfastcereal,babyfood[51]DONscFvDerivedfrommAbImmobilizedscFv,DON–HRPBLINDIC50=36.
1ng/mL–[53]FB1scFvDerivedfrommAbImmobilizedscFv,FB1–HRPAbsorbanceNDIC50=220ppb(mAb)–[54]FB1scFvHumansyntheticAblibraryETH-2ImmobilizedFB1–biotinSPR4.
08*10–7ND–[71]FB1scFvLibraryderivedfromfouranti-FB1mAbs(1.
3*106)ImmobilizedscFv,FB1–HRPAbsorbance1.
20*10–9IC50=0.
11μM(79.
4ng/mL)Maize,rice[55]FB1scFvImmunizedlibraryfrommice(3.
4*107)ImmobilizedFB1–BSA,solublescFv,anti-His-Ab+anti-IgG–APAbsorbance1.
89*10–7ND–[64]OTAVHHImmunizedlibraryfromalpaca(2*107)ImmobilizedOTA–OVA,phage-displayedVHHPD-IPCRNDLOD=3.
7pg/LLinearrange0.
011000pg/mLCorn,wheat,rice[67]OTAVHHfrom[67]–ImmobilizedOTA–OVA,VHH–APfusionFluorescenceNDLOD=0.
13ng/mLIC50=0.
04ng/mLLinearrange0.
060.
43ng/mLRice,oats,barley[75]OTAFabMulti-immunizedlibraryfrommice(4*108)ImmobilizedOTA–HSA,solubleFab,anti-IgG–APAbsorbance34*10-9IC50competitiveassayformatthatrequiresconjugationofthetoxintoalabeloracarriermolecule.
Despitetheirwideuse,suchassayshavemanyfundamentalproblemsinrespecttothespecificityandsensitivity.
Asthesensitivityofcompetitiveassaysismainlygovernedbytheequilibriumconstantoftheantibody,theseassayscannotfullyexploitdifferentalternativesintheassaydesignthatcansig-nificantlyincreasethesensitivityinnoncompetitiveimmuno-assays[82].
Insomecases,conjugationoftheantigencanbedifficultorresultinrandomlycross-linkedorunstablemole-cules,whichcanreducetheantibodybinding.
Consequently,thenoncompetitiveorsandwich-typeimmunoassaysareusu-allyconsideredsuperiortothecompetitiveassaysandholdgreatpotentialforincreasedsensitivityandwiderdynamicrange.
Conventionally,suchanoncompetitivetwo-siteassayformatrequiresthattheantigenhastwoseparateepitopeswheretwoantibodiescanbindsimultaneously,formingtheBsandwich^complex[26].
Mycotoxinsaresmallmolecules,orhaptens,whichpossessonlyoneepitopeandcannotbindmorethanoneantibodysimultaneously.
Thatsaid,recombi-nantantibodytechnologyhasmadeitpossibletodevelopnonconventionalantibodiesthatcanbeusedtodetectalsohaptensinnoncompetitiveassays.
Opensandwichimmunoassay(OS-IA),originallyde-scribedbyUedaetal.
[83]forthedetectionoflysozyme,isbasedonassociationofseparatedVHandVLchainsinthepresenceoftheantigen.
OS-IAisanexcellentexampleofawaytodetectsmallmoleculesinanoncompetitiveassay,andhasbeenreportedtooutperformcompetitiveassayintermsofsensitivity,workingrange,andassaytime[84].
However,inanycasethedetectionsensitivitydependsstronglyontheaffinityoftheantibodyusedandthedifferentialinteractionsbetweenseparatedVHandVLchainsinthepresenceorab-senceofthetarget.
Moreover,asonlyoneantibodyisin-volved,OS-IAcansufferfromcross-reactivity[84,85].
Suzukietal.
[86]developedanOS-IAforthedetectionofZENbyusingthesplitFvs(VHandVLchains)ofamonoclo-nalanti-ZENinphagedisplayorfusionproteinformats.
Bothnoncompetitiveassaysshowedsuperiorperformancecom-paredwiththecompetitiveassay.
However,despitetheattrac-tivescheme,unfortunatelydevelopmentofOS-IAsisdifficultandtime-consuming,and,tothebestofourknowledge,thisistheonlyreportedOS-IAforthedetectionofmycotoxins.
Thishints,andashasbeenstatedelsewhere[84],thatitisoftenchallengingtofindantibodiesthatpossesstherequiredchar-acteristicswithdifferentialinteractionsbetweenseparatedVHandVLchainsinthepresenceorabsenceoftheantigen,whichistheessenceofthemethod.
Anotheralternativeforsmallmoleculenoncompetitiveim-munoassayistouseanti-immunecomplexantibodies,alsoknownasBanti-metatypeantibodies,^whichbindtothepri-maryantibodyonlywhenitisincomplexwiththeantigen.
Originally,anti-immunecomplexantibodiesweremonoclonalantibodiesdevelopedbyimmunization[87],butlaterphage-displayedlibrarieswithantibodies[88]orpeptides[89,90]wereusedaswell.
Noncompetitiveimmunoassaysbasedonanti-immunecomplexantibodieshavetheaddedadvantageofincreasedspecificityowingtotheuseoftwoantibodiesin-steadofoneasinthecompetitiveassay,aswasseenintheworkofArolaetal.
[91,92].
ThegroupidentifiedfirstHT-2-specificbindersfromanimmunizedphagelibraryand,subse-quently,anti-immunecomplexantibodiesfromanavescFvlibrary.
Althoughtheprimaryantibodyshowedcross-reactivitybetweenthehighlysimilartoxinsT-2andHT-2,theuseofanti-immunecomplexantibodymadetheassayspecificforHT-2toxinonly.
Theantibodiesdevelopedwereusedinahomogeneoustime-resolvedfluorescenceresonanceenergytransferassay(Fig.
3a)[91]andlaterinheterogeneousELISAwithscFv–alkalinephosphatasefusion[92]forthedetectionofHT-2withdetectionlimitsof0.
38and0.
3ng/mL,respectively.
ComparedwiththecompetitiveELISA,thenovelanti-immunecomplexassaywasapproximatelytentimesmoresensitiveinbothcases,underliningthepossibilityforimproveddetectionbythenoncompetitiveassayformat.
EpitopemimicsAsstatedalready,onemajorlimitationofthecompetitiveassayformatistherequirementtoconjugatethetargettoxintoacarriermolecule,usuallyaproteinoralabel,toallowimmobilizationordetectionofthiscompetitor.
Synthesisofthetoxinconjugatescanbedifficultandtime-consuming,orcanresultinrandomlycross-linkedorunstablemolecules,whichcanreducetheimmunoassaysensitivity.
Lot-to-lotvar-iationsoftheconjugates,orevenfalsepositivescausedbythereleaseoftheanalytemoietyfromtheconjugate,areknowntoaffecttheassayreproducibilityandaccuracy[94,95].
Ontheotherhand,labelingthetargettoxinmayaltertheepitopeandthusreduceorevenabolishantibodyrecognition[26,96].
Toovercomethesedrawbacks,apossiblealternativeistodevelopproteinorpeptidesubstitutesthatmimicthetargetmycotoxinandserveasthecompetitorinthecompetitiveimmunoassay.
Suchepitopemimicsbindtothesameantibodyparatopeasthetargettoxinandelicitanantibodyresponsesimilartothatoftheanalyte.
Asepitopemimicscansubstituteforthetoxinsandthetoxinconjugatesusedintheimmunoassay,suchap-plicationscanbeconsideredmorefriendlyfortheuserandtheenvironmentastheassaycomponentsarenottoxicthemselves[94].
Table4summarizessomerecentexamplesoftheuseofepitopemimicsinimmunoassaysforthedetectionofmyco-toxins.
Theseandseveralotherreportshaveshownthatepi-topemimicscanreducethedetectionlimitscomparedwith754PeltomaaR.
etal.
traditionalELISAswiththetoxinconjugateandshowpoten-tialtoreplacetheuseoftoxinconjugatesortoxinstandardsintheassays[18].
Antibodiesthemselves,referredtoasBanti-idiotypicantibodies^orBAb2^(morespecifically,Ab2βandAb2γin-dicatingbindingeitherwithinorclosetotheparatope)[107],canbeusedasepitopemimics.
Thefirstanti-idiotypicantibod-iesforaflatoxin[108,109],FB1[110],andDON[111]werepurifiedfromtheseraofrabbitsimmunizedwiththemonoclo-nalanti-toxinantibodies.
Afterconfirmationoftheirbindingtotheprimaryantibody(Ab1)inELISA,theanti-idiotypicanti-bodieswerealsousedtoproduceanti-anti-idiotypicantibodies(Ab3),whichinsomecaseshaveshownincreasedaffinitycomparedwiththeoriginalantibody[112].
Alsomonoclonalanti-idiotypicantibodieshavebeendeveloped,althoughtheusehasbeenintendedmainlyforvaccinedevelopmentortoxicitystudies[113,114].
Forimmunoassaydevelopment,severalre-combinantanti-idiotypicantibodiesformycotoxinshavebeenselectedfromrandomphagelibraries.
Phagedisplayoffersanexquisitemethodtosearchforepitopemimicsevenwithlittlepriorknowledgeoftheantibody–antigeninteraction,whichisoftenthecaseespeciallyinthecaseofcommercialantibodies.
Astheantigen-bindingsiteofconventionalantibodiesisratherlargeandflat,theyareprobablynotthebestoptiontomimicsmallhaptens,suchasmycotoxins,andallrecentlyre-portedanti-idiotypicantibodiesformycotoxinswereheavychainantibodies(VHH)selectedfromeitherimmunizedornavelibraries.
Incontrasttotherecognitionsurfaceofconven-tionalantibodies,whichiscomposedofsixcomplementarity-determiningregions,heavychainantibodieshaveonlyonevariableregion(VHH),andforthisreasononeofthecomplementarity-determiningregionsisunusuallylongandvariable.
Thisstructureisknowntocreateratherlargeconvexparatopesandallowbetterbindingtocleftsandcavities,whichhasbeensuggestedtobemoresuitableformolecularmimicryofhaptens[26,100,115].
Forexample,Wangetal.
[97]select-edananti-idiotypicVHHfromanimmunizedlibraryforthedetectionofAFB1.
Thenanobody-basedELISAshowedanIC50of13.
8μg/kgforAFB1inspikedsamples,whichwasfurtherreducedfourfoldwithuseofphagedisplay-mediatedimmuno-polymerasechainreactionforthedetectionwiththesamenanobody[98].
Althoughnanobodiesisolatedfromnavephage-displayedlibrariesoccasionallydonothaveenoughaffinitytobeusedastheprimaryantibody,theycanbesuitableasanti-idiotypicanti-bodiesincompetitiveimmunoassay.
Inthiscase,aslightlyloweraffinityoftheepitopemimiccanbeadvantageousasweakeraffinityindicateslessamountoftheanalyteneededtoparticipateinthecompetition,whichleadstohighersensitivities[100,104].
Infact,thenavealpacananobodyphage-displayedlibrary,orig-inallyconstructedbyTuetal.
[99]forscreeningofDON-specificnanobodies,wwidelyusedthereafterforscreeningofanti-idiotypicnanobodiesforthedetectionofseveralmyco-toxins,includingCIT[116,117],DON[95],FB1[100,101],andOTA[104].
Inallcases,theuseoftheanti-idiotypicnanobodyincreasedthesensitivityoftheELISA,atbest20-foldcomparedwiththeassayswiththetoxinconjugates.
Perhapsasimpleralternativetoanti-idiotypicantibodiesistheuseofsmallpeptidesasepitopemimics.
Suchpeptides,alsoknownasBmimotopes,^havebeendevelopedforthemostcommonmycotoxins,includingDON[112],FB1[93,102,103],OTA[105,106,118–120],andZEN[121].
Reportedmimotopesdifferinlengthandstructure;useoflinear7-mer[106,118]and12-mer[93]peptidesaswellascyclicFig.
3aHomogeneousnoncompetitiveimmunoassayforthedetectionofHT-2toxinbasedontheanti-immunecomplexFab,whichbindstotheprimaryantibodywithHT-2toxin.
Fluorescenceresonanceenergytrans-fer(FRET)occursbecauseoftheshortdistancebetweenthetwofluorophores.
bMicroarray-basedimmunoassayforthedetectionoffumonisinB1(FB1)usingbiotinylatedmimotopes.
(aAdaptedfrom[91];badaptedfrom[93])Bioinspiredrecognitionelementsformycotoxinsensors755Table4RecentexamplesofcompetitiveimmunoassaysusingepitopemimicsTargettoxinEpitopemimicLibraryusedAssayformatDetectionAnalyticalcharacteristicsSampleReferenceAFB1Anti-idiotypicVHHImmunizedImmobilizedVHH,anti-AFB1mAb,anti-IgG–HRPAbsorbanceIC50=0.
16ng/mLPeanuts,rice,corn[97]AFB1Anti-idiotypicVHHfrom[97]–Immobilizedanti-AFB1mAb,phage-displayedVHHPD-IPCRLOD=0.
02ng/mLIC50=5.
6μg/kgLR=1.
9730.
75μg/kgCorn,rice,peanut,feedstuff[98]DONAnti-idiotypicVHHNavenanobodylibrary[99]ImmobilizedVHH,anti-DONmAb,anti-IgG–HRPAbsorbanceLOD=1.
16ng/mLIC50=8.
77ng/mLLR=2.
18–62.
25ng/mLCorn,wheat,feedstuff[95]FB1Anti-idiotypicVHHNavenanobodylibrary[99]ImmobilizedVHH,anti-FB1mAb,anti-IgG–HRPAbsorbanceLOD=0.
15ng/mLIC50=0.
95ng/mLLR=0.
27–5.
92ng/mLCorn,rice,feedstuff[100]FB1Anti-idiotypicVHHfrom[100],fusionwithAP–Immobilizedanti-FB1mAb,VHH–APfusionproteinChemiluminescenceLOD=0.
12ng/mLIC50=0.
89ng/mLLR=0.
29–2.
68ng/mLCorn,rice,feedstuff[101]FB1Syntheticmimotopea(WELPTLA)–BSAconjugateCyclic7-merpeptidelibrary(Ph.
D.
-C7C)Immobilizedmimotope,anti-FB1mAb,anti-IgG–HRPAbsorbanceLOD=1.
18ng/mLIC50=6.
06ng/mLLR=1.
77–20.
73ng/mLMaize,feedstuff,wheat[102]FB1Mimotopea(TTLQMRSEMADD)–MBPfusionproteinLinear12-merpeptidelibrary(Ph.
D.
-12)Immobilizedmimotope–MBPfusionprotein,anti-FB1mAb,anti-IgG–HRPAbsorbanceLOD=0.
21ng/mLIC50=1.
26ng/mLMaize,feedstuff,rice[103]OTAAnti-idiotypicVHHNavenanobodylibrary[99]Immobilizedanti-OTAmAb,phage-displayedVHHPD-IPCRLOD=4.
17pg/mLCorn,wheat,feedstuff,rice[104]OTAMimotopea(AETYGFQLHAMK)2nd-generationpeptidelibrary(fromPh.
D.
-12andPh.
D.
-C7C)Immobilizedanti-OTAmAb,phage-displayedmimotope,anti-phage–HRPChemiluminescenceLOD=0.
005ng/mLIC50=0.
04ng/mLLR=0.
006-0.
245ng/mLCorn,rice,instantcoffee[105]OTASyntheticbiotinylatedmimotopea(GMVQTIF)Linear7-merpeptidelibraryPh.
D.
-7Immobilizedanti-OTAmAb,biotinylatedmimotope,SA–HRPAbsorbanceLOD=0.
001ng/mLIC50=0.
024ng/mLLR=0.
005–0.
2ng/mLCorn[106]AFB1aflatoxinB1,APalkalinephosphatase,BSAbovineserumalbumin,DONdeoxynivalenol,FB1fumonisinB1,HRPhorseradishperoxidase,IC50half-maximalinhibitoryconcentration,LODlimitofdetection,LRlinearrange,MBPmaltose-bindingprotein,mAbmonoclonalantibody,OTAochratoxinA,PD-IPCRphagedisplay-mediatedimmuno-polymerasechainreaction,SAstreptavidinaPeptidesequenceinparentheses756PeltomaaR.
etal.
mimotopes[102]hasbeendescribed.
Althoughnoclearcon-sensusinthesequenceofthesemimotopesisseen,evenwithmimotopesforthesamemycotoxin,thepeptidesusuallycon-tainseveralchargedandaromaticaminoacids.
Theuseofmimotopesformycotoxindetectionhasbeendescribedinsev-eralapplications,andsomerecentexamplesarepresentedinTable4.
Thephage-bornepeptideshavebeendirectlyusedinELISAwithcolorimetric[118]andchemiluminescent[105]detection,aswellasindipstick[105]anddot[121]immuno-assays.
Moreover,researchershavedevelopedalternativeBphage-free^approachesbyreplacingthephage-bornepeptidewiththesyntheticorrecombinantcounterpart,thusavoidingtheuseofthephageintheassay.
Asthechemicalsynthesisofshortpeptidesisawell-establishedandwidelyusedmethod,theuseofsyntheticmimotopesisasimplealternativetouseofthephage-displayedpeptides.
Suchphage-freeapplicationshavebeenreportedforOTAwithuseofabiotinylatedmimotopewithstreptavidin-labeledhorseradishperoxidase[106]aswellasforFB1withuseofthesyntheticpeptide–bovineserumalbuminconjugateasthecoatingantigeninpeptideELISA[102]andrecentlywithuseofabiotinylatedmimotopeinamicroarrayformat(Fig.
3b)[93].
Alternatively,recombinantmimotopescanbeexpressedinE.
coliasproteinfusionsandusedtocoattheELISAplatewithouttheneedforfurthercon-jugation.
Forexample,mimotopesforOTAandFB1werefusedwithmaltose-bindingprotein,andafterpurificationtherecom-binantfusionproteinsweredirectlyusedascoatingagentsinELISA[103,120].
Thisapproachcanofferacheaperalterna-tivetothesyntheticpeptidesasevenlargeamountsofthefusionproteincanbeexpressedinbacteriacost-effectively;however,theprocessrequirescloningoftheconstruct,whichcanbetime-consuming.
PeptidesPeptidesareinvolvedinawiderangebiochemicalprocessesandareessentialformanybiologicalfunctions,suchassignal-ing,cellgrowth,andmetabolism[122].
Aspeptidessharethesamechemicalstructureasproteins,theycanbeconsideredasanattractivebioinspiredrecognitionelementtoreplaceanti-bodies.
Smallpeptidesarestableinawiderangeofconditionsandareeasytosynthesize,optionallywithdifferentmodifica-tionsortagsforimmobilizationorlabeling[123,124].
Modelingofshortpeptidesisrelativelyeasy,andforscreening,bothmolecularbiologyandchemicaltechniquesareavailable[125].
Furthermore,peptidebinderscanbeobtainedalsofortargetsthataredifficultforantibodies,suchastoxicmoleculesortargetswithlowimmunogenicity[41].
Yet,onlyafewpep-tideshavebeensuccessfullyusedasrecognitionelementssincethedesignofnewpeptidereceptorswithhighaffinitiesischal-lengingbecauseoflimitedunderstandingofinteractionsin-volvedinthemolecularrecognition[126].
Peptidescanbederivedfromnaturalsources(e.
g.
naturallyoccurringpeptidehormones),fromgeneticorrecombinantli-braries,orfromchemicallibraries.
Theycanbeselectedfromcombinatoriallibrariesthathavebeensynthesizeddirectlyfromthemonomericcomponents,inthecaseofpeptidesfromaminoacids.
Aschemicalsynthesishasaccesstoawiderdiversityofthestartingcomponents,combinatoriallibrariescanbecon-structedwiththeuseofnotonlynaturalbutalsounnaturalaminoacidsorpseudo-peptidebonds[126].
Theadvancesinbioinformaticsandcomputationalmethodshavealsomadeitpossibletodesignpeptidereceptorsinsilico.
Molecularmodel-ingcanbeusedtoobtainstructuralinformationaboutthetargetmoleculethatcanthenbeappliedtodirectthedesignofcom-binatoriallibraries,ortocompletelyrationallydesignartificialreceptors[126].
Alternatively,peptidescanbeselectedfromphage-displayedlibrariesthatarebasedonphagevectorsfordisplayingpeptidesasafusionwithoneofthephagecoatproteins[59].
Theadvantageofphagedisplaytechnologyisthefullyrandomnatureofthelibraries,whichdonotcontainrationallydesignedstructures,andthesamelibrarycanbeusedessentiallyforanytarget[125].
However,sofarallthereportedphage-displayedpeptidesformycotoxinanalysishavebeenusedasmimotopes(seeBEpitopemimics^)ratherthanastheprimaryrecognitionelement.
Thefewexamplesofpeptide-basedrecognitionofmyco-toxinsfoundintheliteratureinclude,forexample,thedevel-opmentOTA-bindingpeptideNFO4,whichwasderivedfromaspecificregionofhumanoxidoreductase.
SyntheticNFO4wasusedwithhorseradishperoxidaseconjugatedOTAinacompetitiveELISAwhichshowedanIC50of3.
2μg/L[127].
Laterthedetectionlimitwasslightlyreducedbyimmobiliza-tionofthepeptideonthree-dimensionalporouschitosansup-portsinsteadofamicrotiterplatewell[128]orbyuseofanamperometricsensorasthetransducer[129].
AlsoHeurichetal.
[130]designedanOTA-bindingpeptide,thistimebycomputationalmodeling.
InSPRanalysisthesedenovode-signedpeptidesshowedbindingtowardOTA–bovineserumalbuminconjugatewithKDof11.
8–15.
7μM;however,com-petitiveassaywithfreeOTAwasnottested.
SomegroupshavealsoidentifiedpeptidesagainstOTA[131]andaflatoxins[132]bycombinatorialsynthesis.
Thesepeptidesshowedde-centaffinitiesforthemycotoxins,Keq=103–104M1,whichwassufficienttoretainthetargetinsolution,andthechemi-callysynthesizedpeptidescouldbeusedforsolid-phaseex-tractionofthetoxins;however,suchlowaffinityconstantsareusuallynotsuitableforsensordevelopment.
AptamersTheetymologicalmeaningofBaptamer^referstotheLatinwordforBtofit^,aptus,suggestingtherelationshipbetweenaptamersandtheirtargetfollowingtheBlock-and-key^theory.
Bioinspiredrecognitionelementsformycotoxinsensors757Aptamersaresmall(usuallyfrom2to60nucleotides)single-strandedRNAorDNAthatcanbindspecificallytodiversetargets,includingions,peptides,proteins,cells,antibodies,andorganicmolecules.
Inasimilarway,aptazymes(RNAzymesandDNAzymes)areengineeredaptamerswithallostericpropertiesthatcombineatarget-binderstrandandanenzymestrand.
Aptamersforspecifictargetscanbeobtainedbythescreeningofoligonucleotidelibraries(1014–1015vari-ants)throughtheprocessofsystematicevolutionofligandsbyexponentialenrichment(SELEX).
SincetheinventionofSELEXmorethan25yearsago,themethodhasevolvedconsiderably.
Forexample,mostaptamersselectedforsmallmoleculesuntil2007consistedofRNA,butinrecentyears,useofDNAaptamershasincreased,giventheirstabilitytonucleasedigestion[133].
Inaddition,theSELEXprocesshasevolvedtoavarietyofmodifiedapproachesthatallowselec-tionofaptamerswithbetterspecificityandbindingefficiency(Fig.
4)[134].
Newaptamer-relateddataarepublishedalmosteveryday,andthusonlinedatabasesareavailabletoprovideaccessto,forexample,specificaptamerapplicationsorclas-sification.
Aninterestingexampleisthewebsitehttp://www.
aptagen.
com/aptamer-index/aptamer-list.
aspx.
Biosensorsusingaptamersasbiorecognitionelements,alsoreferredasBaptasensors,^werefirstdescribedin1996[133–135],andhavesincebeenusedinvarioussensingap-plications.
Aptamerscanprovidehighstabilityandaffinity,aswellassimplicity,lowcostandexcellentbatch-to-batchreproducibility.
Particularly,aptasensorshaveattractedhugeattentionintheanalysesoffoodcontaminants,suchasmyco-toxins,owingtotheinherentadvantagescomparedwithotherbiorecognitionelements,especiallytheirexcellentbindingconstantsformostmycotoxinsstudied,withdissociationcon-stants(KD)inthenanomolarrange(Table5).
Nonetheless,aptamers,especiallyRNAaptamers,arehighlysensitivetonucleases,andmoreover,aptameraffinityisstronglydepen-dentonthebindingconditions.
Immobilizationofaptamersisakeystepinthedesignofbiosensorsasitcanaffecttheaffinityoftheaptamerforitstargetandalsoitslong-termstabilityforrealsampleanalysis.
Inrecentyears(2012–2017),mostlyallimmobilizationstrat-egiesusedforaptasensordevelopmentwerebasedon(1)ad-sorptionorπ–πstackinginteractionsbetweentheDNAbasesoftheaptamerandgrapheneoxide(GO)-modifiedinterfaces[140],(2)covalentlinkageoftheaptamertocarboxylicacidgroupspresentonasurfaceornanomaterial[145],(3)bindingofthiolatedaptamerstoCdTequantumdots(QDs)orAu-basedmaterials[146],(4)affinitybindingbasedonbiotin–streptavidinorotheraffinityinteractions[147,148],or(5)hybridizationtoapartiallycomplementarysingle-strandedDNA,previouslyimmobilizedonasurfaceorananoparticle[149–151].
Inthesamewayasimmunosensors,aptasensorshavebeenusedinseveraldifferentsensingschemestotransducetherecognitionprocess,suchasdirect,competitive,displacement,Fig.
4Inthesystematicevolutionofligandsbyexponentialenrichment(SELEX)process,aninitialpoolof1014–1015randomsingle-strandedDNAorRNAmoleculesissubjectedtobindingwiththetarget,andtheelutedprobesareamplifiedbypolymerasechainreaction(PCR).
Theselectionprocessisrepeated6–15timeswithamplifiedoligonucleotides(ONTs)asthenewpool.
DifferentSELEXmodificationscanbeperformedtoobtainaptamerswithhighspecificityandaffinity;forex-ample,toggle-SELEXcanperformselectionswithtwodifferenttargetmoleculestoobtainbispecificaptamers.
RTreversetranscription.
(Reproducedwithpermissionfrom[134],copyright2013,KoreanSocietyofAppliedPharmacology)758PeltomaaR.
etal.
andsandwichassayformats[152].
Inrecentyears,awidevari-etyofnovelmethodsincombinationwithnewtransductionapproachesorinnovativeamplificationtechniques(Fig.
5)havebeenreported[153,154].
Forexample,isothermalamplificationofnucleicacidshasemergedasapromisingalternativeforaptasensors[154].
Indeed,thereareanincreasingnumberofbiosensorsforawidespectrumoftargets(smallmolecules,ions,proteins,etc.
)thathaveincreasedtheirsensitivitybyincorpora-tionoftheisothermalamplificationdetectionmode[155].
Someexamplesofrecentlyreportedaptasensorsformyco-toxindetectionaredescribedinTable6.
Morethan40%ofthemycotoxinaptasensorsreportedinthelastcoupleofyearsarebasedonfluorescence,andamongthem,oneofthemostusedstrategiesisbasedontheuseofmetalandcarbonnanostruc-tures,suchasgoldnanoparticles(AuNPs),GO,single-walledcarbonnanotubes,MoS2flakes,orTiO2tubes.
Manyoftheseexamplesmakeuseofthestrongquenchingoffluorescentaptamerconjugatesadsorbedonthesesurfacesbyπ–πstack-inginteractions[158–160].
Forexample,Lvetal.
[160]fab-ricatedasensitiveaptasensorforOTAdetectionusingsingle-walledcarbonnanohorns(SWCNHs)asefficientquenchers,whichprovidedcompletelossoffluorescenceintensityoftheunfoldedfluorescein(FAM)-labeledOTA–aptamerwhenabsorbedontothecarbonnanohorn.
AdditionofOTAresultedinanaptamershapechangetoaG-quadruplexthatwasfurtherreleasedfromtheSWCNHsurface,withacorrespondingin-creaseinthefluorescence,proportionaltothetoxinconcen-tration.
Theapproachincludedaself-amplifyingcyclethattookadvantageoftheabilityofDNaseItodigestthereleasedaptamerboundtoOTA,liberatingthefreetoxin,whichcouldrebindanewaptameradsorbedontotheSWCNHs.
Withthisstrategy,thesensitivityoftheassaywasincreased20-foldcomparedwiththeunamplifiedapproach,withadetectionlimitof9.
8nM.
Inasimilarway,Zhangetal.
[161]proposedanaptasensorforthedetectionofAFB1usingthesameamplificationsystembasedonDNaseI.
Inthiscase,threedifferentsizesofnano-GOswereusedtoadsorbcarboxyl-X-rhodamine(ROX)la-beledAFB1aptamer,actingasROXquenchersbutalsoasscaffoldstoprotecttheaptamerfromnucleasecleavage(Fig.
6a).
Differentdynamicrangeswereobtaineddependingonthegraphenesizes;GOwithasizeof1000–2000nmhadadynamicrangefrom12.
5to312.
5ng/mL,GOwithasizeof60–80nmhadadynamicrangefrom1.
0to100ng/mL,andGOwithasizeof4–6nmhadadynamicrangefrom5.
0to50ng/mL.
Thesensorprovedtobehighlyselectivewhentestedagainstothermycotoxins,andgoodresultswereobtainedwiththeaptasensorinAFB1-spikedcornsamples.
Daietal.
[163]developedaluminescenceresonanceener-gytransferassayusingcore–shellβ-NaYF4:Yb,Er@NaYF4upconvertingnanoparticlescoatedwithavidin,whichbindstoabiotinylatedOTAaptamer,asenergydonorsandGOactingasanenergyacceptor.
Adynamicrangefrom0.
001to250ng/mLwasreportedforOTA,andtheassayshowedgoodspec-ificitytowardthetoxininanalysisofbeersamples.
Althoughfluorescence-basedmethodscanprovidein-creasedsensitivity,colorimetricmethodsusuallyprofitfromsimplicitywhilemaintainingtherequiredsensitivity.
TheTable5Dissociationconstants(KD)ofsomeaptamersselectiveformycotoxinsTargettoxinKD(nM)AptamertypeBindingconditions/bufferLength/CGcontentReferenceAFB111.
39DNApH7.
0,100mMNaCl,20mMTris–HClpH7.
6,2mMMgCl2,5mMKCl,1mMCaCl2,0.
02%Tween2080/55.
0%[136]AFB29.
83DNApH7.
0,100mMNaCl,20mMTris–HClpH7.
6,2mMMgCl2,5mMKCl,1mMCaCl2,0.
02%Tween2080/56%[137]AFM10.
0182DNANS21/38.
1%[138]Ergotalkaloid44DNA100mMNaCl,20mMTris–HClpH7.
6,5mMKCl,2mMMgCl2,1mMCaCl280/62.
5%[139]FB1100DNA100mMNaCl,20mMTris,2mMMgCl2,5mMKCl,1mMCaCl2,pH7.
696/33.
3%[140]FB2NDDNANS80/55%[141]OTA96DNAPBS1*,1mMMgCl2,0.
01%Tween20,pH7.
466/63.
6%[142]T-2toxin20.
8DNA10mMTris–HCl,150mMNaCl,10mMKCl,2.
5mMMgCl2,pH7.
440/45.
0%[143]ZEN40DNApH7.
4,100mMNaCl,20mMTris–HCl,2mMMgCl2,5mMKCl,1mMCaCl2,0.
02%Tween2040/50%[144]AFB1aflatoxinB1,AFB2aflatoxinB2,,AFM1aflatoxinM1,FB1fumonisinB1,FB2fumonisinB2,NSnotstated,OTAochratoxinA,PBSphosphate-bufferedsaline,Tristris(hydroxymethyl)aminomethane,ZENzearalenoneBioinspiredrecognitionelementsformycotoxinsensors759detectionmechanismofwidelyusedAuNPsisbasedontheirremarkablyhighextinctioncoefficientandtheirstrongcolordependenceonaggregation/disaggregation.
Recently,severalauthorshavereportedinnovativecolor-baseddetectionsys-temsthatintegrateAuNPswithaptamersformycotoxinanal-ysis[164].
Forexample,Chenetal.
[162]reportedanaptasensorforthedetectionofAFB1basedonacatalyticDNAcircuitandAuNPs.
Thesignalamplificationwasdonewithoutenzymesandwasbasedinatoehold-mediatedDNAstranddisplacementthatoccurredatroomtemperature[165].
ThedesignstrategyfortheAFB1aptasensorisillustratedinFig.
6b.
TheAFB1aptamer,includedinT,waspartiallyhybridizedwithacomplementaryDNA(cDNA)(BinFig.
6b)thatcagesthetoeholddomain(a*inFig.
6b).
Whenthetoxinispresent,a*isliberated,andtheamplificationprocessisactivated.
Itinvolvesthesequentialopeningofthethreebiotinylatedhairpins(H1,H2,andH3),andthusthefreeingofthetoeholddomainsH1-b*,H2-c*,andH3-a*.
Then,abranchmigrationisinitiatedtoformaT–H1–H2–H3complexthatisunstable,andTdissociates,triggeringthehybridizationofadditionalhairpins.
Inparallel,thetriplexH1–H2–H3prod-uctsinteractwithAuNP–streptavidinconjugatestoformacross-linkednetworkofhighlyaggregatedAuNPs.
ThebluecolorobtainedbecauseoftheredshiftingcanbevisualizedFig.
5Someexamplesofsensingschemesforopticalaptasensorsusingfluorescentreportersorgoldnanoparticles(GNPs).
aQuenchingaptamerbeacon.
bFluorescenceresonanceenergytransferaptamerbeacon.
cAssemblyaptamerbeacon.
dDisassemblyaptamerbeacon.
eAptamerreleaseandGNPaggregation.
f–gAffinity-mediatedaggregation/disaggregation.
Ffluorophore,FAacceptorfluorophore,FDdonorfluorophore,Qquencher.
(Adaptedfrom[153])760PeltomaaR.
etal.
Table6RecentexamplesofaptasensorsformycotoxinanalysisTargettoxinRecognitionelementAssayformatSensingschemeDetectionAnalyticalcharacteristicsSampleReferenceAFB1AFB1–DNAaptamerDisplacementassayandamplificationwithahairpin/Exo(III)systemAnalytebindingtotheaptamerreleaseshybridizedcDNA,whichself-hybridizestoahairpinandisdigestedbyExo(III)SERSLOD=0.
4fg/mLLR=10–61ng/mLPeanut[149]AFB1QD–AFB1–DNAaptamerDisplacementassayandQDaptamer/AuNPsystemAnalytebindingtotheaptamer–QD(adsorbedontoAuNP)promotesQDaptamerdisplacementandrecoveryoftheemissionFluorescence(quenching)LOD=3.
4nMLR=10–400nMRice,peanut[145]AFB1AFB1–DNAheminaptazymeDisplacementassayandenzymaticassayAnalytebindingpromotesopeningoftheaptazymecomplexandlossoftheperoxidaseactivityAbsorbance(ABTS)LOD=0.
1ng/mLLR=0.
1–104ng/mLCorn[156]AFM1BiotinylatedAFM1–DNAaptamerDisplacementassayandcDNAmonitoringAnalytebindingtoimmobilizedaptamerreleasescDNA,whichisamplifiedbyRT-qPCRFluorescenceLOD=0.
03ng/LLR=10-61ng/mLInfantmilkpowder,ricecereal[147]AFM1AFM1–DNAaptamerDirect(label-free)IDEcoveredwithFe3O4/PANIfilmandcoatedwithaptamerElectrochemicalcyclicandsquarewavevoltammetryLOD=1.
98ng/LLR=660ng/L–[138]FB1FB1–DNAaptamerDirect(label-free)AuNPcoatedwithFB1aptameranddepositedinanSPCESPCE/EISLOD=3.
4pg/mLLR=10pg/mL–50ng/mLCorn[157]FB1ThiolatedFB1–DNAaptamerDirect(label-free)CantileveractivatedwithSAMsofthiolatedFB1aptamerMicrocantileverarrayinstaticmode(DSS)LOD=33ng/mLLR=0.
1–40μg/mL–[146]OTABiotinylatedOTA–DNAaptamerCompetitiveassayOTAaptamerisconjugatedtoSA-IgG,competitiveassaybetweenFAM-labeledOTAandfreeOTAFluorescence(FP)LOD=3.
6nM(buffer)LOD=2.
8nM(whitewine)Whitewine[148]OTAFAM–OTA–DNAaptamerDisplacementassayandFAM-labeledaptamer/AuNPsystemAnalytebindingreleasestheFAM-labeledOTAaptamer(absorbedontoAuNP)andtheemissionisrecoveredFluorescence(quenching)LOD=2.
27nMLR=25–300nMCorn,flour,beer,coffee[158]OTAGQD–OTA–DNAaptamerDisplacementassayAnalytebindingtoGQD@aptamertriggersdisaggregationfromaggregatedGQD@cDNAandtheemissionisrecoveredFluorescence(quenching)throughaggregationLOD=13ng/mLLR=0–1ng/mLRedwine[151]ABTS2,2′-azino-bisbis(3-ethylbenzothiazoline-6-sulphonicacid),AFB1aflatoxinB1,AFM1aflatoxinM1,AuNPgoldnanoparticle,cDNAcomplementaryDNA,DSSdifferentialsurfacestress,EISelectrochemicalimpedancespectroscopy,Exo(III)exonucleaseIII,FAMfluorescein;FB1fumonisinB1,FPfluorescencepolarization,IDEinterdigitatedelectrode,LODlimitofdetection,LRlinearrange,OTAochratoxinA,QDquantumdot,GQDgraphenequantumdot,PANIpolyaniline,RT-qPCRreal-timequantitativepolymerasechainreaction,SAstreptavidin,SAMself-assembledmonolayer,SERSsurface-enhancedRamanscattering,SPCEscreen-printedcarbonelectrodeBioinspiredrecognitionelementsformycotoxinsensors761withthenakedeye,allowingthequantificationofAFB1.
Thelimitofdetectionwas2pM,andtheaptasensorperformancewasvalidatedbytheanalysisofthemycotoxininricesam-ples,withrecoveriesrangingfrom90%to112%.
Severalmycotoxinaptasensorshavealsobeendescribedthatuseelectrochemicaldetection,whichhassomeparticularadvantages,includinglowcost,highsensitivity,orpossibilityofmicrofabrication.
Forexample,Huangetal.
[166]de-scribedanelectrochemicalaptasensorbasedonsignalen-hancementwitharollingcircleamplification(RCA)system.
Thedesignedprimerwascomposedofanaptamersequence,selectiveforOTA,andacDNAsequence,complementarytothecaptureprobeimmobilizedonthegoldelectrodesurface.
IntheabsenceofOTA,theaptamer–cDNAprimerwaspar-tiallyhybridizedtothetemplatepadlockand,underRCAconditions,itssizeincreasedexponentially.
Moreover,itwasalsoenrichedinguaninenucleotides,wheretheredoxprobemethyleneblueboundspecificallyandproducedasignificantsignalenhancementinthedifferentialpulsevoltammetry.
InthepresenceofOTA,theaptamer–cDNAprimerwasreleasedfromtheRCApadlocktobindthemycotoxin.
ThisinducedinhibitionofprimerprolongationundertheRCAsystem,yieldingareductionoftheredoxsignal.
TheresultingelectrochemicalaptasensorcoulddetectOTAwithadetectionlimitof0.
065pg/mL,andwasappliedtotheanalysisofwhitewinesamples,showingrecoveriesintherangeof102–104%.
SPRisalabel-freetechniquebasedonrefractiveindexchangesofadielectricmaterialatthemetal–dielectricinter-face.
BiosensorsbasedonSPRarewidelyusedformycotoxinanalysisbecauseoftheirgreatfeaturessuchassensitivityandreal-time,label-free,andcost-effectivedetection[47].
Recenteffortshavefocusedonthedevelopmentofportableandmin-iaturizedSPRdevices.
Forexample,Biancoetal.
[167]de-velopedaplasmonicportableaptasensorforOTAdetectionbasedonazimuthallycontrolledSPRunderphaseinterroga-tion[168].
Thesystemhadarefractiveindexoneorderofmagnitudegreaterthanthatoftheclassicgrating-basedSPRsetup.
Thelabel-freeassayformatwassimple:athiolatedDNAaptamerwasimmobilizedonthephase-interrogationSPRchip,formingself-assembledmonolayers,andthesignalwasproportionaltotheamountofOTAboundtoit.
Theaptasensorwasoperativeinadynamicrangefrom0.
2to40ng/mLandexhibitedadetectionlimitof0.
005ng/mL.
Biancoetal.
suggestedthatthiscustomapproachcouldbeimple-mentedsooninaminiaturizeddevicewhilemaintainingitsexcellentanalyticalcharacteristics.
Fig.
6aDetectionofaflatoxinB1(AFB1)usingaDNAaptamerandgrapheneoxide.
EachAFB1aptamerbindstoonlyasingleAFB1moleculeandthecomplexisreleasedfromthegrapheneoxidesurface.
Foramplificationassay,theAFB1isregeneratedbyaself-amplifyingcyclebasedonDNaseI.
bDesignstrategyforamplifieddetectionofAFB1basedonacatalyticDNAcircuitandgoldnanoparticles.
Biotinylatedhairpins(H1,H2,andH3)areusedinthesensingsystemforsignalamplificationandstreptavidin-functionalizedgoldnanoparti-cles(Au-SA)areusedascolorimetricprobes.
ArrowsdrawnonDNAstrandsrepresentthe3'end.
Toeholdsandtoeholdbindingdomainsarenamedbylettersandcomplementarityisdenotedbyasterisks.
ROXcarboxyl-X-rhodamine.
(aReproducedfrom[161]withpermissionoftheRoyalSocietyofChemistry;breproducedfrom[162]withpermis-sionoftheRoyalSocietyofChemistry)762PeltomaaR.
etal.
MolecularlyimprintedpolymersMIPshaveshownagreatpotentialasbioinspiredrecognitionelementsforsensordevelopment.
Theseartificialmaterialsareabletorecognizeaparticulartargetincomplexmixturesbe-causeofthepresenceofspecificrecognitionsites,forbindingorcatalysis,withshapeandgeometryofthefunctionalgroupscomplementarytothoseinthetemplatemolecule.
Forpoly-merpreparationthetemplatemolecule,namely,thetargetan-alyteorasurrogatemolecule,interactsbycovalentornoncovalentbondingwiththefunctionalmonomers.
Radicalpolymerizationinthepresenceofacross-linkerresultsinathree-dimensionalnetworkthatontemplateremovalwillcon-tainspecificrecognitioncavitieswithsize,geometry,andar-rangementoffunctionalgroupscomplementarytothoseofthetargetcompound,thusmimickingthebiologicalactivityofnaturalreceptors.
Templateextractioniscriticalforapplica-tionofMIPsasrecognitionelementsinsensors.
Bleedingofthenon-washed-outtemplatecancausefalsepositives,inac-curaciesintheanalysis,andincreasedlimitsofquantification.
Theuseofatemplatesurrogateinsteadofthetargetcompoundmayavoidthislimitation;however,itwillnotpreventthedecreaseinthebindingcapacityoftheMIPifitsextractionfromthebindingsitesisnotquantitative[169].
OvertheyearsMIPshavebeenappliedinvariousfields,includingsolid-phaseextraction,chromatography,drugdeliv-ery,bioremediation,controlledrelease,andsensors[170–177].
MIPsareoftendescribedasartificialantibodiesorartificialenzymes[178],andincomparisonwiththeirbio-logicalcounterpartstheyshowseveraladvantagesassensorreceptors,including,butnotlimitedto,theirhighphysicalandchemicalstability,robustness,compatibilitywithorganicsol-vents,lowcost,easeofpreparation,reusability,andavailabil-ityindifferentphysicalformatsforcouplingtothetransducer[179].
However,theiraffinityandspecificityaretypicallyworsethanforantibodies,andtheimprintedcavitiesareusu-allyheterogeneous,showingadistributionofbindingcon-stants,andslowerbindingkineticsthanbiologicalreceptors.
Incontrasttobiologicalreceptors,insomecasestheyshowlimitedrecognitioninaqueoussolutions,althoughextensiveresearchinrecentyearshasallowedsomeoftheaforemen-tionedshortcomingstobeovercome[180].
RecentadvancesinthedevelopmentofnanosizedMIPs,aloneorincombina-tionwithmetalnanoparticles,haveopenednewperspectivesintheapplicationofthesematerialsforsensingpurposes,giv-enthat,amongotheradvantages,theyallowhigherbindingcapacities,fasterbindingkinetics,andeasiercouplingtothetransducersurfacethantraditionalMIPs[175].
SeveralexamplesoftheapplicationofMIP-basedsensorsformycotoxindetectionhavebeenreportedinthelast5years(Table7).
Thewebsitehttp://www.
MIPdatabase.
comcollectsalltheinformationrelatedtothistopic.
Forexample,AFB1wasdetectedwithuseofMIPfilmspreparedbyelectropolymerizationofp-aminothiophenol-functionalizedAuNPsandp-aminothiophenolself-assembledonthesurfaceofagoldelectrodeinthepresenceofthetoxinasthetemplatemolecule.
Recognitionwasattributedtotheformationofπ–πinteractionsbetweenAFB1andtheanilinemoietiesintheimprintedmaterial.
Theresponsewaslinearintherangeof3.
2f.
to3.
2μMAFB1,andthedeviceshowedsomecross-reactivitywithOTA,butthiswasverylowforaflatoxinB2oraflatoxinG1[181].
Higherdetectionlimits(3*1011mol/L)havebeenreportedwithelectrochemicalsensorsfabricatedwitho-phenylenediamineasthefunctionalmonomerandAFB1asthetemplateonmultiwalledcarbonnanotubesup-portedAu/Ptbimetallicnanoparticlemodifiedglassycarbonelectrodes(GCEs)[182].
SeveralsensorshavealsobeendescribedthatuseQDsasthelabelsformycotoxindetection;however,somelimitationsrelatedtoQDleaching,retentionofthephotoluminescentpropertiesofthesemiconductoronimmobilization,andana-lytepermeationmustbetakenintoconsiderationtodevelopstableandsensitivedevices.
Afluorescentsensorforthede-tectionofsterigmatocystin(ST),asecondarymetabolitepro-ducedbyseveralAspergillusspecies,thatusedsilica-basedhybridMIPsbasedonthenonhydrolyticsol–gelmethodwasreported[189].
Theorganosilane-functionalizedQDswerecoatedwiththeimprintedpolymerpreparedwithmethacrylicacid(MAA)asthefunctionalmonomer,γ-methacryloxypropyltrimethoxysilaneasthecross-linker,and1,8-dihydroxyanthraquinoneasthetoxinsurrogate.
Thelumi-nescentpropertiesoftheQDswerenotaffectedbyencapsu-lation,andtheyshowedexcellentstabilityagainstphotobleaching;however,theresponsetimeswererelativelylong(4h).
Themeasuringmechanismwasbasedonthere-tentionofthemycotoxin,throughhydrogenbonding,intheselectivecavitiesofthepolymer,whichresultedinelectrontransferfromQDsintheMIPmatrixtotheboundST,withthecorrespondingquenchingoftheluminescence.
Thesensorshowedsomecross-reactivityforOTA,ZEN,andAFB1,anditwassuccessfullyappliedtotheanalysisofSTinmillet,rice,andmaizesamples.
AdifferentapproachwasdescribedforthedetectionofZENthatusedionic-liquid-stabilizedCdSe/ZnSQDs[190].
Thepolymerswerepreparedwithcyclododecanyl-2,4-dihydroxybenzoateasthetemplatesurrogate[191]andMAAasthefunctionalmonomer.
Thesensingmechanismreliedonacharge-transfermechanismbetweentheconduc-tionbandoftheQDandthelowestunoccupiedmolecularorbitalofZEN.
Thesensorwasappliedtothedetectionofthetoxinincorn,wheat,andricesamples,withrecoverieshigherthan84.
4%,andshowednocross-reactivitywithOTAorDON.
PatulinhasbeendetectedwithaMn-dopedZnSQDbasednanosensorsynthesizedwith6-hydroxynicotinicacidasthesurrogate,3-aminopropyltriethoxysilane,asthefunctionalBioinspiredrecognitionelementsformycotoxinsensors763Table7Recentexamplesofmycotoxindetectionmethodsbasedonmolecularlyimprintedpolymers(MIPs)TargettoxinMIPreceptortype/compositionMeasurementtechniqueSampleAnalyticalcharacteristicsReferenceAFB1PATP-functionalizedAuNPselectropolymerizedonPATPself-assembledonAuELSV10mM[Fe(CN)6]3/4inPBS(pH7.
2)RiceLOD=3*1015mol/LDR=3*1015–3.
2*106mol/L[181]AFB1GCEsmodifiedwithPOPD-graftedAu/PtbimetallicMWCNTnanocompositefilmsDPVAqueoussamplescontaining1mMK3[Fe(CN)6]and0.
1MKClHogwashoil,freshrapeseedoilLOD=3*1011mol/LDR=1*1010–1*105mol/L[182]CITCoatingoftheAuEwithAuNP@CMK-3composite.
Self-assemblyofo-ATandHNAontheAuNPs@CMK-3/AuEasapolymerizablemonomerlayer.
ElectropolymerizationQCMWheat,rice,whitericevinegarLOD=1.
8*109mol/LDR=6.
0*109–2.
0*107mol/L[183]DONElectropolymerizationofpyrroleasafunctionalmonomer,tetraethylammoniumtetrafluoroborateastheelectrolyte,andDONasthetemplateonAuchipsSPRDistilledwaterLOD=1ng/mLDR=0.
1–100ng/mL[184]FB1AuNPsspreadonGCEsmodifiedwithRu@SiO2NPsmixedwith1%chitosan.
PolymerizationinthepresenceofMAA,EDMA,andFB1ECLMilk,maizeLOD=0.
35pg/mLDR=0.
001–100ng/mL[185]OTAGCEcoatedwithRu@SiO2NPsmixedwith1%chitosan.
PolymerizationinthepresenceofMAA,EDMA,andOTAECLCornLOD=0.
027pg/mLDR=0.
1pg/mL–14.
76ng/mL[186]OTAGCEmodifiedwithMWCNTs.
ElectropolymerizationwithpyrroleasafunctionalmonomerCVandDPVWine,beerLOD=4.
1nmol/LDR=0.
050–1.
0μmol/L[187]PatulinMn-dopedZnSQDsmixedwith6-HNA,APTESasthefunctionalmonomer,andTEOSasthecross-linkerviaasurfacemolecularimprintingsol–gelprocessPApplejuiceLOD=0.
32μg/LDR=0.
43–6.
50μg/L[188]STOrganosilane-functionalizedQDscoatedwithaMIPpreparedwithMAA,MPTMSasthecross-linker,andDTasthetoxinsurrogateFMillet,Rice,maizeLOD=19.
0μg/LDR=0.
05–2.
0mg/L[189]ZEAIonicliquid(1-vinyl-3-octylimidazoliumhexafluorophosphate)-stabilizedCdSe/ZnSQDspolymerizedinthepresenceofMAA,EDMA,andCDHBasthetemplateFCornflour,riceflour,wheatflourLOD=2*109mol/LDR=3*109–3.
12*106mol/L[190]AFB1aflatoxinB1,APTESaminopropyltriethoxysilane,AuEgoldelectrode,AuNPgoldnanoparticle,o-ATo-aminothiophenol,CDHBcyclododecanyl-2,4-dihydroxybenzoate,CITcitrinin,CMK-3mesoporouscarbonCMK-3,CVcyclicvoltammetry,DONdeoxynivalenol,DPVdifferentialpulsevoltammetry,DRdynamicrange,DT1,8-dihydroxyanthraquinone,ECLelectrochemiluminiscence,EDMAethyleneglycoldimethacrylate,Ffluorescence,FB1fumonisinB1,GCEglassycarbonelectrode,HNA1-hydroxy-2-naphthoicacid,6-HNA6-hydroxynicotinicacid,LODlimitofdetection,LSVlinearsweepvoltammetry,MAAmethacrylicacid,MPTMSγ-methacryloxypropyltrimethoxysilane,MWCNTmultiwalledcarbonnanotube,OTAochratoxinA,Pphosphorescence,PATPp-aminothiophenol,PBSphosphate-bufferedsaline,POPDpolyphenylenediamine,QCMquartzcrystalmicrobalance,QDquantumdot,Ru@SiO2NPtris(2,2-bipyridine)ruthenium(II)-dopedsilicananoparticle,SPRsurfaceplasmonresonance,STsterigmatocystin,TEOStetraethoxysilane,ZEAzearalenone764PeltomaaR.
etal.
monomer,andtetraethoxysilaneasthecross-linkerviaasur-facemolecularimprintingsol–gelprocess[188].
TheMIP-QDsshowedstrongphosphorescencethatwasquenchedafter30minincubationinthepresenceofthetoxin.
ThesensingmechanismwasbasedonphotoinducedelectrontransferfromtheconductionbandsofMIP-QDstothelowestunoccupiedmolecularorbitalofpatulin.
Thesensorwasappliedtothedetectionofthetoxininapplejuicesamples.
FB1wasmonitoredbyelectrochemiluminescencewithuseofGCEscoatedwithAuNPstoamplifytheelectrochemiluminescencesignal,andfurthermodifiedwithafilmformedbytris(2,2-bipyridine)ruthenium(II)-dopedsilica(Ru@SiO2)nanoparticlesmixedwithchitosan[185].
Themy-cotoxinselectivepolymer,preparedwithMAAasthefunction-almonomer,wasdepositedontopandpolymerizedbyUVirradiation.
SignalenhancementintheMIP/Ru@SiO2/chito-san/AuNP/GCEsystemwasattributedtoacombinationofboththelocalizedSPRandelectrochemicaleffectoftheAuNPs.
CIThasbeendetectedwithdisposablefiberopticsensorspreparedfrom4-cm-longinjection-moldedtaperedpolysty-renewaveguidescoatedwithCIT-imprintedparticles(150–500nm)withpolyvinylalcoholusedasaglue[192].
Afluo-rescentmonomer,N-(2-(6-4-methylpiperazin-1-yl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl-ethyl)acrylamide,wasusedforMIPsynthesis.
Anenhancementofthefluores-cenceintensityofthesignalingmonomerwasobservedon30minincubationofthefunctionalizedfiberinmethanolsolutionsofthemycotoxin,andevanescentwaveexcitationat410nm.
Theemittedlightwasguidedbacktothedetectorwithuseofthesamefiber.
Inprinciplethisapproachcouldbeextendedtothedetectionofothermycotoxinsbearingcarbox-ylicacidgroups,suchasOTAorfumonisins,althoughthethicknessoftheMIPlayerrequiresfine-tuningtoincreasethesensitivity.
Inanalternativeapproach[183],CITwasdetectedwithaquartzcrystalmicrobalance.
TheAuelectrodewascoatedwithAuNP@mesoporouscarbonCMK-3(AuNP@CMK-3)andfurthermodifiedapoly(o-aminothiophenol)MIPselec-tivemembrane.
TheincreaseinthenumberofbindingsitesassociatedwiththeuseofAuNP@CMK-3allowedamplifi-cationofthefrequencyresponsesignal.
ThepolymershowedahigheradsorptioncapacityforCITincomparisonwithOTA,DON,AFB1,orZEA,andshowedgoodperformancefortheanalysisofrice,wheat,andwhitericevinegarsamplesspikedwiththemycotoxinintherangeof10–100μgkg-1.
ConclusionsDespitethebestintentionswithregardtoprevention,myco-toxincontaminationisofteninevitable.
Novelanalyticalmethodscanimprovethedetectionandquantificationofthetoxinsandprovidethenecessarytoolstoensurefoodsafety;theuseofsensorsisanattractivealternativeforsensitive,cost-effectiveandfastanalysisofthesenaturaltoxins.
Therecog-nitionelementselectedforsensordevelopmentshouldideallyprovideenoughsensitivityandspecificitytodetectlowamountsofthetargettoxinsevenincomplexsamples,whereseveraldifferenttoxinscanbepresentsimultaneously.
Moreover,fromapracticalpointofview,robustness,stability,andcostcanaffectthechoiceoftherecognitionelement.
Althoughimmunoassaysandbiosensorsbasedonmonoclonalandpolyclonalantibodieshavebeenthecornerstoneofmy-cotoxindetectionforyears,slowlyotherrecognitionelementsarebeginningtoappear,andrecentresearcheffortshaveshownagreatdealofinterestindevelopingnovelbioinspiredrecognitionelementstoovercomesomeofthedrawbacksas-sociatedwithconventionalantibodies.
Theriseofrecombinantantibodieshasbeenwitnessedinseveralfields,includingmycotoxinresearch,owingtotheap-pealingfeaturesofantibodyfragments,includingsmallsize,easyproduction,andthepossibilityofinvitroselection.
Indeed,thetechnologyhasthepotentialtobypassanimalimmu-nization,althoughmostofthereportedrecombinantantibodiesformycotoxinsarosefrommonoclonalantibodiesorimmunizedlibraries.
Thevastpossibilitiesofferedbyantibodyandproteinengineeringallowthegenerationofdifferentantibodyformats,fromthealreadywell-knownscFvtoheterogeneousproteinfu-sionsoranti-immunecomplexantibodies.
Thewidelyhypedantibodyclass,heavychainantibody,anditsrecombinantfrag-mentVHH,ornanobody,havealsobeennotedinthefieldofmycotoxinanalysis.
Becauseofthelimitationofnanobodiestorecognizehaptentargets,mostofthenanobodiesreportedsofarhavebeenappliedasepitopemimics,whichallowtheproblemsrelatedtothetoxinconjugatesusedincompetitiveimmunoas-saystobecircumvented.
Severalanti-idiotypicantibodiesandpeptides,mimotopes,havebeendescribedaswellinrecentyearsformycotoxindetectionwithimprovedperformancecomparedwiththeuseoftoxinconjugates.
Ontheotherhand,aptamerscanofferhighaffinityandspecificity,comparabletothoseofantibodies,withgoodsta-bilityandrobustness.
Althoughseveralnewaptasensorshavebeenreportedintherecentyears,mostofthemtargetingOTAoraflatoxins,asignificantconcernofresearchersinthefieldisthedevelopmentofcomplexarchitectureswithcostlyampli-ficationproceduresthatgreatlylimittheircommercialboost.
Itisnotonlytheachievementofexoticaptasensorsthatmattersnowadaysbutalsothedevelopmentofinexpensiveap-proachesandtheirapplicationtorealsamples.
MIPs,oftendescribedasartificialantibodies,havealsobeenreportedasattractivealternativerecognitionelements.
MIPshaveseveraladvantagescomparedwiththeirbiologicalcounterparts,butoftenarenotabletocompeteinaffinityandspecificity.
However,recentadvancesinthefieldhaveopenednewop-portunities,whichwillallowhigherbindingcapacitiesandfasterkinetics.
Bioinspiredrecognitionelementsformycotoxinsensors765Itremainstobeseenwhetherthesebioinspiredrecognitionelementsareabletocompetewithconventionalantibodiesformycotoxinsensordesign.
Replacementofmonoclonalandpolyclonalantibodiesisunlikely,aswellasunnecessary,butthebioinspiredrecognitionelementscouldbeacomplemen-taryoption,ratherthananalternative,astheycanbemoreappropriateforsomeapplicationswheretheuseofantibodiesislimited.
Itisalsonoteworthythatthenobleintentiontoimproveanalyticalmethodsreliesnotonlyonthechoiceoftherecognitionelementbutalsoonthetransduction(optical,electrochemical,etc.
)andsignalgeneration(labeledandlabel-free)strategiesaswellastheassayplatform.
Novelmaterialscanprovideimprovementsintheassayrobustness,andimple-mentationofsignalamplificationstrategiescanhaveahugeimpactonassaysensitivity.
Ontheotherhand,forexample,forin-fieldapplications,thetimeandcostoftheanalysisareconstraints,andrapidmethodsareneededformycotoxinde-tection.
Currentlysuchtests,forexample,lateralflowassaysandcolorimetricELISAs,arebasedonmonoclonalantibod-ies,buttheuseofbioinspiredrecognitionelementscouldoffersomeimprovements,suchasbetterstabilityandextendedshelflife.
Furthermore,asseveralmycotoxinsareoftenpres-entinthesamefoodsample,multiplexingisakeypointthatshouldbestudied.
Integrationofnovelassayschemes,forexample,onmicrofluidicchipsorarrayplatforms,showsgreatpotentialformultianalytedetectionwithaffordablecost.
AcknowledgementsThisworkwasfundedbytheEuropeanUnion(SAMOSS;FP7-PEOPLE-2013-ITN;contract607590)andMINECO/FEDER(CTQ2015-69278-C2-1-R).
CompliancewithethicalstandardsConflictofinterestTheauthorsdeclarethattheyhavenocompetinginterests.
References1.
dasChagasOliveiraFreireF,BerezadaRochaME.
Impactofmycotoxinsonhumanhealth.
In:MérillonJ-M,RamawatKG,editors.
Fungalmetabolites.
Cham:Springer;2016.
p.
269–1.
https://doi.
org/10.
1007/978-3-319-19456-1_21-1.
2.
GoyalS,RamawatKG,MérillonJ-M.
Differentshadesoffungalmetabolites:Anoverview.
In:MérillonJ-M,RamawatKG,edi-tors.
Fungalmetabolites.
Cham:Springer;2017.
p.
1–29.
https://doi.
org/10.
1007/978-3-319-25001-4_34.
3.
BennettJW,KlichM.
Mycotoxins.
ClinMicrobiolRev.
2003;16:497–516.
4.
PittJI,MillerJD.
Aconcisehistoryofmycotoxinresearch.
JAgricFoodChem.
2016;https://doi.
org/10.
1021/acs.
jafc.
6b04494.
5.
TurnerNW,SubrahmanyamS,PiletskySA.
Analyticalmethodsfordeterminationofmycotoxins:areview.
AnalChimActa.
2009;632:168–80.
https://doi.
org/10.
1016/j.
aca.
2008.
11.
010.
6.
YuJ,PayneGA,CampbellBC,GuoB,ClevelandTE,RobensJF,etal.
Mycotoxinproductionandpreventionofaflatoxincontami-nationinfoodandfeed.
In:GoldmanGH,OsmaniSA,editors.
TheAspergilli:genomics,medicalaspects,biotechnology,andresearchmethods.
BocaRaton:CRCPress;2007.
p.
457–72.
https://doi.
org/10.
1201/9781420008517.
ch27.
7.
WilsonD,WilliamsJT,WildC,StrokaJ,ShephardG,SchaafsmaA,etal.
Publichealthstrategiesforreducingaflatoxinexposureindevelopingcountries:aworkgroupreport.
EnvironHealthPerspect.
2006;https://doi.
org/10.
1289/ehp.
9302.
8.
PeraicaM,RadiB,LuciA,PavloviM.
Toxiceffectsofmyco-toxinsinhumans.
BullWorldHealthOrgan.
1999;77:754–66.
9.
BaillyJD,GuerreP.
Mycotoxinanalysisinpoultryandprocessedmeats.
In:NolletLML,ToldráF,editors.
Safetyanalysisoffoodsofanimalorigin.
BocaRaton:CRCPress;2010.
p.
77–123.
10.
BerthillerF,CrewsC,Dall'AstaC,DeSaegerS,HaesaertG,KarlovskyP,OswaldIP,SeefelderW,SpeijersG,StrokaJ.
Maskedmycotoxins:areview.
MolNutrFoodRes2013;57:165–186.
doi:https://doi.
org/10.
1002/mnfr.
201100764.
11.
EuropeanCommission.
CommissionRegulation(EC)No1881/2006.
OffJEurUnion.
2006;L364:5–24.
12.
EuropeanCommission.
CommissionRegulation(EC)No1126/2007.
OffJEurUnion.
2007;L255:14–7.
13.
EuropeanCommission.
CommissionRecommendation(EC)No165/2013.
OffJEurUnion.
2013;L91:12–5.
14.
EuropeanCommission.
CommissionRegulation(EC)No105/2010.
OffJEurUnion.
2010;L35:7–8.
15.
EuropeanCommission.
CommissionRegulation(EC)No165/2010.
OffJEurUnion.
2010;L50:8–12.
16.
EuropeanCommission.
CommissionDirective(EC)No32/2002/EC.
2002.
17.
EuropeanCommission.
CommissionRecommendation(EC)No576/2006.
OffJEurUnion.
2006;L229:7–10.
18.
BerthillerF,BreraC,CrewsC,IhaMH,KrskaR,LattanzioVMT,etal.
Developmentsinmycotoxinanalysis:anupdatefor2014–2015.
WorldMycotoxinJ.
2016;9:5–30.
https://doi.
org/10.
3920/wmj2015.
1998.
19.
BrylaM,RoszkoM,SzymczykK,JedrzejczakR,ObiedzinskiMW,SekulJ.
Fumonisinsinplant-originfoodandfodder-areview.
FoodAdditContamPartA.
2013;30:1626–40.
https://doi.
org/10.
1080/19440049.
2013.
809624.
20.
SenyuvaHZ,GilbertJ,StrokaJ.
DeterminationoffumonisinsB1andB2incornbyLC/MSwithimmunoaffinitycolumncleanup:Interlaboratorystudy.
JAOACInt.
2010;93:611–21.
21.
SolfrizzoM,DeGirolamoA,GambacortaL,ViscontiA,StrokaJ,vanEgmondHP.
DeterminationoffumonisinsB1andB2incorn-basedfoodsforinfantsandyoungchildrenbyLCwithimmuno-affinitycolumncleanup:Interlaboratoryvalidationstudy.
JAOACInt2011;94:900–908.
22.
GoryachevaIY,DeSaegerS,EreminSA,VanPeteghemC.
Immunochemicalmethodsforrapidmycotoxindetection:evolu-tionfromsingletomultipleanalytescreening:areview.
FoodAdditContam2007;24:1169–1183.
doi:https://doi.
org/10.
1080/02652030701557179.
23.
KppenR,KochM,SiegelD,MerkelS,MaulR,NehlsI.
Determinationofmycotoxinsinfoods:Currentstateofanalyticalmethodsandlimitations.
ApplMicrobiolBiotechnol.
2010;86:1595–612.
https://doi.
org/10.
1007/s00253-010-2535-1.
24.
ZourobM.
Recognitionreceptorsinbiosensors.
NewYork:Springer;2010.
25.
SkottrupPD.
Smallbiomolecularscaffoldsforimprovedbiosen-sorperformance.
AnalBiochem.
2010;406:1–7.
https://doi.
org/10.
1016/j.
ab.
2010.
06.
042.
26.
WildD.
Theimmunoassayhandbook:theoryandapplicationsofligandbinding,ELISAandrelatedtechniques.
4thed.
Oxford:Elsevier;2013.
27.
ByrneB,StackE,GilmartinN,O'KennedyR.
Antibody-basedsensors:principles,problemsandpotentialfordetectionof766PeltomaaR.
etal.
pathogensandassociatedtoxins.
Sensors(Basel).
2009;9:4407–45.
https://doi.
org/10.
3390/s90604407.
28.
LangoneJJ,VanVunakisH.
AflatoxinB;specificantibodiesandtheiruseinradioimmunoassay.
JNatlCancerInst1976;56:591–595.
29.
SunZT.
MonoclonalantibodyagainstaflatoxinB1anditspoten-tialapplication.
ZhonghuaZhongLiuZaZhi.
1983;5:401–5.
30.
GroopmanJD,TrudelLJ,DonahuePR,Marshak-RothsteinA,WoganGN.
High-affinitymonoclonalantibodiesforaflatoxinsandtheirapplicationtosolid-phaseimmunoassays.
ProcNatlAcadSciUSA.
1984;81:7728–31.
31.
VidalJC,BertolínJR,EzquerraA,HernándezS,CastilloJR.
Rapidsimultaneousextractionandmagneticparticle-baseden-zymeimmunoassayfortheparalleldeterminationofochratoxinA,fumonisinB1anddeoxynivalenolmycotoxinsincerealsam-ples.
AnalMethods.
2017;9:3602–11.
https://doi.
org/10.
1039/c7ay00386b.
32.
KongW,XiaoC,YingG,LiuX,ZhaoX,WangR,etal.
Magneticmicrospheres-basedcytometricbeadarrayassayforhighlysensi-tivedetectionofochratoxinA.
BiosensBioelectron.
2017;94:420–8.
https://doi.
org/10.
1016/j.
bios.
2017.
03.
025.
33.
UrusovAE,PetrakovaAV,VozniakMV,ZherdevAV,DzantievBB.
RapidimmunoenzymeassayofaflatoxinB1usingmagneticnanoparticles.
Sensors(Basel).
2014;14:21843–57.
https://doi.
org/10.
3390/s141121843.
34.
BeloglazovaNV,SperanskayaES,WuA,WangZ,SandersM,GoftmanVV,ZhangD,GoryachevaIY,DeSaegerS.
Novelmul-tiplexfluorescentimmunoassaysbasedonquantumdotnanolabelsformycotoxinsdetermination.
BiosensBioelectron2014;62:59–65.
doi:https://doi.
org/10.
1016/j.
bios.
2014.
06.
021.
35.
LiC,WenK,MiT,ZhangX,ZhangH,ZhangS,etal.
Auniversalmulti-wavelengthfluorescencepolarizationimmunoassayformultiplexeddetectionofmycotoxinsinmaize.
BiosensBioelectron.
2016;79:258–65.
https://doi.
org/10.
1016/j.
bios.
2015.
12.
033.
36.
WuS,DuanN,ZhuC,MaX,WangM,WangZ.
Magneticnanobead-basedimmunoassayforthesimultaneousdetectionofaflatoxinB1andochratoxinAusingupconversionnanoparticlesasmulticolorlabels.
BiosensBioelectron.
2011;30:35–42.
https://doi.
org/10.
1016/j.
bios.
2011.
08.
023.
37.
KarczmarczykA,Dubiak-SzepietowskaM,VorobiiM,Rodriguez-EmmeneggerC,DostalekJ,FellerKH.
SensitiveandrapiddetectionofaflatoxinM1inmilkutilizingenhancedSPRandp(HEMA)brushes.
BiosensBioelectron.
2016;81:159–65.
https://doi.
org/10.
1016/j.
bios.
2016.
02.
061.
38.
JoshiS,Segarra-FasA,PetersJ,ZuilhofH,vanBeekTA,NielenMW.
Multiplexsurfaceplasmonresonancebiosensinganditstransferabilitytowardsimagingnanoplasmonicsfordetectionofmycotoxinsinbarley.
Analyst2016;141:1307–1318.
doi:https://doi.
org/10.
1039/c5an02512e.
39.
RicciardiC,CastagnaR,FerranteI,FrascellaF,MarassoSL,RicciA,etal.
Developmentofamicrocantilever-basedimmunosensingmethodformycotoxindetection.
BiosensBioelectron.
2013;40:233–9.
https://doi.
org/10.
1016/j.
bios.
2012.
07.
029.
40.
MaH,SunJ,ZhangY,BianC,XiaS,ZhenT.
Label-freeimmunosensorbasedonone-stepelectrodepositionofchitosan-goldnanoparticlesbiocompatiblefilmonAumicroelectrodefordeterminationofaflatoxinB1inmaize.
BiosensBioelectron.
2016;80:222–9.
https://doi.
org/10.
1016/j.
bios.
2016.
01.
063.
41.
BazinI,TriaSA,HayatA,MartyJL.
Newbiorecognitionmoleculesinbiosensorsforthedetectionoftoxins.
BiosensBioelectron.
2017;87:285–98.
https://doi.
org/10.
1016/j.
bios.
2016.
06.
083.
42.
ShephardGS.
Currentstatusofmycotoxinanalysis:acriticalre-view.
JAOACInt.
2016;99:842–8.
https://doi.
org/10.
5740/jaoacint.
16-0111.
43.
BradburyAR,SidhuS,DubelS,McCaffertyJ.
Beyondnaturalantibodies:thepowerofinvitrodisplaytechnologies.
NatBiotechnol.
2011;29:245–54.
https://doi.
org/10.
1038/nbt.
1791.
44.
TangniEK,MotteJC,CallebautA,PussemierL.
Cross-reactivityofantibodiesinsomecommercialdeoxynivalenoltestkitsagainstsomefusariotoxins.
JAgricFoodChem.
2010;58:12625–33.
https://doi.
org/10.
1021/jf103025e.
45.
ZachariasovaM,HajslovaJ,KostelanskaM,PoustkaJ,KrplovaA,CuhraP,etal.
Deoxynivalenolanditsconjugatesinbeer:Acriticalassessmentofdataobtainedbyenzyme-linkedimmuno-sorbentassayandliquidchromatographycoupledtotandemmassspectrometry.
AnalChimActa.
2008;625:77–86.
https://doi.
org/10.
1016/j.
aca.
2008.
07.
014.
46.
JanewayCA,TraversP,WalportM,ShlomchikMJ.
Immunobiology:theimmunesysteminhealthanddisease.
5thed.
NewYork:GarlandScience;2001.
47.
PeltomaaR,López-PerolioI,Benito-PeaE,BarderasR,Moreno-BondiMC.
Applicationofbacteriophagesinsensordevelopment.
AnalBioanalChem.
2016;408:1805–28.
https://doi.
org/10.
1007/s00216-015-9087-2.
48.
VinckeC,MuyldermansS.
Introductiontoheavychainantibodiesandderivednanobodies.
MethodsMolBiol.
2012;911:15–26.
https://doi.
org/10.
1007/978-1-61779-968-6_2.
49.
HolligerP,HudsonPJ.
Engineeredantibodyfragmentsandtheriseofsingledomains.
NatBiotechnol.
2005;23:1126–36.
https://doi.
org/10.
1038/nbt1142.
50.
CharltonKA.
ExpressionandisolationofrecombinantantibodyfragmentsinE.
coli.
In:LoBKC,editor.
Antibodyengineering:methodsandprotocols.
Totowa:Humana;2004.
p.
245–54.
https://doi.
org/10.
1385/1-59259-666-5:245.
51.
RomanazzoD,RicciF,VolpeG,ElliottCT,VescoS,KroegerK,MosconeD,StrokaJ,VanEgmondH,VehniainenM,PalleschiG.
DevelopmentofarecombinantFab-fragmentbasedelectrochem-icalimmunosensorfordeoxynivalenoldetectioninfoodsamples.
BiosensBioelectron2010;25:2615–2621.
doi:https://doi.
org/10.
1016/j.
bios.
2010.
04.
029.
52.
MinW-K,KweonD-H,ParkK,ParkY-C,SeoJ-H.
CharacterisationofmonoclonalantibodyagainstaflatoxinB1producedinhybridoma2C12anditssingle-chainvariablefrag-mentexpressedinrecombinantEscherichiacoli.
FoodChem.
2011;126:1316–23.
https://doi.
org/10.
1016/j.
foodchem.
2010.
11.
088.
53.
MaragosCM,LiL,ChenD.
Productionandcharacterizationofasinglechainvariablefragment(scFv)againstthemycotoxindeoxynivalenol.
FoodAgricImmunol.
2012;23:51–67.
https://doi.
org/10.
1080/09540105.
2011.
598921.
54.
MinWK,ChoYJ,ParkJB,BaeYH,KimEJ,ParkK,etal.
Productionandcharacterizationofmonoclonalantibodyanditsrecombinantsinglechainvariablefragmentspecificforafood-bornmycotoxin,fumonisinB1.
BioprocessBiosystEng.
2010;33:109–15.
https://doi.
org/10.
1007/s00449-009-0350-9.
55.
HuZQ,LiHP,WuP,LiYB,ZhouZQ,ZhangJB,etal.
Anaffinityimprovedsingle-chainantibodyfromphagedisplayofalibraryderivedfrommonoclonalantibodiesdetectsfumonisinsbyimmu-noassay.
AnalChimActa.
2015;867:74–82.
https://doi.
org/10.
1016/j.
aca.
2015.
02.
014.
56.
LiX,LiP,LeiJ,ZhangQ,ZhangW,LiC.
Asimplestrategytoobtainultra-sensitivesingle-chainfragmentvariableantibodiesforaflatoxindetection.
RSCAdv.
2013;3:22367.
https://doi.
org/10.
1039/c3ra42706d.
57.
HoogenboomHR.
Selectingandscreeningrecombinantantibodylibraries.
NatBiotechnol.
2005;23:1105–16.
https://doi.
org/10.
1038/nbt1126.
58.
McCaffertyJ,GriffithsAD,WinterG,ChiswellDJ.
Phageanti-bodies:filamentousphagedisplayingantibodyvariabledomains.
Nature.
1990;348:552–4.
https://doi.
org/10.
1038/348552a0.
59.
BarbasCF,BurtonDR,SilvermanGJ.
Phagedisplay:alaboratorymanual.
ColdSpringHarbor:ColdSpringHarborPress;2001.
Bioinspiredrecognitionelementsformycotoxinsensors76760.
BoderET,WittrupKD.
Yeastsurfacedisplayforscreeningcom-binatorialpolypeptidelibraries.
NatBiotechnol.
1997;15:553–7.
https://doi.
org/10.
1038/nbt0697-553.
61.
HanesJ,PluckthunA.
Invitroselectionandevolutionoffunction-alproteinsbyusingribosomedisplay.
ProcNatlAcadSciUSA.
1997;94:4937–42.
62.
LevinAM,WeissGA.
Optimizingtheaffinityandspecificityofproteinswithmoleculardisplay.
MolBioSyst.
2006;2:49–57.
https://doi.
org/10.
1039/b511782h.
63.
HuseWD,SastryL,IversonSA,KangAS,Alting-MeesM,BurtonDR,etal.
Generationofalargecombinatoriallibraryoftheimmunoglobulinrepertoireinphagelambda.
Science.
1989;246:1275–81.
64.
HuZ-Q,LiH-P,LiuJ-L,XueS,GongA-D,ZhangJ-B,etal.
Productionofaphage-displayedmouseScFvantibodyagainstfumonisinB1andmoleculardockinganalysisoftheirinteractions.
BiotechnolBioprocessEng.
2016;21:134–43.
https://doi.
org/10.
1007/s12257-015-0495-0.
65.
TullilaA,NevanenTK.
Utilizationofmulti-immunizationandmultipleselectionstrategiesforisolationofhapten-specificanti-bodiesfromrecombinantantibodyphagedisplaylibraries.
IntJMolSci.
2017;18https://doi.
org/10.
3390/ijms18061169.
66.
EdupugantiSR,EdupugantiOP,O'KennedyR.
Generationofanti-zearalenonescFvanditsincorporationintosurfaceplasmonresonance-basedassayforthedetectionofzearalenoneinsor-ghum.
FoodControl.
2013;34:668–74.
https://doi.
org/10.
1016/j.
foodcont.
2013.
06.
013.
67.
LiuX,XuY,XiongYH,TuZ,LiYP,HeZY,etal.
VHHphage-basedcompetitivereal-timeimmuno-polymerasechainreactionforultrasensitivedetectionofochratoxinAincereal.
AnalChem.
2014;86:7471–7.
https://doi.
org/10.
1021/ac501202d.
68.
VaughanTJ,WilliamsAJ,PritchardK,OsbournJK,PopeAR,EarnshawJC,etal.
Humanantibodieswithsub-nanomolaraffin-itiesisolatedfromalargenon-immunizedphagedisplaylibrary.
NatBiotechnol.
1996;3:309–14.
https://doi.
org/10.
1038/nbt0396-309.
69.
GriffithsAD,WilliamsSC,HartleyO,TomlinsonIM,WaterhouseP,CrosbyWL,etal.
Isolationofhighaffinityhumanantibodiesdirectlyfromlargesyntheticrepertoires.
EMBOJ.
1994;13:3245–60.
70.
PerssonH,LanttoJ,OhlinM.
Afocusedantibodylibraryforimprovedhaptenrecognition.
JMolBiol.
2006;357:607–20.
https://doi.
org/10.
1016/j.
jmb.
2006.
01.
004.
71.
LauerB,OttlebenI,JacobsenHJ,ReinardT.
Productionofasingle-chainvariablefragmentantibodyagainstfumonisinB1.
JAgricFoodChem.
2005;53:899–904.
https://doi.
org/10.
1021/jf048651s.
72.
YangL,DingH,GuZ,ZhaoJ,ChenH,TianF,etal.
SelectionofsinglechainfragmentvariableswithdirectcoatingofaflatoxinB1toenzyme-linkedimmunosorbentassayplates.
JAgricFoodChem.
2009;57:8927–32.
https://doi.
org/10.
1021/jf9019536.
73.
MinWK,KimSG,SeoJH.
Affinitymaturationofsingle-chainvariablefragmentspecificforaflatoxinB1usingyeastsurfacedisplay.
FoodChem.
2015;188:604–11.
https://doi.
org/10.
1016/j.
foodchem.
2015.
04.
117.
74.
HeT,WangY,LiP,ZhangQ,LeiJ,ZhangZ,etal.
Nanobody-basedenzymeimmunoassayforaflatoxininagro-productswithhightolerancetocosolventmethanol.
AnalChem.
2014;86:8873–80.
https://doi.
org/10.
1021/ac502390c.
75.
LiuX,XuY,WanDB,XiongYH,HeZY,WangXX,etal.
Developmentofananobody-alkalinephosphatasefusionproteinanditsapplicationinahighlysensitivedirectcompetitivefluores-cenceenzymeimmunoassayfordetectionofochratoxinAince-real.
AnalChem.
2015;87:1387–94.
https://doi.
org/10.
1021/ac504305z.
76.
Hamers-CastermanC,AtarhouchT,MuyldermansS,RobinsonG,HamersC,SongaEB,etal.
Naturallyoccurringantibodiesdevoidoflightchains.
Nature.
1993;363:446–8.
77.
DumoulinM,ConrathK,VanMeirhaegheA,MeersmanF,HeremansK,FrenkenLG,MuyldermansS,WynsL,MatagneA.
Single-domainantibodyfragmentswithhighconformationalstability.
ProteinSci2002;11:500–515.
doi:https://doi.
org/10.
1110/ps.
34602.
78.
LiuX,TangZ,DuanZ,HeZ,ShuM,WangX,etal.
Nanobody-basedenzymeimmunoassayforochratoxinAincerealwithhighresistancetomatrixinterference.
Talanta.
2017;164:154–8.
https://doi.
org/10.
1016/j.
talanta.
2016.
11.
039.
79.
SunZ,DuanZ,LiuX.
Developmentofananobody-basedcom-petitivedotELISAforvisualscreeningofochratoxinAincereals.
FoodAnalMethods.
2017;1–7.
doi:https://doi.
org/10.
1007/s12161-017-0915-1.
80.
BeverCS,DongJ-X,VasylievaN,BarnychB,CuiY,XuZ-L,etal.
VHHantibodies:emergingreagentsfortheanalysisofenvi-ronmentalchemicals.
AnalBioanalChem.
2016;408:5985–6002.
https://doi.
org/10.
1007/s00216-016-9585-x.
81.
deMarcoA.
Biotechnologicalapplicationsofrecombinantsingle-domainantibodyfragments.
MicrobCellFactories2011;10:44.
doi:https://doi.
org/10.
1186/1475-2859-10-44.
82.
JacksonTM,EkinsRP.
Theoreticallimitationsonimmunoassaysensitivity:currentpracticeandpotentialadvantagesoffluorescentEu3+chelatesasnon-radioisotopictracers.
JImmunolMethods.
1986;87:13–20.
https://doi.
org/10.
1016/0022-1759(86)90338-8.
83.
UedaH,TsumotoK,KubotaK,SuzukiE,NagamuneT,NishimuraH,etal.
OpensandwichELISA:anovelimmunoassaybasedontheinterchaininteractionofantibodyvariableregion.
NatBiotechnol.
1996;14:1714–8.
https://doi.
org/10.
1038/nbt1296-1714.
84.
FanM,JiangH.
Recentprogressinnoncompetitivehaptenimmu-noassays:areview.
In:AbuelzeinE,editor.
Trendsinimmunolabelledandrelatedtechniques.
Rijeka:InTech;2012.
https://doi.
org/10.
5772/36688.
85.
LiP,DengS.
Mimeticpeptideandspecialantibody:promisingagentsforoptimizinghapten-analyzingsystems.
AnalMethods.
2016;8:2554–60.
https://doi.
org/10.
1039/c5ay02533h.
86.
SuzukiT,MunakataY,MoritaK,ShinodaT,UedaH.
Sensitivedetectionofestrogenicmycotoxinzearalenonebyopensandwichimmunoassay.
AnalSci.
2007;1:65–70.
87.
UllmanEF,MilburnG,JeleskoJ,RadikaK,PirioM,KempeT,etal.
Anti-immunecomplexantibodiesenhanceaffinityandspec-ificityofprimaryantibodies.
ProcNatlAcadSciUSA.
1993;90:1184–9.
88.
PulliT,HyhtyM,SderlundH,TakkinenK.
One-stephomo-geneousimmunoassayforsmallanalytes.
AnalChem.
2005;77:2637–42.
https://doi.
org/10.
1021/ac048379l.
89.
González-TecheraA,VanrellL,LastJA,HammockBD,González-SapienzaG.
Phageanti-immunecomplexassay:gener-alstrategyfornoncompetitiveimmunodetectionofsmallmole-cules.
AnalChem.
2007;79:7799–806.
90.
KimH-J,McCoyM,GeeSJ,González-SapienzaGG,HammockBD.
Noncompetitivephageanti-immunocomplexreal-timepoly-merasechainreactionforsensitivedetectionofsmallmolecules.
AnalChem.
2011;83:246–53.
91.
ArolaHO,TullilaA,KiljunenH,CampbellK,SiitariH,NevanenTK.
SpecificnoncompetitiveimmunoassayforHT-2mycotoxindetection.
AnalChem.
2016;88:2446–52.
https://doi.
org/10.
1021/acs.
analchem.
5b04591.
92.
ArolaHO,TullilaA,NathanailAV,NevanenTK.
AsimpleandspecificnoncompetitiveELISAmethodforHT-2toxindetection.
Toxins(Basel).
2017;9:–145.
https://doi.
org/10.
3390/toxins9040145.
768PeltomaaR.
etal.
93.
PeltomaaR,Benito-PeaE,BarderasR,SauerU,GonzalezAndradeM,Moreno-BondiMC.
Microarray-basedimmunoassaywithsyntheticmimotopesforthedetectionoffumonisinB1.
AnalChem.
2017;89:6216–23.
https://doi.
org/10.
1021/acs.
analchem.
7b01178.
94.
ChauhanR,SinghJ,SachdevT,BasuT,MalhotraBD.
Recentadvancesinmycotoxinsdetection.
BiosensBioelectron.
2016;81:532–45.
https://doi.
org/10.
1016/j.
bios.
2016.
03.
004.
95.
QiuYL,HeQH,XuY,BhuniaAK,TuZ,ChenB,etal.
Deoxynivalenol-mimicnanobodyisolatedfromanavephagedisplaynanobodylibraryanditsapplicationinimmunoassay.
AnalChimActa.
2015;887:201–8.
https://doi.
org/10.
1016/j.
aca.
2015.
06.
033.
96.
XiaoH,ClarkeJR,MarquardtRR,FrohlichAA.
Improvedmethodsforconjugatingselectedmycotoxinstocarrierproteinsanddextranforimmunoassays.
JAgricFoodChem.
1995;43:2092–7.
https://doi.
org/10.
1021/jf00056a025.
97.
WangY,LiP,MajkovaZ,BeverCR,KimHJ,ZhangQ,etal.
Isolationofalpacaanti-idiotypicheavy-chainsingle-domainanti-bodyfortheaflatoxinimmunoassay.
AnalChem.
2013;85:8298–303.
https://doi.
org/10.
1021/ac4015885.
98.
LeiJ,LiP,ZhangQ,WangY,ZhangZ,DingX,etal.
Anti-idiotypicnanobody-phagebasedreal-timeimmuno-PCRforde-tectionofhepatocarcinogenaflatoxiningrainsandfeedstuffs.
AnalChem.
2014;86:10841–6.
https://doi.
org/10.
1021/ac5029424.
99.
TuZ,XuY,HeQ,FuJ,LiuX,TaoY.
Isolationandcharacterisa-tionofdeoxynivalenolaffinitybindersfromaphagedisplayli-brarybasedonsingle-domaincamelidheavychainantibodies(VHHs).
FoodAgricImmunol.
2012;23:123–31.
https://doi.
org/10.
1080/09540105.
2011.
606560.
100.
ShuM,XuY,WangD,LiuX,LiY,HeQ,etal.
Anti-idiotypicnanobody:Astrategyfordevelopmentofsensitiveandgreenim-munoassayforfumonisinB1.
Talanta.
2015;143:388–93.
https://doi.
org/10.
1016/j.
talanta.
2015.
05.
010.
101.
ShuM,XuY,LiuX,LiY,HeQ,TuZ,etal.
Anti-idiotypicnanobody-alkalinephosphatasefusionproteins:developmentofaone-stepcompetitiveenzymeimmunoassayforfumonisinB1detectionincereal.
AnalChimActa.
2016;924:53–9.
https://doi.
org/10.
1016/j.
aca.
2016.
03.
053.
102.
LiuX,XuY,HeQH,HeZY,XiongZP.
ApplicationofmimotopepeptidesoffumonisinB1inpeptideELISA.
JAgricFoodChem.
2013;61:4765–70.
https://doi.
org/10.
1021/jf400056p.
103.
XuY,ChenB,HeQH,QiuYL,LiuX,HeZY,etal.
Newap-proachfordevelopmentofsensitiveandenvironmentallyfriendlyimmunoassayformycotoxinfumonisinB1basedonusingpeptide-MBPfusionproteinassubstituteforcoatingantigen.
AnalChem.
2014;86:8433–40.
https://doi.
org/10.
1021/ac502037w.
104.
JiY,HeQ,XuY,TuZ,YangH,QiuY,etal.
Phagedisplayedanti-idiotypicnanobodymediatedimmuno-PCRforsensitiveanden-vironmentallyfriendlydetectionofmycotoxinochratoxinA.
AnalMethods.
2016;8:7824–31.
https://doi.
org/10.
1039/c6ay01264g.
105.
HeZY,HeQH,XuY,LiYP,LiuX,ChenB,etal.
OchratoxinAmimotopefromsecond-generationpeptidelibraryanditsapplica-tioninimmunoassay.
AnalChem.
2013;85:10304–11.
https://doi.
org/10.
1021/ac402127t.
106.
ZouX,ChenC,HuangX,ChenX,WangL,XiongY.
Phage-freepeptideELISAforochratoxinAdetectionbasedonbiotinylatedmimotopeasacompetingantigen.
Talanta.
2016;146:394–400.
https://doi.
org/10.
1016/j.
talanta.
2015.
08.
049.
107.
UnerA,GavalchinJ.
Idiotypes.
Chichester:Wiley;2006.
108.
HsuKH,ChuFS.
Productionandcharacterizationofanti-idiotypeandanti-anti-idiotypeantibodiesfromamonoclonalantibodyagainstaflatoxin.
JAgricFoodChem.
1994;42:2353–9.
https://doi.
org/10.
1021/jf00046a052.
109.
GuanD,LiP,CuiY,ZhangQ,ZhangW.
Acompetitiveimmu-noassaywithasurrogatecalibratorcurveforaflatoxinM1inmilk.
AnalChimActa.
2011;703:64–9.
https://doi.
org/10.
1016/j.
aca.
2011.
07.
011.
110.
ChuFS,HuangX,MaragosCM.
Productionandcharacterizationofanti-idiotypeandanti-anti-idiotypeantibodiesagainstfumonisinB1.
JAgricFoodChem.
1995;43:261–7.
https://doi.
org/10.
1021/jf00049a046.
111.
MaragosCM.
Productionofanti-idiotypeantibodiesfordeoxynivalenolandtheirevaluationwiththreeimmunoassayplat-forms.
MycotoxinRes.
2014;30:103–11.
https://doi.
org/10.
1007/s12550-014-0190-6.
112.
YuanQ,PestkaJJ,HespenheideBM,KuhnLA,LinzJE,HartLP.
Identificationofmimotopepeptideswhichbindtothemycotoxindeoxynivalenol-specificmonoclonalantibody.
ApplEnvironMicrobiol.
1999;65:3279–86.
113.
ChanhT,RappoccioloG,HewetsonJ.
Monoclonalanti-idiotypeinducesprotectionagainstthecytotoxicityofthetrichothecenemycotoxinT-2.
JImmunol.
1990;144:4721–8.
114.
ChanhT,SiwakE,HewetsonJ.
Anti-idiotype-basedvaccinesagainstbiologicaltoxins.
ToxicolApplPharmacol.
1991;108:183–93.
115.
WangD,XuY,TuZ,FuJH,XiongYH,FengF,etal.
Isolationandcharacterizationofrecombinantvariabledomainofheavychainanti-idiotypicantibodiesspecifictoaflatoxinB1.
BiomedEnvironSci.
2014;27:118–21.
https://doi.
org/10.
3967/bes2014.
025.
116.
XuY,XiongL,LiY,XiongY,TuZ,FuJ,etal.
Citrinindetectionusingphage-displayedanti-idiotypicsingle-domainantibodyforantigenmimicry.
FoodChem.
2015;177:97–101.
https://doi.
org/10.
1016/j.
foodchem.
2015.
01.
007.
117.
XuY,XiongL,LiY,XiongY,TuZ,FuJ,etal.
Anti-idiotypicnanobodyascitrininmimotopefromanaivealpacaheavychainsingledomainantibodylibrary.
AnalBioanalChem.
2015;407:5333–41.
https://doi.
org/10.
1007/s00216-015-8693-3.
118.
LiuR,YuZ,HeQ,XuY.
AnimmunoassayforochratoxinAwithoutthemycotoxin.
FoodControl.
2007;18:872–7.
https://doi.
org/10.
1016/j.
foodcont.
2006.
05.
002.
119.
LaiW,FungDYC,YangX,RenrongL,XiongY.
DevelopmentofacolloidalgoldstripforrapiddetectionofochratoxinAwithmimotopepeptide.
FoodControl.
2009;20:791–5.
https://doi.
org/10.
1016/j.
foodcont.
2008.
10.
007.
120.
XuY,HeZ,HeQ,QiuY,ChenB,ChenJ,etal.
Useofcloneablepeptide-MBPfusionproteinasamimeticcoatingantigeninthestandardizedimmunoassayformycotoxinochratoxinA.
JAgricFoodChem.
2014;62:8830–6.
https://doi.
org/10.
1021/jf5028922.
121.
HeQ-h,XuY,ZhangC-Z,LiY-P,HuangZ-B.
Phage-bornepeptidomimeticsasimmunochemicalreagentindot-immunoassayformycotoxinzearalenone.
FoodControl.
2014;39:56–61.
https://doi.
org/10.
1016/j.
foodcont.
2013.
10.
019.
122.
NelsonD,CoxME.
Lehningerprinciplesofbiochemistry.
4thed.
NewYork:Freeman;2005.
123.
ChenH,HuangJ,PalaniappanA,WangY,LiedbergB,PlattM,etal.
Areviewonelectronicbio-sensingapproachesbasedonnon-antibodyrecognitionelements.
Analyst.
2016;141:2335–46.
https://doi.
org/10.
1039/c5an02623g.
124.
LiuQ,WangJ,BoydBJ.
Peptide-basedbiosensors.
Talanta.
2015;136:114–27.
https://doi.
org/10.
1016/j.
talanta.
2014.
12.
020.
125.
PavanS,BertiF.
Shortpeptidesasbiosensortransducers.
AnalBioanalChem.
2012;402:3055–70.
https://doi.
org/10.
1007/s00216-011-5589-8.
126.
TothillIE.
Peptidesasmolecularreceptors.
In:ZourobM,editor.
Recognitionreceptorsinbiosensors.
NewYork:Springer;2010.
p.
249–74.
127.
BazinI,AndreottiN,HassineAI,DeWaardM,SabatierJM,GonzalezC.
PeptidebindingtoochratoxinAmycotoxin:anewBioinspiredrecognitionelementsformycotoxinsensors769approachinconceptionofbiosensors.
BiosensBioelectron2013;40:240–246.
doi:https://doi.
org/10.
1016/j.
bios.
2012.
07.
031.
128.
SoleriR,DemeyH,TriaSA,Guiseppi-ElieA,HassineAI,GonzalezC,etal.
Peptideconjugatedchitosanfoamasanovelapproachforcapture-purificationandrapiddetectionofhapten-exampleofochratoxinA.
BiosensBioelectron.
2015;67:634–41.
https://doi.
org/10.
1016/j.
bios.
2014.
09.
084.
129.
TriaSA,Lopez-FerberD,GonzalezC,BazinI,Guiseppi-ElieA.
MicrofabricatedbiosensorforthesimultaneousamperometricandluminescencedetectionandmonitoringofochratoxinA.
BiosensBioelectron.
2016;79:835–42.
https://doi.
org/10.
1016/j.
bios.
2016.
01.
018.
130.
HeurichM,AltintasZ,TothillIE.
Computationaldesignofpep-tideligandsforochratoxinA.
Toxins.
2013;5:1202–18.
https://doi.
org/10.
3390/toxins5061202.
131.
GiraudiG,FerreroVE,AnfossiL,BaggianiC,GiovannoliC,TozziC.
Solid-phaseextractionofochratoxinAfromwinebasedonabindinghexapeptidepreparedbycombinatorialsynthesis.
JChromatogrA.
2007;1175:174–80.
https://doi.
org/10.
1016/j.
chroma.
2007.
10.
057.
132.
TozziC,AnfossiL,BaggianiC,GiovannoliC,GiraudiG.
Acombinatorialapproachtoobtainaffinitymediawithbindingpropertiestowardstheaflatoxins.
AnalBioanalChem.
2003;375:994–9.
https://doi.
org/10.
1007/s00216-003-1754-z.
133.
PfeifferF,MayerG.
Selectionandbiosensorapplicationofaptamersforsmallmolecules.
FrontChem.
2016;4:25.
https://doi.
org/10.
3389/fchem.
2016.
00025.
134.
KongHY,ByunJ.
Nucleicacidaptamers:newmethodsforselec-tion,stabilization,andapplicationinbiomedicalscience.
BiomolTher.
2013;21:423–34.
https://doi.
org/10.
4062/biomolther.
2013.
085.
135.
KleinjungF,KlussmannS,ErdmannVA,SchellerFW,FürsteJP,BierFF.
High-affinityRNAasarecognitionelementinabiosen-sor.
AnalChem.
1998;70:328–31.
https://doi.
org/10.
1021/ac9706483.
136.
MaX,WangW,ChenX,XiaY,WuS,DuanN,etal.
Selection,identification,andapplicationofaflatoxinB1aptamer.
EurFoodResTechnol.
2014;238:919–25.
https://doi.
org/10.
1007/s00217-014-2176-1.
137.
MaX,WangW,ChenX,XiaY,DuanN,WuS,etal.
Selection,characterizationandapplicationofaptamerstargetedtoaflatoxinB2.
FoodControl.
2015;47:545–51.
https://doi.
org/10.
1016/j.
foodcont.
2014.
07.
037.
138.
NguyenBH,TranLD,DoQP,NguyenHL,TranNH,NguyenPX.
Label-freedetectionofaflatoxinM1withelectrochemicalFe3O4/polyaniline-basedaptasensor.
MaterSciEngCMaterBiolAppl.
2013;33:2229–34.
https://doi.
org/10.
1016/j.
msec.
2013.
01.
044.
139.
Rouah-MartinE,MehtaJ,vanDorstB,deSaegerS,DubruelP,MaesBU,LemiereF,GoormaghtighE,DaemsD,HerreboutW,vanHoveF,BlustR,RobbensJ.
Aptamer-basedmolecularrecog-nitionoflysergamine,metergolineandsmallergotalkaloids.
IntJMolSci2012;13:17138–17159.
doi:https://doi.
org/10.
3390/ijms131217138.
140.
McKeagueM,BradleyCR,DeGirolamoA,ViscontiA,MillerJD,DerosaMC.
ScreeningandinitialbindingassessmentoffumonisinB1aptamers.
IntJMolSci2010;11:4864–4881.
doi:https://doi.
org/10.
3390/ijms11124864.
141.
WuS,ZhangL,YangMFumonisinsB2nucleicacidaptamerandapplicationthereof.
2012.
PatentCN102517290A.
142.
BarthelmebsL,JoncaJ,HayatA,Prieto-SimonB,MartyJ-L.
Enzyme-linkedaptamerassays(ELAAs),basedonacompetitionformatforarapidandsensitivedetectionofOchratoxinAinwine.
FoodControl.
2011;22:737–43.
https://doi.
org/10.
1016/j.
foodcont.
2010.
11.
005.
143.
ChenX,HuangY,DuanN,WuS,XiaY,MaX,etal.
ScreeningandidentificationofDNAaptamersagainstT-2toxinassistedbygrapheneoxide.
JAgricFoodChem.
2014;62:10368–74.
https://doi.
org/10.
1021/jf5032058.
144.
ChenX,HuangY,DuanN,WuS,MaX,XiaY,etal.
SelectionandidentificationofssDNAaptamersrecognizingzearalenone.
AnalBioanalChem.
2013;405:6573–81.
https://doi.
org/10.
1007/s00216-013-7085-9.
145.
SabetFS,HosseiniM,KhabbazH,DadmehrM,GanjaliMR.
FRET-basedaptamerbiosensorforselectiveandsensitivedetec-tionofaflatoxinB1inpeanutandrice.
FoodChem.
2017;220:527–32.
https://doi.
org/10.
1016/j.
foodchem.
2016.
10.
004.
146.
ChenX,BaiX,LiH,ZhangB.
Aptamer-basedmicrocantileverarraybiosensorfordetectionoffumonisinB1.
RSCAdv.
2015;5:35448–52.
https://doi.
org/10.
1039/c5ra04278j.
147.
GuoX,WenF,ZhengN,LiS,FauconnierM-L,WangJ.
AqPCRaptasensorforsensitivedetectionofaflatoxinM1.
AnalBioanalChem.
2016;408:5577–84.
https://doi.
org/10.
1007/s00216-016-9656-z.
148.
SamokhvalovAV,SafenkovaIV,EreminSA,ZherdevAV,DzantievBB.
UseofanchorproteinmodulesinfluorescencepolarisationaptamerassayforochratoxinAdetermination.
AnalChimActa.
2017;962:80–7.
https://doi.
org/10.
1016/j.
aca.
2017.
01.
024.
149.
LiQ,LuZ,TanX,XiaoX,WangP,WuL,etal.
UltrasensitivedetectionofaflatoxinB1bySERSaptasensorbasedonexonuclease-assistedrecyclingamplification.
BiosensBioelectron.
2017;97:59–64.
https://doi.
org/10.
1016/j.
bios.
2017.
05.
031.
150.
AbnousK,DaneshNM,AlibolandiM,RamezaniM,SarreshtehdarEmraniA,ZolfaghariR,etal.
Anewamplifiedπ-shapeelectrochemicalaptasensorforultrasensitivedetectionofaflatoxinB1.
BiosensBioelectron.
2017;94:374–9.
https://doi.
org/10.
1016/j.
bios.
2017.
03.
028.
151.
WangS,ZhangY,PangG,ZhangY,GuoS.
Tuningtheaggregation/disaggregationbehaviorofgraphenequantumdotsbystructure-switchingaptamerforhigh-sensitivityfluorescentochratoxinAsensor.
AnalChem.
2017;89:1704–9.
https://doi.
org/10.
1021/acs.
analchem.
6b03913.
152.
Benito-PeaE,ValdésMG,Glahn-MartínezB,Moreno-BondiMC.
Fluorescencebasedfiberopticandplanarwaveguidebiosen-sors.
Areview.
AnalChimActa.
2016;943:17–40.
https://doi.
org/10.
1016/j.
aca.
2016.
08.
049.
153.
ChoEJ,LeeJW,EllingtonAD.
Applicationsofaptamersassen-sors.
AnnuRevAnalChem.
2009;2:241–64.
https://doi.
org/10.
1146/annurev.
anchem.
1.
031207.
112851.
154.
ZhaoY,ChenF,LiQ,WangL,FanC.
Isothermalamplificationofnucleicacids.
ChemRev.
2015;115:12491–545.
https://doi.
org/10.
1021/acs.
chemrev.
5b00428.
155.
HuangH,QinJ,HuK,LiuX,ZhaoS,HuangY.
Novelautono-mousprotein-encodedaptamernanomachinesandisothermalex-ponentialamplificationforultrasensitivefluorescencepolarizationsensingofsmallmolecules.
RSCAdv.
2016;6:86043–50.
https://doi.
org/10.
1039/c6ra17959b.
156.
SeokY,ByunJY,ShimWB,KimMG.
Astructure-switchableaptasensorforaflatoxinB1detectionbasedonassemblyofanaptamer/splitDNAzyme.
AnalChimActa.
2015;886:182–7.
https://doi.
org/10.
1016/j.
aca.
2015.
05.
041.
157.
RenC,LiH,LuX,QianJ,ZhuM,ChenW,etal.
Adisposableaptasensingdeviceforlabel-freedetectionoffumonisinB1byintegratingPDMSfilm-basedmicro-cellandscreen-printedcar-bonelectrode.
SensorsActuatorsBChem.
2017;251:192–9.
https://doi.
org/10.
1016/j.
snb.
2017.
05.
035.
158.
LvX,ZhangY,LiuG,DuL,WangS.
Aptamer-basedfluorescentdetectionofochratoxinAbyquenchingofgoldnanoparticles.
RSCAdv.
2017;7:16290–4.
https://doi.
org/10.
1039/c7ra01474k.
159.
SharmaA,HayatA,MishraRK,CatananteG,BhandS,MartyJL.
Titaniumdioxidenanoparticles(TiO2)quenchingbased770PeltomaaR.
etal.
aptasensingplatform:applicationtoochratoxinAdetection.
Toxins.
2015;7:3771–84.
https://doi.
org/10.
3390/toxins7093771.
160.
LvL,LiD,CuiC,ZhaoY,GuoZ.
Nuclease-aidedtargetrecyclingsignalamplificationstrategyforochratoxinAmonitoring.
BiosensBioelectron.
2017;87:136–41.
https://doi.
org/10.
1016/j.
bios.
2016.
08.
024.
161.
ZhangJ,LiZ,ZhaoS,LuY.
Size-dependentmodulationofgrapheneoxide-aptamerinteractionsforanamplifiedfluorescence-baseddetectionofaflatoxinB1withatunabledy-namicrange.
Analyst.
2016;141:4029–34.
https://doi.
org/10.
1039/c6an00368k.
162.
ChenJ,WenJ,ZhuangL,ZhouS.
Anenzyme-freecatalyticDNAcircuitforamplifieddetectionofaflatoxinB1usinggoldnanopar-ticlesascolorimetricindicators.
Nanoscale.
2016;8:9791–7.
https://doi.
org/10.
1039/c6nr01381c.
163.
DaiS,WuS,DuanN,ChenJ,ZhengZ,WangZ.
AnultrasensitiveaptasensorforochratoxinAusinghexagonalcore/shellupconversionnanoparticlesasluminophores.
BiosensBioelectron.
2017;91:538–44.
https://doi.
org/10.
1016/j.
bios.
2017.
01.
009.
164.
DuanN,WuS,DaiS,GuH,HaoL,YeH,etal.
Advancesinaptasensorsforthedetectionoffoodcontaminants.
Analyst.
2016;141:3942–61.
https://doi.
org/10.
1039/c6an00952b.
165.
MachinekRR,OuldridgeTE,HaleyNE,BathJ,TurberfieldAJ.
ProgrammableenergylandscapesforkineticcontrolofDNAstranddisplacement.
NatCommun.
2014;5:5324.
https://doi.
org/10.
1038/ncomms6324.
166.
HuangL,WuJ,ZhengL,QianH,XueF,WuY,etal.
Rollingchainamplificationbasedsignal-enhancedelectrochemicalaptasensorforultrasensitivedetectionofochratoxinA.
AnalChem.
2013;85:10842–9.
https://doi.
org/10.
1021/ac402228n.
167.
BiancoM,SonatoA,DeGirolamoA,PascaleM,RomanatoF,RinaldiR,ArimaV.
Anaptamer-basedSPR-polarizationplatformforhighsensitiveOTAdetection.
SensorsActuatorsBChem2017;241:314–320.
doi:https://doi.
org/10.
1016/j.
snb.
2016.
10.
056.
168.
RuffatoG,PasqualottoE,SonatoA,ZaccoG,SilvestriD,MorpurgoM,DeToniA,RomanatoF.
Implementationandtest-ingofacompactandhigh-resolutionsensingdevicebasedongrating-coupledsurfaceplasmonresonancewithpolarizationmodulation.
SensorsActuatorsBChem2013;185:179–187.
doi:https://doi.
org/10.
1016/j.
snb.
2013.
04.
113.
169.
Moreno-BondiM,UrracaJ,NavarroF,CarrascoS.
Preparationofmolecularlyimprintedpolymers.
In:Alvarez-LorenzoC,ConcheiroA,editors.
Molecularlyimprintedpolymers:ahand-bookforacademiaandindustry.
Shawbury:SmithersRapra;2013.
p.
23–86.
170.
LiS,GeY,PiletskySA,LunecJ.
Molecularlyimprintedsensors:Overviewandapplications.
Amsterdam:Elsevier;2012.
171.
HauptK.
Molecularimprinting.
Berlin:Springer;2012.
172.
MirskyV,YatsimirskyA.
Artificialreceptorsforchemicalsensors.
Weinheim:Wiley-VCH;2011.
173.
PieltskySA,WhitcombeMJ.
Designingreceptorsforthenextgenerationofbiosensors.
Berlin:Springer;2013.
174.
LeeSW,KunitakeT.
Handbookofmolecularimprinting.
Advancedsensorapplications.
Singapore:PanStanfordPublishing;2013.
175.
WangS,ZhuX,ZhaoM.
Opticalsensorsbasedonmolecularlyimprintednanomaterials.
In:LiS,LeY,LiH,editors.
Smartnanomaterialsforsensorapplication.
OakPark:Bentham;2012.
p.
60–75.
176.
Alvarez-LorenzoC,ConcheiroA.
Molecularlyimprintedpoly-mers:ahandbookforacademiaandindustry.
Shawbury:SmithersRapra;2013.
177.
ChenL,WangX,LuW,WuX,LiJ.
Molecularimprinting:per-spectivesandapplications.
ChemSocRev.
2016;45:2137–211.
178.
HauptK.
Biomaterials:plasticantibodies.
NatMater.
2010;9:612–4.
https://doi.
org/10.
1038/nmat2818.
179.
Moreno-BondiMC,Navarro-VillosladaF,Benito-PeaE,UrracaJL.
Molecularlyimprintedpolymersasselectiverecognitionele-mentsinopticalsensing.
CurrAnalChem.
2008;4:316–40.
https://doi.
org/10.
2174/157341108785914925.
180.
Moreno-BondiMC,Benito-PeaM,UrracaJL,OrellanaG.
Immuno-likeassaysandbiomimeticmicrochips.
TopCurrChem.
2012;325:114–64.
https://doi.
org/10.
1007/128_2010_94.
181.
JiangM,BraiekM,FloreaA,ChroudaA,FarreC,BonhommeA,etal.
AflatoxinB1detectionusingahighly-sensitivemolecularly-imprintedelectrochemicalsensorbasedonanelectropolymerizedmetalorganicframework.
Toxins.
2015;7:3540–53.
https://doi.
org/10.
3390/toxins7093540.
182.
WangZ,LiJ,XuL,FengY,XiaoquanL.
ElectrochemicalsensorfordeterminationofaflatoxinB1basedonmultiwalledcarbonnanotubes-supportedAu/Ptbimetallicnanoparticles.
JSolidStateElectrochem.
2014;18:2487–96.
https://doi.
org/10.
1007/s10008-014-2506-z.
183.
FangG,LiuG,YangY,WangS.
Quartzcrystalmicrobalancesensorbasedonmolecularlyimprintedpolymermembraneandthree-dimensionalAunanoparticles@mesoporouscarbonCMK-3functionalcompositeforultrasensitiveandspecificdetermina-tionofcitrinin.
SensorsActuatorsBChem.
2015;230:272–80.
https://doi.
org/10.
1016/j.
snb.
2016.
02.
053.
184.
ChoiSW,ChangHJ,LeeN,ChunHS.
Asurfaceplasmonreso-nancesensorforthedetectionofdeoxynivalenolusingamolecu-larlyimprintedpolymer.
Sensors.
2011;11:8654–64.
https://doi.
org/10.
3390/s110908654.
185.
ZhangW,XiongH,ChenM,ZhangX,WangS.
Surface-enhancedmolecularlyimprintedelectrochemiluminescencesen-sorbasedonRu@SiO2forultrasensitivedetectionoffumonisinB1.
BiosensBioelectron.
2017;96:55–61.
https://doi.
org/10.
1016/j.
bios.
2017.
04.
035.
186.
WangQ,ChenM,ZhangH,WenW,ZhangX,WangS.
Solid-stateelectrochemiluminescencesensorbasedonRuSinanoparti-clescombinedwithmolecularlyimprintedpolymerforthedeter-minationofochratoxinA.
SensorsActuatorsBChem.
2016;22:264–9.
https://doi.
org/10.
1016/j.
snb.
2015.
08.
057.
187.
PachecoJG,CastroM,MachadoS,BarrosoMF,NouwsHPA,Delerue-MatosC.
MolecularlyimprintedelectrochemicalsensorforochratoxinAdetectioninfoodsamples.
SensorsActuatorsBChem.
2015;215:107–12.
188.
ZhangW,HanY,ChenX,LuoX,WangJ,YueT,etal.
SurfacemolecularlyimprintedpolymercappedMn-dopedZnSquantumdotsasaphosphorescentnanosensorfordetectingpatulininapplejuice.
FoodChem.
2017;232:145–54.
https://doi.
org/10.
1016/j.
foodchem.
2017.
03.
156.
189.
XuL,FangG,PanM,WangX,WangS.
One-potsynthesisofcarbondots-embeddedmolecularlyimprintedpolymerforspecificrecognitionofsterigmatocystiningrains.
BiosensBioelectron.
2016;77:950–6.
https://doi.
org/10.
1016/j.
bios.
2015.
10.
072.
190.
FangG,FanC,LiuH,PanM,ZhuH,WangS.
Anovelmolecu-larlyimprintedpolymeronCdSe/ZnSquantumdotsforhighlyselectiveoptosensingofmycotoxinzearalenoneincerealsamples.
RSCAdv.
2014;4:2764–71.
https://doi.
org/10.
1039/C3RA45172K.
191.
UrracaJL,MarazuelaMD,MerinoER,OrellanaG,Moreno-BondiMC.
Molecularlyimprintedpolymerswithastreamlinemimicofzeralenoneanalysis.
JChromatogrA.
2006;1116:127–34.
https://doi.
org/10.
1016/j.
chroma.
2006.
03.
032.
192.
TonXA,AchaV,BonomiP,TseSumBuiB,HauptK.
Adispos-ableevanescentwavefiberopticsensorcoatedwithamolecularlyimprintedpolymerasaselectivefluorescenceprobe.
BiosensBioelectron.
2015;64:359–66.
https://doi.
org/10.
1016/j.
bios.
2014.
09.
017.
Bioinspiredrecognitionelementsformycotoxinsensors771

水墨云历史黑名单IDC,斟酌选购

水墨云怎么样?本站黑名单idc,有被删除账号风险,建议转出及数据备份!水墨云ink cloud Service是成立于2017年的商家,自2020起开始从事香港、日本、韩国、美国等地区CN2 GIA线路的虚拟服务器租赁,同时还有台湾、国内nat vps相关业务,也有iplc专线产品,相对来说主打的是大带宽服务器产品。注意:本站黑名单IDC,有被删除账号风险,请尽量避免,如果已经购买建议转出及数据备...

快云科技,美国VPS 2H5G独享20M 仅售19.8/月  年付仅需148

快云科技已稳步运行进两年了 期间没出现过线路不稳 客户不满意等一系列问题 本司资质齐全 持有IDC ICP ISP等正规手续 有独特的网站设计理念 在前几天刚是参加过魔方系统举行的设计大赛拿获最佳设计奖第一名 本公司主营产品 香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机 2020年的国庆推出过一款香港的回馈用户特惠机 已作为传家宝 稳定运行 马上又到了...

EtherNetservers年付仅10美元,美国洛杉矶VPS/1核512M内存10GB硬盘1Gpbs端口月流量500GB/2个IP

EtherNetservers是一家成立于2013年的英国主机商,提供基于OpenVZ和KVM架构的VPS,数据中心包括美国洛杉矶、新泽西和杰克逊维尔,商家支持使用PayPal、支付宝等付款方式,提供 60 天退款保证,这在IDC行业来说很少见,也可见商家对自家产品很有信心。有需要便宜VPS、多IP VPS的朋友可以关注一下。优惠码SUMMER-VPS-15 (终身 15% 的折扣)SUMMER-...

515hh com为你推荐
支付宝查询余额怎么查询支付宝里的余额云播怎么看片云播看不了视频渗透测试网站渗透测试怎么做?工信部备案去国家工信部备案需要什么手续呢1433端口如何打开SQL1433端口中小企业信息化小企业需要信息化吗?需要的话要怎么实现信息化呢?xv播放器下载求手机可以看xv格式的视频播放器人人逛街人人都喜欢逛街吗如何快速收录如何掌握百度收录之快速收录微信怎么看聊天记录什么方法可以知道微信的聊天记录
虚拟主机代理 备案域名购买 香港主机租用 万网域名证书查询 精品网 表格样式 域名和空间 个人免费主页 域名dns 服务器是干什么用的 免费稳定空间 云服务是什么意思 卡巴斯基试用版下载 免费获得q币 第八届中美互联网论坛 linux服务器系统 卡巴斯基官方下载 在线tracert 瓦工技术 更多